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1 Introduction

Let /C denote the space of nxn matrices K with0 < K =< I. For K € K we define the determinantal
point process (DPP) X (K'), which is a random variable on the power set of [n], such that for every
S C [n], we have

P(S C X(K)) = det(Ks)

where Kg is the submatrix of K with row and column indices in .S.
One fundamental property of a distribution is its Shannon entropy. For a random variable X on a
discrete set X', its Shannon entropy defined is
H(X):=-> P(X =x)logP(X = x).
reX
(All logs in this report are of base e.)

Lyons [Lyo03] conjectured that the entropy of determinantal point processes is concave in K, i.e.,
for any ¢ € [0, 1] and matrices K1, K5 € K, we have

HX((1-t)K;+tKs)) > (1 —-t)H(X(Ky)) + tH(X(K3)).
In this project we study towards Lyons’s conjecture. Our main results are

1. Entropy of cardinality of X (K) is concave in K (Theorem 1).
2. Lyons’ conjecture is true when Ky = 0 (Corollary 6).

3. Lyons’ conjecture is true when K7 — K> is of rank one (Theorem 7).

2 Concavity of entropy of cardinality

Let | X (K)| denote the cardinality of X (K). Then |X(K)| is a random variable supported on
{0,...,n}. In this section we prove that H (] X (K)|) is concave in K.

Theorem 1. Fort € [0,1], K1, Ky € K, we have
H(IX((1=t)Ky +tK2)]) > (1 = t)H(|X(K1)|) + tH (| X (K2)]).

Proof. For a € [0,1]", define Y (a) to be the sum of n independent Bernoulli random variables
Ber(a;). Let A(K) denote the vector (A (K), ..., A\, (K)) where \;(K) is the i-th largest eigen-
value of K. It is known that | X (K')| has the same distribution as Y (A(K)) (see e.g. Hough et
al. [HKPV06]).

Therefore it is natural to apply the Shepp-Olkin conjecture (Shepp and Olkin [SO81], proved by
Hillion and Johnson [HJ17]), which states that H(Y (a)) is concave in a. Note that this in particular
implies that

H(Y (ta)) 2 tH(Y (a)) + (1 = t)H(Y(0)) = tH(Y (a))

for0 <t <1.



Lidskii [Lid50] proved that for two Hermitian matrices A and B, we have
AMA+ B) € MA) + conv(o(N(B)) : 0 € Sy),

where conv denotes convex hull, and o (v) = (Vg (1), - - - Vo (n))-

Now write

A(1= 1)Ky +tKy) = M(1 = )K1) + Y co0(A(tK2))

ocES,

= (1= )AK1) +1 Z o0 (A(K2))

ocES,
where ¢, > 0and ) _c, = 1.
Then
H(IX((1=t)Ky +tKy)]) = HY (M((1 = ) Ky +tK3)))
= HY (1 =t)A(K1) +t Y co0(A(K2))))

o€ESy
> H(Y((1—1t)A + ) H(Y (te,0(M(K2))))
o€ESy
> (1 - )H(Y( )+t Y e H(Y (a(M(K2))))
oESy

= (1 =) H(Y(AM(K1))) + tH(Y (A(K2))).

3 Concavity of entropy under thinning

In this section we view the determinantal point process as a distribution over {0,1}" C ZZ,. We
consider the thinning operation of Rényi [Rén56] and prove that entropy is concave under thinning,
a multivariate generalization of a result of Yu and Johnson [YJ09].

Definition 2. Let X be a random variable supported on ZZ,. Let t € [0, 1]. Then the ¢-thinning of
X is arandom variable 7; X' supported on ZY, such that

P(T,X =b|X =a)= [[ Bilai,bi)
1<i<n
where

Bi(m,n) = t™(1 — t)»=™ (”)

m

That is, if we consider X; as the number of particles of type ¢, then ¢-thinning is the operation of
independently retaining each particle with probability .

Definition 3. A distribution X on Zx( is called ultra log-concave (ULC) if the sequence
(log(i'P(X = i)))iez,is concave.

Theorem 4. Let X and Y be distributions on 7%, whose marginals are ULC. Let t € [0, 1]. Then
HT .« X+TY)>(1-t)H(X)+tH(Y).

Our approach is similar to Yu and Johnson [YJ09]. For m € ]R>0, we define the multivariate Poisson

distribution Po(m) as the product distribution Po(my) x --- x Po(m,). Let X be a distribution
supported on Z%, with finite mean. (Note that distributions with ULC marginals have finite mean.)
Consider the decomposition

where



and
L(X) :=ExlogPo(X,EX)
where

Po(xz,m) :=P(Po(m) =) = H m

i mﬂ
1<i<n

The following Lemma is a multivariate generalization of Yu [Yu09].
Lemma 5. For any distribution X on 7%, with finite mean and t € [0, 1], we have

D(T,X) < tD(X).

Proof. Note that T3 Po(m) = Po(tm).

Consider the operator .S acting on distributions Y on Z> with finite mean, defined as

E+1)PY =k+1)
EY '

P(SY = k) = (

Now let S; (i € [n]) be an operator acting on distributions on ZZ, with finite mean, by applying .S
to the i-th coordinate. -

Let us compute the derivative of D(T;X).

d d P(T,X = z)
Cpmx)=2 S PT,X = 2)log 2 2
a P IX) = 5 IEZZ: (T.X =) log 5 —Fx)
d P(T,X = 1)
- CP(TX = 1)) log =2 = L)
IEXZ: (GF X = 2)los 5 =msy

_d P(LX =a)
+ Z P(TX = x)@ log Po(z,tEX)

weZ;O
Now
d d
> P(TX = 2) 3 g P(T, X =) = > ZP(TX =) =
wezgo xEZgo
d

> P(TX = 7) 5 log Po(x, tEX)

weZgo

=) PMiX=1) ) 4 log Po(x;, tEX;)

— dt ’
mGZgD 1<i<n

> Y PIX = )% —EX)

1<i<nz€zl,
=0.
For i € [n], write e; for the standard basis vector whose i-th coordinate is 1 and all other coordinates

are 0.

Because

d
ﬁBt(m, n) =n(Bi(m —1,n—1) — By(m,n — 1)),



% Z H By(zi, y:)P(X = y)

yeLn,, 1<i<n

= Y P(X=vy) Y wi(Bilwi—1,y;—1) = Bi(wi,yi — 1)) [ [ Bel;,v5)

YELL, 1<i<n G#i

Yo Y B(X =y+e)(yi+ D(Bi(wi — Ly) — Bilws, i) [ [ Belw) 95)

1<i<nyez,

J#i
= Z (EX:) Z P(S; X = y)(Bi(w; — 1,y;) — Bt(-rhyi))HBt(xj:yj)'
1<i<n IS/A G
So
d d P(T,X = )
—D(T1;X) = —P(T: X = log ————
GP@X) = ) (GRTX = ))log Po(z, tEX)
mGZ;O
= EX; P(S; X = log =———<
Z (EX;) Z (Si Y) Z (log PO(:EJEX))
1<i<n yeZgo IGZEO
“(Bi(wi — 1,yi) — Be(wi, vi)) HBt(JUjvyj)
i
= > EX) Y PSX=y) Y ][] Bilzu)
1<i<n yezz, 2€Z, 1<5<n
lo P(T:X =z +e;) o P(TX = x))
& Po(xr + e, tEX)  ° Po(x, (EX)
= ) (BX) > P(TiSX =z)
1<i<n €2y,
P(T:X =z +e¢;) P(T:X = x)
L ~1 .
(lo Po(z + e;, tEX) 8 Po(z,tEX) )
Now

P(iX =x+e) o P(T: X = x)
& Po(xz + e;, tEX) & Po(z,tEX)
zi+1 PX =x+e)
= log( . — )

EX;,  P(I,X =)
P(S;T,X = )
P(T,X =x)

lo

= log
Note that S; and T; commute. So

D) - ‘ X = ) 10g FSTX =)
%D(Ttx) = > (BX)) ) P(T:S:;X =x)log

1<i<n €LY, P(TtX = iL’)
= Y (EX)D(T,S X||T,X).
1<i<n

By data processing inequality, D(7;5;X||T;X) is non-decreasing in ¢ € [0,1]. So D(T3X) is
convex in ¢ € [0, 1]. This finishes the proof. O



Proof of Theorem 4. By data processing inequality and Lemma 5, we have
D(1-t)X +tY)<D(1-t)X)+D(tY) <(1—-¢t)D(X)+tD(Y)
for distributions X, Y on Z%;, with finite mean.

Next we consider L(X). We have
L(X) = ExlogPo(X;EX) = Ex »  logPo(X;;EX;)
i€[n]
Z Ex log Po(X;, EX;) = Z L(X;).
1<i<n 1<i<n
By Yu and Johnson [YJ09], for ULC distributions X, Y on Zx>g, we have
LT+ X +TY) < (1 = t)L(X) + tL(Y).

Therefore this holds also for distributions on Z%, with ULC marginals.

So for distributions X, Y on ZY, with ULC marginals, we have
H(TlftX + TtY) - —D(TlftX + TtY) - L(TlftX + ,_TtY)
>—(1—-¢t)D(X)—tD(Y)— (1 —t)L(X) —tL(Y)
(1-t)H(X)+tH(Y).

O
As a corollary, we derive concavity of entropy of a determinantal point process when one endpoint
is 0.
Corollary 6. Fort € [0,1], K € K, we have
H(X(tK)) > tH(X (K)).

Proof. Note that T; X (K) = X (tK) because for every S C [n], we have
P(S C T:X(K)) = tI¥IP(S € X (K))
= tI5 det Kg = det(tK)s = P(S C X (tK)).

Then the result follows from Theorem 4 by taking Y = 0. O

4 Concavity of entropy along a rank one direction

In this section we prove entropy is concave along a rank one direction.
Theorem 7. Fort € [0,1], K1, Ks € K, ifrank(K; — K») = 1, then
HX(1-t)K; +tK2)) > (1 —t)H(X(K1)) + tH(X (K2)).
Proof. Restating the result, we would like to prove that for any K € K and rank one matrix AK
satisfying K + tAK € K for t > 0 small enough, we have j%hon(K +tAK) <0.
For S C [n], denote fs(t) = P[X(K 4+ tAK) = S]. Then

2 2
ol H (K +tAK) = — 32 lio(fs(t) g fs(1)
SC[n]

= Z |t —o(f5(t)(1 +1log fs(1)))

-y (<fs<0>>2 F4(0)(1 + log £5(0)))

S [s(0)
= > O g 500,
7500)
SC[n]



Note Us ((O ))) > 0. Let us consider the second term.

Note that det((K + tAK)s) = > ;~g fr(t). By inclusion-exclusion, we have

fs(t) = (=)T=151 det((K + tAK) 7).

728
Now
O det(K) = det(K) (K1),
8Kij
2
77 A6t = et () () (K = (K.
So

d2
g |t=0 det((K + tAK)r)

82
Z AKijAKklidet(KT)
i j ki leT OK;;0K
=det(Kr) > AK AKu((Kp")(Kp e — (K7 (Kp ).
i,5,k,1€T

Because AK is of rank one, we have AK,;; AKj; = AKyAKyj. So

> AKGAKu (K"K
i,5,k,le€T

= Y AKiAKy(Kr) Kz
i,7,k,l€T

> AKGAKu(Kp") (K i
1,7,k l€T

Hence 4 = |t odet((K +tAK)r) =0, and f5(0) = 0. O
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