6.881 Project Final Report: Entropy of Determinantal Point Processes

Yuzhou Gu

1 Introduction

Let \mathcal{K} denote the space of $n \times n$ matrices K with $0 \preceq K \preceq I$. For $K \in \mathcal{K}$ we define the determinantal point process (DPP) $X(K)$, which is a random variable on the power set of $[n]$, such that for every $S \subseteq[n]$, we have

$$
\mathbb{P}(S \subseteq X(K))=\operatorname{det}\left(K_{S}\right)
$$

where K_{S} is the submatrix of K with row and column indices in S.
One fundamental property of a distribution is its Shannon entropy. For a random variable X on a discrete set \mathcal{X}, its Shannon entropy defined is

$$
H(X):=-\sum_{x \in \mathcal{X}} \mathbb{P}(X=x) \log \mathbb{P}(X=x)
$$

(All logs in this report are of base e.)
Lyons [Lyo03] conjectured that the entropy of determinantal point processes is concave in K, i.e., for any $t \in[0,1]$ and matrices $K_{1}, K_{2} \in \mathcal{K}$, we have

$$
H\left(X\left((1-t) K_{1}+t K_{2}\right)\right) \geq(1-t) H\left(X\left(K_{1}\right)\right)+t H\left(X\left(K_{2}\right)\right)
$$

In this project we study towards Lyons's conjecture. Our main results are

1. Entropy of cardinality of $X(K)$ is concave in K (Theorem 1).
2. Lyons' conjecture is true when $K_{2}=0$ (Corollary 6).
3. Lyons' conjecture is true when $K_{1}-K_{2}$ is of rank one (Theorem 7).

2 Concavity of entropy of cardinality

Let $|X(K)|$ denote the cardinality of $X(K)$. Then $|X(K)|$ is a random variable supported on $\{0, \ldots, n\}$. In this section we prove that $H(|X(K)|)$ is concave in K.
Theorem 1. For $t \in[0,1], K_{1}, K_{2} \in \mathcal{K}$, we have

$$
H\left(\left|X\left((1-t) K_{1}+t K_{2}\right)\right|\right) \geq(1-t) H\left(\left|X\left(K_{1}\right)\right|\right)+t H\left(\left|X\left(K_{2}\right)\right|\right)
$$

Proof. For $a \in[0,1]^{n}$, define $Y(a)$ to be the sum of n independent Bernoulli random variables $\operatorname{Ber}\left(a_{i}\right)$. Let $\lambda(K)$ denote the vector $\left(\lambda_{1}(K), \ldots, \lambda_{n}(K)\right)$ where $\lambda_{i}(K)$ is the i-th largest eigenvalue of K. It is known that $|X(K)|$ has the same distribution as $Y(\lambda(K)$) (see e.g. Hough et al. [HKPV06]).
Therefore it is natural to apply the Shepp-Olkin conjecture (Shepp and Olkin [SO81], proved by Hillion and Johnson [HJ17]), which states that $H(Y(a))$ is concave in a. Note that this in particular implies that

$$
H(Y(t a)) \geq t H(Y(a))+(1-t) H(Y(0))=t H(Y(a))
$$

for $0 \leq t \leq 1$.

Lidskii [Lid50] proved that for two Hermitian matrices A and B, we have

$$
\lambda(A+B) \in \lambda(A)+\operatorname{conv}\left(\sigma(\lambda(B)): \sigma \in S_{n}\right)
$$

where conv denotes convex hull, and $\sigma(v)=\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)$.
Now write

$$
\begin{aligned}
\lambda\left((1-t) K_{1}+t K_{2}\right) & =\lambda\left((1-t) K_{1}\right)+\sum_{\sigma \in S_{n}} c_{\sigma} \sigma\left(\lambda\left(t K_{2}\right)\right) \\
& =(1-t) \lambda\left(K_{1}\right)+t \sum_{\sigma \in S_{n}} c_{\sigma} \sigma\left(\lambda\left(K_{2}\right)\right) .
\end{aligned}
$$

where $c_{\sigma} \geq 0$ and $\sum_{\sigma} c_{\sigma}=1$.
Then

$$
\begin{aligned}
H\left(\left|X\left((1-t) K_{1}+t K_{2}\right)\right|\right) & =H\left(Y\left(\lambda\left((1-t) K_{1}+t K_{2}\right)\right)\right) \\
& =H\left(Y\left((1-t) \lambda\left(K_{1}\right)+t \sum_{\sigma \in S_{n}} c_{\sigma} \sigma\left(\lambda\left(K_{2}\right)\right)\right)\right) \\
& \geq H\left(Y\left((1-t) \lambda\left(K_{1}\right)\right)\right)+\sum_{\sigma \in S_{n}} H\left(Y\left(t c_{\sigma} \sigma\left(\lambda\left(K_{2}\right)\right)\right)\right) \\
& \geq(1-t) H\left(Y\left(\lambda\left(K_{1}\right)\right)\right)+t \sum_{\sigma \in S_{n}} c_{\sigma} H\left(Y\left(\sigma\left(\lambda\left(K_{2}\right)\right)\right)\right) \\
& =(1-t) H\left(Y\left(\lambda\left(K_{1}\right)\right)\right)+t H\left(Y\left(\lambda\left(K_{2}\right)\right)\right) .
\end{aligned}
$$

3 Concavity of entropy under thinning

In this section we view the determinantal point process as a distribution over $\{0,1\}^{n} \subseteq \mathbb{Z}_{>0}^{n}$. We consider the thinning operation of Rényi [Rén56] and prove that entropy is concave under thinning, a multivariate generalization of a result of Yu and Johnson [YJ09].
Definition 2. Let X be a random variable supported on $\mathbb{Z}_{\geq 0}^{n}$. Let $t \in[0,1]$. Then the t-thinning of X is a random variable $T_{t} X$ supported on $\mathbb{Z}_{\geq 0}^{n}$ such that

$$
\mathbb{P}\left(T_{t} X=b \mid X=a\right)=\prod_{1 \leq i \leq n} B_{t}\left(a_{i}, b_{i}\right)
$$

where

$$
B_{t}(m, n)=t^{m}(1-t)^{n-m}\binom{n}{m} .
$$

That is, if we consider X_{i} as the number of particles of type i, then t-thinning is the operation of independently retaining each particle with probability t.
Definition 3. A distribution X on $\mathbb{Z}_{\geq 0}$ is called ultra log-concave (ULC) if the sequence $(\log (i!\mathbb{P}(X=i)))_{i \in \mathbb{Z}_{\geq 0}}$ is concave.
Theorem 4. Let X and Y be distributions on $\mathbb{Z}_{\geq 0}^{n}$ whose marginals are ULC. Let $t \in[0,1]$. Then

$$
H\left(T_{1-t} X+T_{t} Y\right) \geq(1-t) H(X)+t H(Y)
$$

Our approach is similar to Yu and Johnson [YJ09]. For $m \in \mathbb{R}_{\geq 0}^{n}$, we define the multivariate Poisson distribution $\operatorname{Po}(m)$ as the product distribution $\operatorname{Po}\left(m_{1}\right) \times \cdots \times \operatorname{Po}\left(m_{n}\right)$. Let X be a distribution supported on $\mathbb{Z}_{\geq 0}^{n}$ with finite mean. (Note that distributions with ULC marginals have finite mean.) Consider the decomposition

$$
H(X)=-D(X)-L(X)
$$

where

$$
D(X):=-D(X \| \operatorname{Po}(\mathbb{E} X))
$$

and

$$
L(X):=\mathbb{E}_{X} \log \operatorname{Po}(X, \mathbb{E} X)
$$

where

$$
\operatorname{Po}(x, m):=\mathbb{P}(\operatorname{Po}(m)=x)=\prod_{1 \leq i \leq n} \frac{m_{i}^{x_{i}} \exp \left(-m_{i}\right)}{x_{i}!}
$$

The following Lemma is a multivariate generalization of Yu [Yu09].
Lemma 5. For any distribution X on $\mathbb{Z}_{\geq 0}^{n}$ with finite mean and $t \in[0,1]$, we have

$$
D\left(T_{t} X\right) \leq t D(X)
$$

Proof. Note that $T_{t} \operatorname{Po}(m)=\operatorname{Po}(t m)$.
Consider the operator S acting on distributions Y on $\mathbb{Z}_{\geq 0}$ with finite mean, defined as

$$
\mathbb{P}(S Y=k)=\frac{(k+1) \mathbb{P}(Y=k+1)}{\mathbb{E} Y}
$$

Now let $S_{i}(i \in[n])$ be an operator acting on distributions on $\mathbb{Z}_{\geq 0}^{n}$ with finite mean, by applying S to the i-th coordinate.
Let us compute the derivative of $D\left(T_{t} X\right)$.

$$
\begin{aligned}
\frac{d}{d t} D\left(T_{t} X\right) & =\frac{d}{d t} \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right) \log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)} \\
& =\sum_{x \in \mathbb{Z}_{\geq 0}^{n}}\left(\frac{d}{d t} \mathbb{P}\left(T_{t} X=x\right)\right) \log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)} \\
& +\sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right) \frac{d}{d t} \log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)} .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right) \frac{d}{d t} \log \mathbb{P}\left(T_{t} X=x\right)=\sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \frac{d}{d t} \mathbb{P}\left(T_{t} X=x\right)=0 \\
& \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right) \frac{d}{d t} \log \operatorname{Po}(x, t \mathbb{E} X) \\
&=\sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right) \sum_{1 \leq i \leq n} \frac{d}{d t} \log \operatorname{Po}\left(x_{i}, t \mathbb{E} X_{i}\right) \\
&=\sum_{1 \leq i \leq n} \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} X=x\right)\left(\frac{x_{i}}{t}-\mathbb{E} X_{i}\right) \\
&=0
\end{aligned}
$$

For $i \in[n]$, write e_{i} for the standard basis vector whose i-th coordinate is 1 and all other coordinates are 0 .
Because

$$
\frac{d}{d t} B_{t}(m, n)=n\left(B_{t}(m-1, n-1)-B_{t}(m, n-1)\right)
$$

we have

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{P}\left(T_{t} X=x\right) \\
& =\frac{d}{d t} \sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \prod_{1 \leq i \leq n} B_{t}\left(x_{i}, y_{i}\right) \mathbb{P}(X=y) \\
& =\sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}(X=y) \sum_{1 \leq i \leq n} y_{i}\left(B_{t}\left(x_{i}-1, y_{i}-1\right)-B_{t}\left(x_{i}, y_{i}-1\right)\right) \prod_{j \neq i} B_{t}\left(x_{j}, y_{j}\right) \\
& =\sum_{1 \leq i \leq n} \sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(X=y+e_{i}\right)\left(y_{i}+1\right)\left(B_{t}\left(x_{i}-1, y_{i}\right)-B_{t}\left(x_{i}, y_{i}\right)\right) \prod_{j \neq i} B_{t}\left(x_{j}, y_{j}\right) \\
& =\sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) \sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(S_{i} X=y\right)\left(B_{t}\left(x_{i}-1, y_{i}\right)-B_{t}\left(x_{i}, y_{i}\right)\right) \prod_{j \neq i} B_{t}\left(x_{j}, y_{j}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{d}{d t} D\left(T_{t} X\right) & =\sum_{x \in \mathbb{Z}_{\geq 0}^{n}}\left(\frac{d}{d t} \mathbb{P}\left(T_{t} X=x\right)\right) \log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)} \\
= & \sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) \sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(S_{i} X=y\right) \sum_{x \in \mathbb{Z} \geq 0}\left(\log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)}\right) \\
& \cdot\left(B_{t}\left(x_{i}-1, y_{i}\right)-B_{t}\left(x_{i}, y_{i}\right)\right) \prod_{j \neq i} B_{t}\left(x_{j}, y_{j}\right) \\
= & \sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) \sum_{y \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(S_{i} X=y\right) \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \prod_{1 \leq j \leq n} B_{t}\left(x_{j}, y_{j}\right) \\
& \cdot\left(\log \frac{\mathbb{P}\left(T_{t} X=x+e_{i}\right)}{\operatorname{Po}\left(x+e_{i}, t \mathbb{E} X\right)}-\log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)}\right) \\
= & \sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} S_{i} X=x\right) \\
& \cdot\left(\log \frac{\mathbb{P}\left(T_{t} X=x+e_{i}\right)}{\operatorname{Po}\left(x+e_{i}, t \mathbb{E} X\right)}-\log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \log \frac{\mathbb{P}\left(T_{t} X=x+e_{i}\right)}{\operatorname{Po}\left(x+e_{i}, t \mathbb{E} X\right)}-\log \frac{\mathbb{P}\left(T_{t} X=x\right)}{\operatorname{Po}(x, t \mathbb{E} X)} \\
& =\log \left(\frac{x_{i}+1}{t \mathbb{E} X_{i}} \cdot \frac{\mathbb{P}\left(T_{t} X=x+e_{i}\right)}{\mathbb{P}\left(T_{t} X=x\right)}\right) \\
& =\log \frac{\mathbb{P}\left(S_{i} T_{t} X=x\right)}{\mathbb{P}\left(T_{t} X=x\right)}
\end{aligned}
$$

Note that S_{i} and T_{t} commute. So

$$
\begin{aligned}
\frac{d}{d t} D\left(T_{t} X\right) & =\sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) \sum_{x \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{P}\left(T_{t} S_{i} X=x\right) \log \frac{\mathbb{P}\left(S_{i} T_{t} X=x\right)}{\mathbb{P}\left(T_{t} X=x\right)} \\
& =\sum_{1 \leq i \leq n}\left(\mathbb{E} X_{i}\right) D\left(T_{t} S_{i} X \| T_{t} X\right)
\end{aligned}
$$

By data processing inequality, $D\left(T_{t} S_{i} X \| T_{t} X\right)$ is non-decreasing in $t \in[0,1]$. So $D\left(T_{t} X\right)$ is convex in $t \in[0,1]$. This finishes the proof.

Proof of Theorem 4. By data processing inequality and Lemma 5, we have

$$
D((1-t) X+t Y) \leq D((1-t) X)+D(t Y) \leq(1-t) D(X)+t D(Y)
$$

for distributions X, Y on $\mathbb{Z}_{\geq 0}^{n}$ with finite mean.
Next we consider $L(X)$. We have

$$
\begin{aligned}
L(X) & =\mathbb{E}_{X} \log \operatorname{Po}(X ; \mathbb{E} X)=\mathbb{E}_{X} \sum_{i \in[n]} \log \operatorname{Po}\left(X_{i} ; \mathbb{E} X_{i}\right) \\
& =\sum_{1 \leq i \leq n} \mathbb{E}_{X} \log \operatorname{Po}\left(X_{i}, \mathbb{E} X_{i}\right)=\sum_{1 \leq i \leq n} L\left(X_{i}\right)
\end{aligned}
$$

By Yu and Johnson [YJ09], for ULC distributions X, Y on $\mathbb{Z}_{\geq 0}$, we have

$$
L\left(T_{1-t} X+T_{t} Y\right) \leq(1-t) L(X)+t L(Y)
$$

Therefore this holds also for distributions on $\mathbb{Z}_{\geq 0}^{n}$ with ULC marginals.
So for distributions X, Y on $\mathbb{Z}_{\geq 0}^{n}$ with ULC marginals, we have

$$
\begin{aligned}
H\left(T_{1-t} X+T_{t} Y\right) & =-D\left(T_{1-t} X+T_{t} Y\right)-L\left(T_{1-t} X+T_{t} Y\right) \\
& \geq-(1-t) D(X)-t D(Y)-(1-t) L(X)-t L(Y) \\
& =(1-t) H(X)+t H(Y)
\end{aligned}
$$

As a corollary, we derive concavity of entropy of a determinantal point process when one endpoint is 0 .
Corollary 6. For $t \in[0,1], K \in \mathcal{K}$, we have

$$
H(X(t K)) \geq t H(X(K))
$$

Proof. Note that $T_{t} X(K)=X(t K)$ because for every $S \subseteq[n]$, we have

$$
\begin{aligned}
& \mathbb{P}\left(S \subseteq T_{t} X(K)\right)=t^{|S|} \mathbb{P}(S \subseteq X(K)) \\
& =t^{|S|} \operatorname{det} K_{S}=\operatorname{det}(t K)_{S}=\mathbb{P}(S \subseteq X(t K))
\end{aligned}
$$

Then the result follows from Theorem 4 by taking $Y=0$.

4 Concavity of entropy along a rank one direction

In this section we prove entropy is concave along a rank one direction.
Theorem 7. For $t \in[0,1], K_{1}, K_{2} \in \mathcal{K}$, if $\operatorname{rank}\left(K_{1}-K_{2}\right)=1$, then

$$
H\left(X\left((1-t) K_{1}+t K_{2}\right)\right) \geq(1-t) H\left(X\left(K_{1}\right)\right)+t H\left(X\left(K_{2}\right)\right)
$$

Proof. Restating the result, we would like to prove that for any $K \in \mathcal{K}$ and rank one matrix ΔK satisfying $K+t \Delta K \in \mathcal{K}$ for $t \geq 0$ small enough, we have $\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} H(K+t \Delta K) \leq 0$.
For $S \subseteq[n]$, denote $f_{S}(t)=\mathbb{P}[X(K+t \Delta K)=S]$. Then

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} H(K+t \Delta K) & =-\left.\sum_{S \subseteq[n]} \frac{d^{2}}{d t^{2}}\right|_{t=0}\left(f_{S}(t) \log f_{S}(t)\right) \\
& =-\left.\sum_{S \subseteq[n]} \frac{d}{d t}\right|_{t=0}\left(f_{S}^{\prime}(t)\left(1+\log f_{S}(t)\right)\right) \\
& =-\sum_{S \subseteq[n]}\left(\frac{\left(f_{S}^{\prime}(0)\right)^{2}}{f_{S}(0)}+f_{S}^{\prime \prime}(0)\left(1+\log f_{S}(0)\right)\right) \\
& =-\sum_{S \subseteq[n]}\left(\frac{\left(f_{S}^{\prime}(0)\right)^{2}}{f_{S}(0)}+f_{S}^{\prime \prime}(0) \log f_{S}(0)\right)
\end{aligned}
$$

Note $\frac{\left(f_{S}^{\prime}(0)\right)^{2}}{f_{S}(0)} \geq 0$. Let us consider the second term.
Note that $\operatorname{det}\left((K+t \Delta K)_{S}\right)=\sum_{T \supseteq S} f_{T}(t)$. By inclusion-exclusion, we have

$$
f_{S}(t)=\sum_{T \supseteq S}(-1)^{|T|-|S|} \operatorname{det}\left((K+t \Delta K)_{T}\right)
$$

Now

$$
\begin{aligned}
\frac{\partial}{\partial K_{i j}} \operatorname{det}(K) & =\operatorname{det}(K)\left(K^{-1}\right)_{j i} \\
\frac{\partial^{2}}{\partial K_{i j} \partial K_{k l}} \operatorname{det}(K) & =\operatorname{det}(K)\left(\left(K^{-1}\right)_{j i}\left(K^{-1}\right)_{l k}-\left(K^{-1}\right)_{j k}\left(K^{-1}\right)_{l i}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
& \left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \operatorname{det}\left((K+t \Delta K)_{T}\right) \\
& =\sum_{i, j, k, l \in T} \Delta K_{i j} \Delta K_{k l} \frac{\partial^{2}}{\partial K_{i j} \partial K_{k l}} \operatorname{det}\left(K_{T}\right) \\
& =\operatorname{det}\left(K_{T}\right) \sum_{i, j, k, l \in T} \Delta K_{i j} \Delta K_{k l}\left(\left(K_{T}^{-1}\right)_{j i}\left(K_{T}^{-1}\right)_{l k}-\left(K_{T}^{-1}\right)_{j k}\left(K_{T}^{-1}\right)_{l i}\right) .
\end{aligned}
$$

Because ΔK is of rank one, we have $\Delta K_{i j} \Delta K_{k l}=\Delta K_{i l} \Delta K_{k j}$. So

$$
\begin{aligned}
& \sum_{i, j, k, l \in T} \Delta K_{i j} \Delta K_{k l}\left(K_{T}^{-1}\right)_{j k}\left(K_{T}^{-1}\right)_{l i} \\
= & \sum_{i, j, k, l \in T} \Delta K_{i l} \Delta K_{k j}\left(K_{T}^{-1}\right)_{j k}\left(K_{T}^{-1}\right)_{l i} \\
= & \sum_{i, j, k, l \in T} \Delta K_{i j} \Delta K_{k l}\left(K_{T}^{-1}\right)_{j i}\left(K_{T}^{-1}\right)_{l k} .
\end{aligned}
$$

Hence $\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} \operatorname{det}\left((K+t \Delta K)_{T}\right)=0$, and $f_{S}^{\prime \prime}(0)=0$.

References

[HJ17] R. Hillion and O. Johnson. A proof of the Shepp-Olkin entropy concavity conjecture. Bernoulli, 23(4B):3638-3649, 2017.
[HKPV06] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence. Probability surveys, 3:206-229, 2006.
[Lid50] B. V. Lidskii. The proper values of the sum and product of symmetric matrices. Dokl. Akad. Nauk SSSR, 74:769-772, 1950.
[Lyo03] R. Lyons. Determinantal probability measures. Publications Mathématiques de l'IHÉS, 98:167-212, 2003.
[Rén56] A. Rényi. A characterization of Poisson processes. Magyar Tud. Akad. Mat. Kutató Int. Közl, 1(2):519-527, 1956.
[SO81] L. A. Shepp and I. Olkin. Entropy of the sum of independent Bernoulli random variables and of the multinomial distribution. In Contributions to probability, pages 201-206. Elsevier, 1981.
[YJ09] Y. Yu and O. Johnson. Concavity of entropy under thinning. In 2009 IEEE International Symposium on Information Theory, pages 144-148. IEEE, 2009.
[Yu09] Y. Yu. Monotonic convergence in an information-theoretic law of small numbers. IEEE transactions on information theory, 55(12):5412-5422, 2009.

