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1 Introduction

LetK denote the space of n×nmatricesK with 0 � K � I . ForK ∈ Kwe define the determinantal
point process (DPP) X(K), which is a random variable on the power set of [n], such that for every
S ⊆ [n], we have

P(S ⊆ X(K)) = det(KS)

where KS is the submatrix of K with row and column indices in S.

One fundamental property of a distribution is its Shannon entropy. For a random variable X on a
discrete set X , its Shannon entropy defined is

H(X) := −
∑
x∈X

P(X = x) logP(X = x).

(All logs in this report are of base e.)

Lyons [Lyo03] conjectured that the entropy of determinantal point processes is concave in K, i.e.,
for any t ∈ [0, 1] and matrices K1,K2 ∈ K, we have

H(X((1− t)K1 + tK2)) ≥ (1− t)H(X(K1)) + tH(X(K2)).

In this project we study towards Lyons’s conjecture. Our main results are

1. Entropy of cardinality of X(K) is concave in K (Theorem 1).
2. Lyons’ conjecture is true when K2 = 0 (Corollary 6).
3. Lyons’ conjecture is true when K1 −K2 is of rank one (Theorem 7).

2 Concavity of entropy of cardinality

Let |X(K)| denote the cardinality of X(K). Then |X(K)| is a random variable supported on
{0, . . . , n}. In this section we prove that H(|X(K)|) is concave in K.
Theorem 1. For t ∈ [0, 1], K1,K2 ∈ K, we have

H(|X((1− t)K1 + tK2)|) ≥ (1− t)H(|X(K1)|) + tH(|X(K2)|).

Proof. For a ∈ [0, 1]n, define Y (a) to be the sum of n independent Bernoulli random variables
Ber(ai). Let λ(K) denote the vector (λ1(K), . . . , λn(K)) where λi(K) is the i-th largest eigen-
value of K. It is known that |X(K)| has the same distribution as Y (λ(K)) (see e.g. Hough et
al. [HKPV06]).

Therefore it is natural to apply the Shepp-Olkin conjecture (Shepp and Olkin [SO81], proved by
Hillion and Johnson [HJ17]), which states that H(Y (a)) is concave in a. Note that this in particular
implies that

H(Y (ta)) ≥ tH(Y (a)) + (1− t)H(Y (0)) = tH(Y (a))

for 0 ≤ t ≤ 1.



Lidskii [Lid50] proved that for two Hermitian matrices A and B, we have

λ(A+B) ∈ λ(A) + conv(σ(λ(B)) : σ ∈ Sn),

where conv denotes convex hull, and σ(v) = (vσ(1), . . . , vσ(n)).

Now write

λ((1− t)K1 + tK2) = λ((1− t)K1) +
∑
σ∈Sn

cσσ(λ(tK2))

= (1− t)λ(K1) + t
∑
σ∈Sn

cσσ(λ(K2)).

where cσ ≥ 0 and
∑
σ cσ = 1.

Then

H(|X((1− t)K1 + tK2)|) = H(Y (λ((1− t)K1 + tK2)))

= H(Y ((1− t)λ(K1) + t
∑
σ∈Sn

cσσ(λ(K2))))

≥ H(Y ((1− t)λ(K1))) +
∑
σ∈Sn

H(Y (tcσσ(λ(K2))))

≥ (1− t)H(Y (λ(K1))) + t
∑
σ∈Sn

cσH(Y (σ(λ(K2))))

= (1− t)H(Y (λ(K1))) + tH(Y (λ(K2))).

3 Concavity of entropy under thinning

In this section we view the determinantal point process as a distribution over {0, 1}n ⊆ Zn≥0. We
consider the thinning operation of Rényi [Rén56] and prove that entropy is concave under thinning,
a multivariate generalization of a result of Yu and Johnson [YJ09].
Definition 2. Let X be a random variable supported on Zn≥0. Let t ∈ [0, 1]. Then the t-thinning of
X is a random variable TtX supported on Zn≥0 such that

P(TtX = b|X = a) =
∏

1≤i≤n

Bt(ai, bi)

where

Bt(m,n) = tm(1− t)n−m
(
n

m

)
.

That is, if we consider Xi as the number of particles of type i, then t-thinning is the operation of
independently retaining each particle with probability t.
Definition 3. A distribution X on Z≥0 is called ultra log-concave (ULC) if the sequence
(log(i!P(X = i)))i∈Z≥0

is concave.

Theorem 4. Let X and Y be distributions on Zn≥0 whose marginals are ULC. Let t ∈ [0, 1]. Then

H(T1−tX + TtY ) ≥ (1− t)H(X) + tH(Y ).

Our approach is similar to Yu and Johnson [YJ09]. Form ∈ Rn≥0, we define the multivariate Poisson
distribution Po(m) as the product distribution Po(m1) × · · · × Po(mn). Let X be a distribution
supported on Zn≥0 with finite mean. (Note that distributions with ULC marginals have finite mean.)
Consider the decomposition

H(X) = −D(X)− L(X)

where
D(X) := −D(X||Po(EX))
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and

L(X) := EX log Po(X,EX)

where

Po(x,m) := P(Po(m) = x) =
∏

1≤i≤n

mxi
i exp(−mi)

xi!
.

The following Lemma is a multivariate generalization of Yu [Yu09].

Lemma 5. For any distribution X on Zn≥0 with finite mean and t ∈ [0, 1], we have

D(TtX) ≤ tD(X).

Proof. Note that Tt Po(m) = Po(tm).

Consider the operator S acting on distributions Y on Z≥0 with finite mean, defined as

P(SY = k) =
(k + 1)P(Y = k + 1)

EY
.

Now let Si (i ∈ [n]) be an operator acting on distributions on Zn≥0 with finite mean, by applying S
to the i-th coordinate.

Let us compute the derivative of D(TtX).

d

dt
D(TtX) =

d

dt

∑
x∈Zn

≥0

P(TtX = x) log
P(TtX = x)

Po(x, tEX)

=
∑
x∈Zn

≥0

(
d

dt
P(TtX = x)) log

P(TtX = x)

Po(x, tEX)

+
∑
x∈Zn

≥0

P(TtX = x)
d

dt
log

P(TtX = x)

Po(x, tEX)
.

Now ∑
x∈Zn

≥0

P(TtX = x)
d

dt
logP(TtX = x) =

∑
x∈Zn

≥0

d

dt
P(TtX = x) = 0.

∑
x∈Zn

≥0

P(TtX = x)
d

dt
log Po(x, tEX)

=
∑
x∈Zn

≥0

P(TtX = x)
∑

1≤i≤n

d

dt
log Po(xi, tEXi)

=
∑

1≤i≤n

∑
x∈Zn

≥0

P(TtX = x)(
xi
t
− EXi)

= 0.

For i ∈ [n], write ei for the standard basis vector whose i-th coordinate is 1 and all other coordinates
are 0.

Because
d

dt
Bt(m,n) = n(Bt(m− 1, n− 1)−Bt(m,n− 1)),
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we have

d

dt
P(TtX = x)

=
d

dt

∑
y∈Zn

≥0

∏
1≤i≤n

Bt(xi, yi)P(X = y)

=
∑
y∈Zn

≥0

P(X = y)
∑

1≤i≤n

yi(Bt(xi − 1, yi − 1)−Bt(xi, yi − 1))
∏
j 6=i

Bt(xj , yj)

=
∑

1≤i≤n

∑
y∈Zn

≥0

P(X = y + ei)(yi + 1)(Bt(xi − 1, yi)−Bt(xi, yi))
∏
j 6=i

Bt(xj , yj)

=
∑

1≤i≤n

(EXi)
∑
y∈Zn

≥0

P(SiX = y)(Bt(xi − 1, yi)−Bt(xi, yi))
∏
j 6=i

Bt(xj , yj).

So

d

dt
D(TtX) =

∑
x∈Zn

≥0

(
d

dt
P(TtX = x)) log

P(TtX = x)

Po(x, tEX)

=
∑

1≤i≤n

(EXi)
∑
y∈Zn

≥0

P(SiX = y)
∑
x∈Zn

≥0

(log
P(TtX = x)

Po(x, tEX)
)

· (Bt(xi − 1, yi)−Bt(xi, yi))
∏
j 6=i

Bt(xj , yj)

=
∑

1≤i≤n

(EXi)
∑
y∈Zn

≥0

P(SiX = y)
∑
x∈Zn

≥0

∏
1≤j≤n

Bt(xj , yj)

· (log
P(TtX = x+ ei)

Po(x+ ei, tEX)
− log

P(TtX = x)

Po(x, tEX)
)

=
∑

1≤i≤n

(EXi)
∑
x∈Zn

≥0

P(TtSiX = x)

· (log
P(TtX = x+ ei)

Po(x+ ei, tEX)
− log

P(TtX = x)

Po(x, tEX)
).

Now

log
P(TtX = x+ ei)

Po(x+ ei, tEX)
− log

P(TtX = x)

Po(x, tEX)

= log(
xi + 1

tEXi
· P(TtX = x+ ei)

P(TtX = x)
)

= log
P(SiTtX = x)

P(TtX = x)
.

Note that Si and Tt commute. So

d

dt
D(TtX) =

∑
1≤i≤n

(EXi)
∑
x∈Zn

≥0

P(TtSiX = x) log
P(SiTtX = x)

P(TtX = x)

=
∑

1≤i≤n

(EXi)D(TtSiX||TtX).

By data processing inequality, D(TtSiX||TtX) is non-decreasing in t ∈ [0, 1]. So D(TtX) is
convex in t ∈ [0, 1]. This finishes the proof.
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Proof of Theorem 4. By data processing inequality and Lemma 5, we have
D((1− t)X + tY ) ≤ D((1− t)X) +D(tY ) ≤ (1− t)D(X) + tD(Y )

for distributions X,Y on Zn≥0 with finite mean.

Next we consider L(X). We have

L(X) = EX log Po(X;EX) = EX
∑
i∈[n]

log Po(Xi;EXi)

=
∑

1≤i≤n

EX log Po(Xi,EXi) =
∑

1≤i≤n

L(Xi).

By Yu and Johnson [YJ09], for ULC distributions X,Y on Z≥0, we have
L(T1−tX + TtY ) ≤ (1− t)L(X) + tL(Y ).

Therefore this holds also for distributions on Zn≥0 with ULC marginals.

So for distributions X,Y on Zn≥0 with ULC marginals, we have

H(T1−tX + TtY ) = −D(T1−tX + TtY )− L(T1−tX + TtY )

≥ −(1− t)D(X)− tD(Y )− (1− t)L(X)− tL(Y )

= (1− t)H(X) + tH(Y ).

As a corollary, we derive concavity of entropy of a determinantal point process when one endpoint
is 0.
Corollary 6. For t ∈ [0, 1], K ∈ K, we have

H(X(tK)) ≥ tH(X(K)).

Proof. Note that TtX(K) = X(tK) because for every S ⊆ [n], we have

P(S ⊆ TtX(K)) = t|S|P(S ⊆ X(K))

= t|S| detKS = det(tK)S = P(S ⊆ X(tK)).

Then the result follows from Theorem 4 by taking Y = 0.

4 Concavity of entropy along a rank one direction

In this section we prove entropy is concave along a rank one direction.
Theorem 7. For t ∈ [0, 1], K1,K2 ∈ K, if rank(K1 −K2) = 1, then

H(X((1− t)K1 + tK2)) ≥ (1− t)H(X(K1)) + tH(X(K2)).

Proof. Restating the result, we would like to prove that for any K ∈ K and rank one matrix ∆K

satisfying K + t∆K ∈ K for t ≥ 0 small enough, we have d2

dt2 |t=0H(K + t∆K) ≤ 0.

For S ⊆ [n], denote fS(t) = P[X(K + t∆K) = S]. Then

d2

dt2
|t=0H(K + t∆K) = −

∑
S⊆[n]

d2

dt2
|t=0(fS(t) log fS(t))

= −
∑
S⊆[n]

d

dt
|t=0(f ′S(t)(1 + log fS(t)))

= −
∑
S⊆[n]

(
(f ′S(0))2

fS(0)
+ f ′′S (0)(1 + log fS(0)))

= −
∑
S⊆[n]

(
(f ′S(0))2

fS(0)
+ f ′′S (0) log fS(0)).
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Note (f ′S(0))2

fS(0) ≥ 0. Let us consider the second term.

Note that det((K + t∆K)S) =
∑
T⊇S fT (t). By inclusion-exclusion, we have

fS(t) =
∑
T⊇S

(−1)|T |−|S| det((K + t∆K)T ).

Now
∂

∂Kij
det(K) = det(K)(K−1)ji,

∂2

∂Kij∂Kkl
det(K) = det(K)((K−1)ji(K

−1)lk − (K−1)jk(K−1)li).

So

d2

dt2
|t=0 det((K + t∆K)T )

=
∑

i,j,k,l∈T

∆Kij∆Kkl
∂2

∂Kij∂Kkl
det(KT )

= det(KT )
∑

i,j,k,l∈T

∆Kij∆Kkl((K
−1
T )ji(K

−1
T )lk − (K−1T )jk(K−1T )li).

Because ∆K is of rank one, we have ∆Kij∆Kkl = ∆Kil∆Kkj . So∑
i,j,k,l∈T

∆Kij∆Kkl(K
−1
T )jk(K−1T )li

=
∑

i,j,k,l∈T

∆Kil∆Kkj(K
−1
T )jk(K−1T )li

=
∑

i,j,k,l∈T

∆Kij∆Kkl(K
−1
T )ji(K

−1
T )lk.

Hence d2

dt2 |t=0 det((K + t∆K)T ) = 0, and f ′′S (0) = 0.
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