UPPER TAIL LARGE DEVIATIONS IN FIRST PASSAGE PERCOLATION

YUZHOU GU

1. INTRODUCTION

Consider the grid graph \mathbb{Z}^2 where there is an edge between any two vertices with Euclidean distance 1. Let ν be a probability measure supported on the interval [0, b] with continuous density. Let each edge have length iid chosen from ν . This defines a random metric $\mathbf{PT}(\cdot, \cdot)$ ("passage time") on \mathbb{Z}^2 . Fix a unit vector $\vec{v} \in \mathbb{R}^2$. A standard fact (see [ADH17]) says that the limit $\lim_{n\to\infty} \frac{1}{n} \mathbf{PT}(\vec{0}, n\vec{v})$ exists. Let $\mu = \mu(\nu, \vec{v})$ denote this limit. Kesten [Kes86] studied the large deviation properties of $\mathbf{PT}(0, n\vec{v})$. He proved that

(1) for any $\zeta \in (0, \mu)$, the limit

$$\lim_{n \to \infty} -\frac{\log \mathbb{P}(\mathbf{PT}(\vec{0}, n\vec{v}) \le (\mu - \zeta)n)}{n}$$

exists and is $\in (0, \infty)$; (2) for any $\zeta \in (0, b - \mu)$, we have

$$\begin{aligned} 0 &< \liminf_{n \to \infty} -\frac{\log \mathbb{P}(\mathbf{PT}(\vec{0}, n\vec{v}) \ge (\mu + \zeta)n)}{n^2} \\ &\leq \limsup_{n \to \infty} -\frac{\log \mathbb{P}(\mathbf{PT}(\vec{0}, n\vec{v}) \ge (\mu + \zeta)n)}{n^2} < \infty \end{aligned}$$

Therefore the lower tail has speed n while the upper tail has speed n^2 . The intuition is that to lower the passage time by $\Theta(n)$, we only need to lower the length of $\Theta(n)$ edges, while to increase the passage time by $\Theta(n)$, we need to increase the length of $\Theta(n^2)$ edges.

It was left open whether a rate function exists for the upper tail large deviation. Recently, Basu-Ganguly-Sly [BGS17] answered this question in the affirmative.

Theorem 1 (Basu-Ganguly-Sly [BGS17]). The limit

$$\lim_{n \to \infty} -\frac{\log \mathbb{P}(\mathbf{PT}(\vec{0}, n\vec{v}) \ge (\mu + \zeta)n)}{n^2}$$

exists and is $\in (0, \infty)$.

Remark 2. (1) The condition imposed on ν is not the weakest possible for Theorem 1 to hold.

(2) Theorem 1 holds also for the first passage percolation in \mathbb{Z}^d , with the speed (denominator) replaced by n^d .

In this expository paper we study the proof of Theorem 1 in [BGS17]. We emphasize high-level ideas and often omit details of proof.

2. Overview of the proof

For simplicity, let $\mathscr{U}_{\zeta}(n)$ denote the upper tail large deviation event $\mathbf{PT}(\vec{0}, n\vec{u}) \geq (\mu + \zeta)n$. The proof of Theorem 1 is in two main parts.

Proposition 3. For each $\epsilon' \in (0, \zeta)$ and $\epsilon > 0$, there exists N_0 and H_0 such that for all $n > N_0$ and $m > nH_0$ we have

$$\frac{1}{m^2} \log \mathbb{P}(\mathscr{U}_{\zeta - \epsilon'}(m)) \ge \frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(n)) - \epsilon.$$

Proposition 4. For each $\epsilon > 0$, there exists $\epsilon' > 0$ such that for all n large enough we have

$$\frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta - \epsilon'}(n)) \le \frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(n)) + \epsilon.$$

Proof that Proposition 3 + 4 implies Theorem 1. It is not hard to see that the two propositions imply for all $\epsilon > 0$, there exists N_0 such that for all $n > N_0$, there exists $M_0 = M_0(n)$ such that for all $m > M_0$, we have

$$\frac{1}{m^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(m)) \geq \frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(n)) - \epsilon.$$

Using this fact we can prove that

$$\liminf_{n \to \infty} \frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(n)) = \limsup_{n \to \infty} \frac{1}{n^2} \log \mathbb{P}(\mathscr{U}_{\zeta}(n)).$$

Let $\mathbf{Box}(\mathscr{C}n)$ denote the set $[-\mathscr{C}n, \mathscr{C}n]^2$. Before we prove Proposition 3 and 4, we need the following result.

Lemma 5. There exists $\alpha > 0$ such that for any $\mathscr{C} > 0$, for n large enough, with probability 1 - o(1), for any two points $\vec{x}, \vec{y} \in \mathbf{Box}(\mathscr{C}n)$ with $|\vec{x} - \vec{y}| > \sqrt{n}$, we have $\mathbf{PT}(\vec{x}, \vec{y}) \ge \alpha |\vec{x} - \vec{y}|$.

The proof of lemma is by a union bound. Then by triangle inequality, for some large enough constant \mathscr{C} , with probability 1 - o(1), the shortest path from $\vec{0}$ to $n\vec{v}$ lies inside **Box**($\mathscr{C}n$). Note that by an application of FKG inequality, Lemma 5 is also true conditioned on $\mathscr{U}_{\zeta}(n)$.

Now let \mathcal{E} denote the event that for any two points $\vec{x}, \vec{y} \in \mathbf{Box}(\mathscr{C}n)$ with $|\vec{x} - \vec{y}| > \sqrt{n}$, we have $\mathbf{PT}(\vec{x}, \vec{y}) \ge \alpha |\vec{x} - \vec{y}|$. Let $\mathscr{U}_{\zeta}^* = \mathscr{U}_{\zeta} \cap \mathcal{E}$. We have $\mathbb{P}(\mathscr{U}_{\zeta}^*) = (1 - o(1))\mathbb{P}(\mathscr{U}_{\zeta})$. Therefore we only need to prove Proposition 3 and 4 with \mathscr{U}_{ζ} replaced by \mathscr{U}_{ζ}^* . This enables us to work within a finite size box instead of working with infinitely many edges.

3. Proof of Proposition 4

The proof of Proposition 4 is easier, so we describe it first. Starting with an environment $\Pi \in \mathscr{U}_{\zeta-\epsilon}^*$, we increase the length of all edges slightly to get an environment $\Pi' \in \mathscr{U}_{\zeta}^*$. To implement this proof, we need to handle two types of "bad" edges.

- (1) If an edge e already has length x_e very close to b, then we cannot increase its length by an amount larger than $b x_e$.
- (2) If an edge e has length x_e in a low density region of ν , then increasing its weight by a small amount results in a low probability event. So instead we need to increase its weight by a large amount, to some value close to b.

Let \mathbf{H}_1 be the set of edges of type (1), and \mathbf{H}_2 be the set of edges of type (2). Then with probability 1 - o(1), we have $|\mathbf{H}_1|, |\mathbf{H}_2| \leq \epsilon_4 n^2$, where ϵ_4 depends on the choice of parameters in the definition of bad edges. So there exist two sets A_1 , A_2 of size $O(\epsilon_4)n^2$ such that

$$\mathbb{P}(\{\mathbf{H}_1 \subseteq A_1\} \cap \{\mathbf{H}_2 \subseteq A_2\} | \mathscr{U}_{\zeta - \epsilon}^*) = \exp(-O(\epsilon_5)n^2).$$

Conditioned on this event, we

- (1) preserve length of edges in A_1 ;
- (2) increase length of edges in A_2 to a value close to b;
- (3) increase length of all other edges by ϵ_7 .

By choosing parameters carefully, the modified event is in \mathscr{U}_{ζ}^* and happens with probability $\exp(-O(\epsilon_6)n^2)$ conditioned on $\{\mathbf{H}_1 \subseteq A_1\} \cap \{\mathbf{H}_2 \subseteq A_2\} \cup \mathscr{U}_{\zeta-\epsilon}^*$; furthermore, we can let $\epsilon_4 \to 0$, $\epsilon_5 \to 0$, $\epsilon_6 \to 0$. This finishes the proof.

4. Proof of Proposition 3

This is the major part of the proof of Theorem 1.

4.1. **Proof overview.** Fix *n* and *m*. We pick $(\frac{m}{n})^2$ similar events $\Pi_1, \ldots, \Pi_{(\frac{m}{n})^2} \in \mathscr{U}_{\zeta}^*(n)$. Then we do cut-and-paste to get a dilated event Π in $\mathscr{U}_{\zeta-\epsilon'}^*(m)$.

Fix some integer j. We split $\mathbf{Box}(\mathscr{C}n)$ into $2^j \times 2^j$ tiles, each with size $\frac{\mathscr{C}n}{2^j} \times \frac{\mathscr{C}n}{2^j}$, and label these tiles using $[2^j] \times [2^j]$. Let $\mathbf{Tile}_{\mathscr{C}n}(j,v)$ denote the tile of $\mathbf{Box}(\mathscr{C}n)$ with label $v \in [2^j] \times [2^j]$. Each $\mathbf{Tile}_{\mathscr{C}m}(j,v)$ can be divided into $\frac{m}{n} \times \frac{m}{n}$ subtiles, each with size $\frac{\mathscr{C}n}{2^j} \times \frac{\mathscr{C}n}{2^j}$. We call these subtiles $\mathbf{Tile}_{\mathscr{C}m}(j,v,w)$ for $w \in [\frac{m}{n}] \times [\frac{m}{n}]$. Roughly speaking, we construct the event Π by letting $\mathbf{Tile}_{\mathscr{C}m}(j,v,w)$ be $\mathbf{Tile}_{\mathscr{C}n}(j,v)$ in Π_w .

We will define the meaning of "similar" so that for fixed $v \in [2^j] \times [2^j]$, these tiles have similar large-scale metric properties, and so that the $\mathbf{PT}(\vec{0}, m\vec{v})$ in Π is at least $(1 - o(1)) \mathbf{PT}(\vec{0}, n\vec{v})$ in Π_w for any $w \in [(\frac{m}{n})^2]$. Then $\Pi \in \mathscr{U}_{\zeta-\epsilon'}^*(m)$.

4.2. **Base event.** We define **Base-Event**, the set from which the smaller events $\Pi_1, \ldots, \Pi_{(\frac{m}{2})^2}$ are picked. It has two parts.

The first part is stability. Roughly, stability means that fixing a starting point and a direction, the metric in that direction is almost linear.

Definition 6. A tile is (δ, l, k) -stable if for every point \vec{z} in tile, for every unit vector $\vec{u} \in \mathbb{R}^2$, for all $1 \leq k' \leq k$, we have

$$\frac{\sum_{1 \le i \le k'} \mathbf{PT}(\vec{z} + (i-1)l\vec{u}, \vec{z} + il\vec{u})}{k' \mathbf{PT}(\vec{z}, \vec{z} + l\vec{u})} \in [\frac{1}{1+\delta}, 1+\delta].$$

The following lemma says that there exists a choice of parameters so that with constant probability, almost all tiles are stable.

Lemma 7. Given small enough $\delta, \epsilon_1 > 0$, positive integer $m_1 \leq -\frac{1}{4}\log_2 \epsilon_1$, and positive integer J_1 , there exists positive integer J_2 such that for all n large enough, conditioned on $\mathscr{U}_{\zeta}^*(n)$, there exists $j \in [J_1, J_2]$ such that with with probability at least $\frac{1}{J_2}$ the fraction of $v \in [2^j] \times [2^j]$ such that $\operatorname{Tile}_{\mathscr{C}n}(j, v)$ is not (δ, l, k) -stable is at most ϵ_1 , where $l = \frac{n}{2^{j+m_1}}$ and $k = 2^{2m_1}$. Therefore there exists a set $A \subseteq [2^j] \times [2^j]$ of size $O(\epsilon_1 2^{2j})$ such that with probability $\exp(-o(n^2))$, all unstable tiles are in A. In **Base-Event**, we require that in every Π_w , all unstable tiles are in A.

The second part of **Base-Event** is large scale distances. Fix a discretization parameter η . Let $\operatorname{Grid}_{\mathscr{C}n}(j)$ be the points in $\operatorname{Box}(N) \cap \frac{n}{2^j} \mathbb{Z}^{\nvDash}$. Define Proj : $\operatorname{Grid}_{\mathscr{C}n}(j + \frac{m_1}{2}) \times \operatorname{Grid}(\mathscr{C}n)(j + \frac{m_1}{2}) \to \mathbb{R}$ as the function

$$\mathbf{Proj}(\vec{x}, \vec{y}) = \eta |\vec{x} - \vec{y}| \lfloor \frac{\mathbf{PT}(\vec{x}, \vec{y})}{\eta |\vec{x} - \vec{y}|} \rfloor.$$

We can count that the number of possible choices of **Proj** is $\exp(o(n^2))$. So there exists a function P such that **Proj** = P with probability $\exp(-o(n^2))$. In **Base-Event**, we require that **Proj** = P in every Π_w .

Summing up, we have

Base-Event =
$$\mathscr{U}^*_{\mathcal{C}}(n) \cap \{\text{unstable tiles} \subseteq A\} \cap \{\mathbf{Proj} = P\}.$$

The following lemma says that we do not lose much measure if we replace \mathscr{U}_{ζ}^* with **Base-Event**.

Lemma 8. Given $\epsilon_4 > 0$, there exists a choice of parameters such that

$$\frac{\log \mathbb{P}(\mathbf{Base-Event})}{n^2} \geq \frac{\log \mathbb{P}(\mathscr{U}_{\zeta}^*(n))}{n^2} - \epsilon_4$$

4.3. Favorable event. Now we can describe in detail the construction of the dilated event Π on $\mathbf{Box}(\mathscr{C}m)$. In fact, for technical reasons, we slightly increase the size of the box and work with $\mathbf{Box}(\mathscr{C}(1+2\epsilon_6)m)$. Starting from the construction described in Section 4.1, we add the following region.

- (1) Between any two adjacent $\operatorname{Tile}_{\mathscr{C}m}(j, v)$'s, we insert a row/column of width $\epsilon_6 \mathscr{C}m$.
- (2) For fixed $v \in [2^j] \times [2^j]$, between any two adjacent $\operatorname{Tile}_{\mathscr{C}m}(j, v, w)$'s, we insert a row/column of width $\epsilon_6 \mathscr{C}_{\frac{m}{2j}}^m$.

After inserting these columns/rows to $\mathbf{Box}(\mathscr{C}m)$, we get a $\mathbf{Box}(\mathscr{C}(1+2\epsilon_6)m)$. The inserted region is called corridor.

The event **Fav** is described as following.

- (1) Each edge in corridor has length $\in [b \epsilon_7, b]$.
- (2) For $v \notin A$, $\mathbf{Tile}_{\mathscr{C}m}(j, v, w)$ is $\mathbf{Tile}_{\mathscr{C}n}(j, v)$ in Π_w .
- (3) For $v \in A$, each edge in $\mathbf{Tile}_{\mathscr{C}m}(j, v)$ has length $\in [b \epsilon_7, b]$.

Now we abuse notation and replace $(1 + 2\epsilon_6)m$ with m. Thus **Fav** is an event defined on **Box**($\mathscr{C}m$).

Lemma 9. Given ϵ_8 and ϵ_9 , there exists a choice of parameters such that

$$\frac{\log \mathbb{P}(\mathbf{Fav})}{m^2} \ge \frac{\log \mathbb{P}(\mathscr{U}_{\zeta}^*(n))}{n^2} - \epsilon_8$$

and $\mathbf{Fav} \subseteq \mathscr{U}^*_{\zeta - \epsilon_9}(m)$.

The hard part of the proof is that $\mathbf{PT}(\vec{0}, m\vec{v}) \ge (\zeta - \epsilon_9)m$. Given a path from $\vec{0}$ to $m\vec{v}$, we first modify it to satisfy some useful conditions.

Lemma 10. Conditioned on Fav, given any path α from $\vec{0}$ to $m\vec{v}$, we can construct a path β satisfying the following conditions.

(1) If β touches $\operatorname{Tile}_{\mathscr{C}m}(j, v)$, then it is large in $\operatorname{Tile}_{\mathscr{C}m}(j, v)$. Here a path is large in a tile with side length L means that if the path enters tile from point \vec{x} and exits from point \vec{y} , then there exists a point \vec{z} in tile such that

$$\min\{|\vec{x} - \vec{z}|, |\vec{y} - \vec{z}|\} \ge \epsilon_6^2 L$$

- (2) If β touches $\operatorname{Tile}_{\mathscr{C}m}(j, v, w)$, then it is large in $\operatorname{Tile}_{\mathscr{C}m}(j, v, w)$.
- (3) β is regular, in the sense that whenever it exits $\mathbf{Tile}_{\mathscr{C}m}(j, v)$, it enters an adjacent tile using a completely vertical or completely horizontal path.
- (4) $|\alpha| \ge (1 O(\epsilon_7 + \epsilon_6))|\beta|.$

The proof of lemma is by performing modifications step by step. The existences of corridors helps reduce short zig-zags between adjacent tiles.

Now that we have path β satisfying all these conditions. It can be decomposed into $\beta_1 \chi_1 \beta_2 \cdots \chi_{s-1} \beta_s$ such that each β_i is an excursion in some $\mathbf{Tile}_{\mathscr{C}m}(j, v)$, and each χ_i is a (completely vertical or completely horizontal) path in corridor. Let \vec{x}_i be the start point of β_i . Let \vec{x}_i^S be the closest point in $\mathbf{Grid}_{\mathscr{C}n}(j + \frac{m_1}{2})$ to $\frac{n}{m}\vec{x}_i$.¹ Let $\vec{x}_i^{S'}$ be the point adjacent to \vec{x}_i^S in the tile containing \vec{x}_{i+1}^S . Now let β_i^S be the shortest path from \vec{x}_i^S to $\vec{x}_i^{S'}$ and β^S be the path concatenated from β_i^S for all i.

Lemma 11. Given any $\epsilon_{11} > 0$, there exists a choice of parameters such that

$$|\beta_i| \ge (1 - \epsilon_{11})\frac{m}{n}|\beta_i^S|.$$

LHS is computed under **Fav** and RHS is computed under any environment in **Base-Event**.

The proof of Lemma 11 uses stability of tiles and the function **Proj** which governs the large-scale metric. This finishes the proof of Lemma 9 and therefore Proposition 3 holds.

References

- [ADH17] A. Auffinger, M. Damron, and J. Hanson. 50 years of first-passage percolation, volume 68. American Mathematical Soc., 2017.
- [BGS17] R. Basu, S. Ganguly, and A. Sly. Upper tail large deviations in first passage percolation. arXiv preprint arXiv:1712.01255, 2017.
- [Kes86] H. Kesten. Aspects of first passage percolation. In École d'été de probabilités de Saint Flour XIV-1984, pages 125–264. Springer, 1986.

¹Here we are abusing notation by pretending that corridors do not exist. The correct thing to do is to first remove the corridors, and then do proper scaling of coordinates.