UPPER TAIL LARGE DEVIATIONS IN FIRST PASSAGE PERCOLATION

YUZHOU GU

1. Introduction

Consider the grid graph \mathbb{Z}^{2} where there is an edge between any two vertices with Euclidean distance 1. Let ν be a probability measure supported on the interval $[0, b]$ with continuous density. Let each edge have length iid chosen from ν. This defines a random metric $\mathbf{P T}(\cdot, \cdot)$ ("passage time") on \mathbb{Z}^{2}. Fix a unit vector $\vec{v} \in \mathbb{R}^{2}$. A standard fact (see [ADH17]) says that the $\operatorname{limit} \lim _{n \rightarrow \infty} \frac{1}{n} \mathbf{P T}(\overrightarrow{0}, n \vec{v})$ exists. Let $\mu=\mu(\nu, \vec{v})$ denote this limit. Kesten [Kes86] studied the large deviation properties of $\mathbf{P T}(0, n \vec{v})$. He proved that
(1) for any $\zeta \in(0, \mu)$, the limit

$$
\lim _{n \rightarrow \infty}-\frac{\log \mathbb{P}(\mathbf{P} \mathbf{T}(\overrightarrow{0}, n \vec{v}) \leq(\mu-\zeta) n)}{n}
$$

exists and is $\in(0, \infty)$;
(2) for any $\zeta \in(0, b-\mu)$, we have

$$
\begin{aligned}
0 & <\liminf _{n \rightarrow \infty}-\frac{\log \mathbb{P}(\mathbf{P T}(\overrightarrow{0}, n \vec{v}) \geq(\mu+\zeta) n)}{n^{2}} \\
& \leq \limsup _{n \rightarrow \infty}-\frac{\log \mathbb{P}(\mathbf{P} \mathbf{T}(\overrightarrow{0}, n \vec{v}) \geq(\mu+\zeta) n)}{n^{2}}<\infty
\end{aligned}
$$

Therefore the lower tail has speed n while the upper tail has speed n^{2}. The intuition is that to lower the passage time by $\Theta(n)$, we only need to lower the length of $\Theta(n)$ edges, while to increase the passage time by $\Theta(n)$, we need to increase the length of $\Theta\left(n^{2}\right)$ edges.

It was left open whether a rate function exists for the upper tail large deviation. Recently, Basu-Ganguly-Sly [BGS17] answered this question in the affirmative.

Theorem 1 (Basu-Ganguly-Sly [BGS17]). The limit

$$
\lim _{n \rightarrow \infty}-\frac{\log \mathbb{P}(\mathbf{P} \mathbf{T}(\overrightarrow{0}, n \vec{v}) \geq(\mu+\zeta) n)}{n^{2}}
$$

exists and is $\in(0, \infty)$.
Remark 2. (1) The condition imposed on ν is not the weakest possible for Theorem 1 to hold.
(2) Theorem 1 holds also for the first passage percolation in \mathbb{Z}^{d}, with the speed (denominator) replaced by n^{d}.
In this expository paper we study the proof of Theorem 1 in [BGS17]. We emphasize high-level ideas and often omit details of proof.

2. Overview of the proof

For simplicity, let $\mathscr{U}_{\zeta}(n)$ denote the upper tail large deviation event $\mathbf{P T}(\overrightarrow{0}, n \vec{u}) \geq$ $(\mu+\zeta) n$. The proof of Theorem 1 is in two main parts.
Proposition 3. For each $\epsilon^{\prime} \in(0, \zeta)$ and $\epsilon>0$, there exists N_{0} and H_{0} such that for all $n>N_{0}$ and $m>n H_{0}$ we have

$$
\frac{1}{m^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta-\epsilon^{\prime}}(m)\right) \geq \frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(n)\right)-\epsilon .
$$

Proposition 4. For each $\epsilon>0$, there exists $\epsilon^{\prime}>0$ such that for all n large enough we have

$$
\frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta-\epsilon^{\prime}}(n)\right) \leq \frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(n)\right)+\epsilon
$$

Proof that Proposition $3+4$ implies Theorem 1. It is not hard to see that the two propositions imply for all $\epsilon>0$, there exists N_{0} such that for all $n>N_{0}$, there exists $M_{0}=M_{0}(n)$ such that for all $m>M_{0}$, we have

$$
\frac{1}{m^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(m)\right) \geq \frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(n)\right)-\epsilon
$$

Using this fact we can prove that

$$
\liminf _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(n)\right)=\limsup _{n \rightarrow \infty} \frac{1}{n^{2}} \log \mathbb{P}\left(\mathscr{U}_{\zeta}(n)\right)
$$

Let $\operatorname{Box}(\mathscr{C} n)$ denote the set $[-\mathscr{C} n, \mathscr{C} n]^{2}$. Before we prove Proposition 3 and 4 , we need the following result.
Lemma 5. There exists $\alpha>0$ such that for any $\mathscr{C}>0$, for n large enough, with probability $1-o(1)$, for any two points $\vec{x}, \vec{y} \in \operatorname{Box}(\mathscr{C} n)$ with $|\vec{x}-\vec{y}|>\sqrt{n}$, we have $\mathbf{P T}(\vec{x}, \vec{y}) \geq \alpha|\vec{x}-\vec{y}|$.

The proof of lemma is by a union bound. Then by triangle inequality, for some large enough constant \mathscr{C}, with probability $1-o(1)$, the shortest path from $\overrightarrow{0}$ to $n \vec{v}$ lies inside $\operatorname{Box}(\mathscr{C} n)$. Note that by an application of FKG inequality, Lemma 5 is also true conditioned on $\mathscr{U}_{\zeta}(n)$.

Now let \mathcal{E} denote the event that for any two points $\vec{x}, \vec{y} \in \operatorname{Box}(\mathscr{C} n)$ with $\mid \vec{x}-$ $\vec{y} \mid>\sqrt{n}$, we have $\mathbf{P T}(\vec{x}, \vec{y}) \geq \alpha|\vec{x}-\vec{y}|$. Let $\mathscr{U}_{\zeta}^{*}=\mathscr{U}_{\zeta} \cap \mathcal{E}$. We have $\mathbb{P}\left(\mathscr{U}_{\zeta}^{*}\right)=$ $(1-o(1)) \mathbb{P}\left(\mathscr{U}_{\zeta}\right)$. Therefore we only need to prove Proposition 3 and 4 with \mathscr{U}_{ζ} replaced by \mathscr{U}_{ζ}^{*}. This enables us to work within a finite size box instead of working with infinitely many edges.

3. Proof of Proposition 4

The proof of Proposition 4 is easier, so we describe it first. Starting with an environment $\Pi \in \mathscr{U}_{\zeta-\epsilon}^{*}$, we increase the length of all edges slightly to get an environment $\Pi^{\prime} \in \mathscr{U}_{\zeta}{ }^{*}$. To implement this proof, we need to handle two types of "bad" edges.
(1) If an edge e already has length x_{e} very close to b, then we cannot increase its length by an amount larger than $b-x_{e}$.
(2) If an edge e has length x_{e} in a low density region of ν, then increasing its weight by a small amount results in a low probability event. So instead we need to increase its weight by a large amount, to some value close to b.

Let \mathbf{H}_{1} be the set of edges of type (1), and \mathbf{H}_{2} be the set of edges of type (2). Then with probability $1-o(1)$, we have $\left|\mathbf{H}_{1}\right|,\left|\mathbf{H}_{2}\right| \leq \epsilon_{4} n^{2}$, where ϵ_{4} depends on the choice of parameters in the definition of bad edges. So there exist two sets A_{1}, A_{2} of size $O\left(\epsilon_{4}\right) n^{2}$ such that

$$
\mathbb{P}\left(\left\{\mathbf{H}_{1} \subseteq A_{1}\right\} \cap\left\{\mathbf{H}_{2} \subseteq A_{2}\right\} \mid \mathscr{U}_{\zeta-\epsilon}^{*}\right)=\exp \left(-O\left(\epsilon_{5}\right) n^{2}\right)
$$

Conditioned on this event, we
(1) preserve length of edges in A_{1};
(2) increase length of edges in A_{2} to a value close to b;
(3) increase length of all other edges by ϵ_{7}.

By choosing parameters carefully, the modified event is in \mathscr{U}_{ζ}^{*} and happens with probability $\exp \left(-O\left(\epsilon_{6}\right) n^{2}\right)$ conditioned on $\left\{\mathbf{H}_{1} \subseteq A_{1}\right\} \cap\left\{\mathbf{H}_{2} \subseteq A_{2}\right\} \cup \mathscr{U}_{\zeta-\epsilon}^{*}$; furthermore, we can let $\epsilon_{4} \rightarrow 0, \epsilon_{5} \rightarrow 0, \epsilon_{6} \rightarrow 0$. This finishes the proof.

4. Proof of Proposition 3

This is the major part of the proof of Theorem 1.
4.1. Proof overview. Fix n and m. We pick $\left(\frac{m}{n}\right)^{2}$ similar events $\Pi_{1}, \ldots, \Pi_{\left(\frac{m}{n}\right)^{2}} \in$ $\mathscr{U}_{\zeta}^{*}(n)$. Then we do cut-and-paste to get a dilated event Π in $\mathscr{U}_{\zeta-\epsilon^{\prime}}^{*}(m)$.

Fix some integer j. We split $\operatorname{Box}(\mathscr{C} n)$ into $2^{j} \times 2^{j}$ tiles, each with size $\frac{\mathscr{C} n}{2^{j}} \times \frac{\mathscr{C} n}{2^{j}}$, and label these tiles using $\left[2^{j}\right] \times\left[2^{j}\right]$. Let $\operatorname{Tile}_{\mathscr{C} n}(j, v)$ denote the tile of $\operatorname{Box}(\mathscr{C} n)$ with label $v \in\left[2^{j}\right] \times\left[2^{j}\right]$. Each Tile $\mathscr{C} m(j, v)$ can be divided into $\frac{m}{n} \times \frac{m}{n}$ subtiles, each with size $\frac{\mathscr{C} n}{2^{j}} \times \frac{\mathscr{C} n}{2^{j}}$. We call these subtiles $\operatorname{Tile}_{\mathscr{C} m}(j, v, w)$ for $w \in\left[\frac{m}{n}\right] \times\left[\frac{m}{n}\right]$. Roughly speaking, we construct the event Π by letting $\operatorname{Tile}_{\mathscr{C} m}(j, v, w)$ be $\operatorname{Tile}_{\mathscr{C} n}(j, v)$ in Π_{w}.

We will define the meaning of "similar" so that for fixed $v \in\left[2^{j}\right] \times\left[2^{j}\right]$, these tiles have similar large-scale metric properties, and so that the $\mathbf{P T}(\overrightarrow{0}, m \vec{v})$ in Π is at least $(1-o(1)) \mathbf{P} \mathbf{T}(\overrightarrow{0}, n \vec{v})$ in Π_{w} for any $w \in\left[\left(\frac{m}{n}\right)^{2}\right]$. Then $\Pi \in \mathscr{U}_{\zeta-\epsilon^{\prime}}^{*}(m)$.
4.2. Base event. We define Base-Event, the set from which the smaller events $\Pi_{1}, \ldots, \Pi_{\left(\frac{m}{n}\right)^{2}}$ are picked. It has two parts.

The first part is stability. Roughly, stability means that fixing a starting point and a direction, the metric in that direction is almost linear.

Definition 6. A tile is (δ, l, k)-stable if for every point \vec{z} in tile, for every unit vector $\vec{u} \in \mathbb{R}^{2}$, for all $1 \leq k^{\prime} \leq k$, we have

$$
\frac{\sum_{1 \leq i \leq k^{\prime}} \mathbf{P T}(\vec{z}+(i-1) l \vec{u}, \vec{z}+i l \vec{u})}{k^{\prime} \mathbf{P} \mathbf{T}(\vec{z}, \vec{z}+l \vec{u})} \in\left[\frac{1}{1+\delta}, 1+\delta\right] .
$$

The following lemma says that there exists a choice of parameters so that with constant probability, almost all tiles are stable.

Lemma 7. Given small enough $\delta, \epsilon_{1}>0$, positive integer $m_{1} \leq-\frac{1}{4} \log _{2} \epsilon_{1}$, and positive integer J_{1}, there exists positive integer J_{2} such that for all n large enough, conditioned on $\mathscr{U}_{\zeta}^{*}(n)$, there exists $j \in\left[J_{1}, J_{2}\right]$ such that with with probability at least $\frac{1}{J_{2}}$ the fraction of $v \in\left[2^{j}\right] \times\left[2^{j}\right]$ such that $\operatorname{Tile}_{\mathscr{C} n}(j, v)$ is not (δ, l, k)-stable is at most ϵ_{1}, where $l=\frac{n}{2^{j+m_{1}}}$ and $k=2^{2 m_{1}}$.

Therefore there exists a set $A \subseteq\left[2^{j}\right] \times\left[2^{j}\right]$ of size $O\left(\epsilon_{1} 2^{2 j}\right)$ such that with probability $\exp \left(-o\left(n^{2}\right)\right)$, all unstable tiles are in A. In Base-Event, we require that in every Π_{w}, all unstable tiles are in A.

The second part of Base-Event is large scale distances. Fix a discretization parameter η. Let $\operatorname{Grid}_{\mathscr{C} n}(j)$ be the points in $\operatorname{Box}(N) \cap \frac{n}{2^{j}} \mathbb{Z}^{\not \vDash}$. Define Proj : $\operatorname{Grid}_{\mathscr{C} n}\left(j+\frac{m_{1}}{2}\right) \times \operatorname{Grid}(\mathscr{C} n)\left(j+\frac{m_{1}}{2}\right) \rightarrow \mathbb{R}$ as the function

$$
\operatorname{Proj}(\vec{x}, \vec{y})=\eta|\vec{x}-\vec{y}|\left\lfloor\frac{\mathbf{P T}(\vec{x}, \vec{y})}{\eta|\vec{x}-\vec{y}|}\right\rfloor .
$$

We can count that the number of possible choices of Proj is $\exp \left(o\left(n^{2}\right)\right)$. So there exists a function P such that Proj $=P$ with probability $\exp \left(-o\left(n^{2}\right)\right)$. In Base-Event, we require that Proj $=P$ in every Π_{w}.

Summing up, we have

$$
\text { Base-Event }=\mathscr{U}_{\zeta}^{*}(n) \cap\{\text { unstable tiles } \subseteq A\} \cap\{\text { Proj }=P\} .
$$

The following lemma says that we do not lose much measure if we replace \mathscr{U}_{ζ}^{*} with Base-Event.

Lemma 8. Given $\epsilon_{4}>0$, there exists a choice of parameters such that

$$
\frac{\log \mathbb{P}(\text { Base-Event })}{n^{2}} \geq \frac{\log \mathbb{P}\left(\mathscr{U}_{\zeta}^{*}(n)\right)}{n^{2}}-\epsilon_{4}
$$

4.3. Favorable event. Now we can describe in detail the construction of the dilated event Π on $\operatorname{Box}(\mathscr{C} m)$. In fact, for technical reasons, we slightly increase the size of the box and work with $\operatorname{Box}\left(\mathscr{C}\left(1+2 \epsilon_{6}\right) m\right)$. Starting from the construction described in Section 4.1, we add the following region.
(1) Between any two adjacent Tile $_{\mathscr{C} m}(j, v)$'s, we insert a row/column of width $\epsilon_{6} \mathscr{C} m$.
(2) For fixed $v \in\left[2^{j}\right] \times\left[2^{j}\right]$, between any two adjacent $\operatorname{Tile}_{\mathscr{C} m}(j, v, w)$'s, we insert a row/column of width $\epsilon_{6} \mathscr{C} \frac{m}{2^{j}}$.
After inserting these columns/rows to $\operatorname{Box}(\mathscr{C} m)$, we get a $\operatorname{Box}\left(\mathscr{C}\left(1+2 \epsilon_{6}\right) m\right)$. The inserted region is called corridor.

The event Fav is described as following.
(1) Each edge in corridor has length $\in\left[b-\epsilon_{7}, b\right]$.
(2) For $v \notin A, \boldsymbol{T i l e}_{\mathscr{C} m}(j, v, w)$ is $\boldsymbol{T i l e}_{\mathscr{C} n}(j, v)$ in Π_{w}.
(3) For $v \in A$, each edge in $\operatorname{Tile}_{\mathscr{C} m}(j, v)$ has length $\in\left[b-\epsilon_{7}, b\right]$.

Now we abuse notation and replace $\left(1+2 \epsilon_{6}\right) m$ with m. Thus Fav is an event defined on $\operatorname{Box}(\mathscr{C} m)$.

Lemma 9. Given ϵ_{8} and ϵ_{9}, there exists a choice of parameters such that

$$
\frac{\log \mathbb{P}(\mathbf{F a v})}{m^{2}} \geq \frac{\log \mathbb{P}\left(\mathscr{U}_{\zeta}^{*}(n)\right)}{n^{2}}-\epsilon_{8}
$$

and $\mathbf{F a v} \subseteq \mathscr{U}_{\zeta-\epsilon_{9}}^{*}(m)$.
The hard part of the proof is that $\mathbf{P T}(\overrightarrow{0}, m \vec{v}) \geq\left(\zeta-\epsilon_{9}\right) m$. Given a path from $\overrightarrow{0}$ to $m \vec{v}$, we first modify it to satisfy some useful conditions.
Lemma 10. Conditioned on $\mathbf{F a v}$, given any path α from $\overrightarrow{0}$ to $m \vec{v}$, we can construct a path β satisfying the following conditions.
(1) If β touches $\boldsymbol{T i l e}_{\mathscr{C} m}(j, v)$, then it is large in $\boldsymbol{T i l e}_{\mathscr{C} m}(j, v)$. Here a path is large in a tile with side length L means that if the path enters tile from point \vec{x} and exits from point \vec{y}, then there exists a point \vec{z} in tile such that

$$
\min \{|\vec{x}-\vec{z}|,|\vec{y}-\vec{z}|\} \geq \epsilon_{6}^{2} L
$$

(2) If β touches $\boldsymbol{T i l e}_{\mathscr{C} m}(j, v, w)$, then it is large in $\operatorname{Tile}_{\mathscr{C} m}(j, v, w)$.
(3) β is regular, in the sense that whenever it exits $\mathbf{T i l e}_{\mathscr{C} m}(j, v)$, it enters an adjacent tile using a completely vertical or completely horizontal path.
(4) $|\alpha| \geq\left(1-O\left(\epsilon_{7}+\epsilon_{6}\right)\right)|\beta|$.

The proof of lemma is by performing modifications step by step. The existences of corridors helps reduce short zig-zags between adjacent tiles.

Now that we have path β satisfying all these conditions. It can be decomposed into $\beta_{1} \chi_{1} \beta_{2} \cdots \chi_{s-1} \beta_{s}$ such that each β_{i} is an excursion in some $\operatorname{Tile}_{\mathscr{C} m}(j, v)$, and each χ_{i} is a (completely vertical or completely horizontal) path in corridor. Let \vec{x}_{i} be the start point of β_{i}. Let \vec{x}_{i}^{S} be the closest point in $\operatorname{Grid}_{\mathscr{C} n}\left(j+\frac{m_{1}}{2}\right)$ to $\frac{n}{m} \vec{x}_{i} .{ }^{1}$ Let $\vec{x}_{i}^{S \prime}$ be the point adjacent to \vec{x}_{i}^{S} in the tile containing \vec{x}_{i+1}^{S}. Now let β_{i}^{S} be the shortest path from \vec{x}_{i}^{S} to $\vec{x}_{i}^{S \prime}$ and β^{S} be the path concatenated from β_{i}^{S} for all i.

Lemma 11. Given any $\epsilon_{11}>0$, there exists a choice of parameters such that

$$
\left|\beta_{i}\right| \geq\left(1-\epsilon_{11}\right) \frac{m}{n}\left|\beta_{i}^{S}\right| .
$$

LHS is computed under Fav and RHS is computed under any environment in Base-Event.

The proof of Lemma 11 uses stability of tiles and the function Proj which governs the large-scale metric. This finishes the proof of Lemma 9 and therefore Proposition 3 holds.

References

[ADH17] A. Auffinger, M. Damron, and J. Hanson. 50 years of first-passage percolation, volume 68. American Mathematical Soc., 2017.
[BGS17] R. Basu, S. Ganguly, and A. Sly. Upper tail large deviations in first passage percolation. arXiv preprint arXiv:1712.01255, 2017.
[Kes86] H. Kesten. Aspects of first passage percolation. In École d'été de probabilités de Saint Flour XIV-1984, pages 125-264. Springer, 1986.

[^0]
[^0]: ${ }^{1}$ Here we are abusing notation by pretending that corridors do not exist. The correct thing to do is to first remove the corridors, and then do proper scaling of coordinates.

