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1. Introduction

Consider the grid graph Z2 where there is an edge between any two vertices with
Euclidean distance 1. Let ν be a probability measure supported on the interval
[0, b] with continuous density. Let each edge have length iid chosen from ν. This
defines a random metric PT(·, ·) (“passage time”) on Z2. Fix a unit vector ~v ∈ R2.

A standard fact (see [ADH17]) says that the limit limn→∞
1
n PT(~0, n~v) exists. Let

µ = µ(ν,~v) denote this limit. Kesten [Kes86] studied the large deviation properties
of PT(0, n~v). He proved that

(1) for any ζ ∈ (0, µ), the limit

lim
n→∞

− logP(PT(~0, n~v) ≤ (µ− ζ)n)

n

exists and is ∈ (0,∞);
(2) for any ζ ∈ (0, b− µ), we have

0 < lim inf
n→∞

− logP(PT(~0, n~v) ≥ (µ+ ζ)n)

n2

≤ lim sup
n→∞

− logP(PT(~0, n~v) ≥ (µ+ ζ)n)

n2
<∞.

Therefore the lower tail has speed n while the upper tail has speed n2. The intuition
is that to lower the passage time by Θ(n), we only need to lower the length of Θ(n)
edges, while to increase the passage time by Θ(n), we need to increase the length
of Θ(n2) edges.

It was left open whether a rate function exists for the upper tail large deviation.
Recently, Basu-Ganguly-Sly [BGS17] answered this question in the affirmative.

Theorem 1 (Basu-Ganguly-Sly [BGS17]). The limit

lim
n→∞

− logP(PT(~0, n~v) ≥ (µ+ ζ)n)

n2

exists and is ∈ (0,∞).

Remark 2. (1) The condition imposed on ν is not the weakest possible for
Theorem 1 to hold.

(2) Theorem 1 holds also for the first passage percolation in Zd, with the speed
(denominator) replaced by nd.

In this expository paper we study the proof of Theorem 1 in [BGS17]. We
emphasize high-level ideas and often omit details of proof.
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2. Overview of the proof

For simplicity, let Uζ(n) denote the upper tail large deviation event PT(~0, n~u) ≥
(µ+ ζ)n. The proof of Theorem 1 is in two main parts.

Proposition 3. For each ε′ ∈ (0, ζ) and ε > 0, there exists N0 and H0 such that
for all n > N0 and m > nH0 we have

1

m2
logP(Uζ−ε′(m)) ≥ 1

n2
logP(Uζ(n))− ε.

Proposition 4. For each ε > 0, there exists ε′ > 0 such that for all n large enough
we have

1

n2
logP(Uζ−ε′(n)) ≤ 1

n2
logP(Uζ(n)) + ε.

Proof that Proposition 3 + 4 implies Theorem 1. It is not hard to see that the two
propositions imply for all ε > 0, there exists N0 such that for all n > N0, there
exists M0 = M0(n) such that for all m > M0, we have

1

m2
logP(Uζ(m)) ≥ 1

n2
logP(Uζ(n))− ε.

Using this fact we can prove that

lim inf
n→∞

1

n2
logP(Uζ(n)) = lim sup

n→∞

1

n2
logP(Uζ(n)).

�

Let Box(Cn) denote the set [−Cn,Cn]2. Before we prove Proposition 3 and 4,
we need the following result.

Lemma 5. There exists α > 0 such that for any C > 0, for n large enough, with
probability 1− o(1), for any two points ~x, ~y ∈ Box(Cn) with |~x− ~y| >

√
n, we have

PT(~x, ~y) ≥ α|~x− ~y|.

The proof of lemma is by a union bound. Then by triangle inequality, for some
large enough constant C , with probability 1− o(1), the shortest path from ~0 to n~v
lies inside Box(Cn). Note that by an application of FKG inequality, Lemma 5 is
also true conditioned on Uζ(n).

Now let E denote the event that for any two points ~x, ~y ∈ Box(Cn) with |~x −
~y| >

√
n, we have PT(~x, ~y) ≥ α|~x − ~y|. Let U ∗ζ = Uζ ∩ E . We have P(U ∗ζ ) =

(1 − o(1))P(Uζ). Therefore we only need to prove Proposition 3 and 4 with Uζ

replaced by U ∗ζ . This enables us to work within a finite size box instead of working
with infinitely many edges.

3. Proof of Proposition 4

The proof of Proposition 4 is easier, so we describe it first. Starting with an
environment Π ∈ U ∗ζ−ε, we increase the length of all edges slightly to get an envi-

ronment Π′ ∈ U ∗ζ . To implement this proof, we need to handle two types of “bad”
edges.

(1) If an edge e already has length xe very close to b, then we cannot increase
its length by an amount larger than b− xe.

(2) If an edge e has length xe in a low density region of ν, then increasing its
weight by a small amount results in a low probability event. So instead we
need to increase its weight by a large amount, to some value close to b.
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Let H1 be the set of edges of type (1), and H2 be the set of edges of type (2).
Then with probability 1 − o(1), we have |H1 |, |H2 | ≤ ε4n

2, where ε4 depends on
the choice of parameters in the definition of bad edges. So there exist two sets A1,
A2 of size O(ε4)n2 such that

P({H1 ⊆ A1} ∩ {H2 ⊆ A2}|U ∗ζ−ε) = exp(−O(ε5)n2).

Conditioned on this event, we

(1) preserve length of edges in A1;
(2) increase length of edges in A2 to a value close to b;
(3) increase length of all other edges by ε7.

By choosing parameters carefully, the modified event is in U ∗ζ and happens with

probability exp(−O(ε6)n2) conditioned on {H1 ⊆ A1} ∩ {H2 ⊆ A2} ∪ U ∗ζ−ε; fur-
thermore, we can let ε4 → 0, ε5 → 0, ε6 → 0. This finishes the proof.

4. Proof of Proposition 3

This is the major part of the proof of Theorem 1.

4.1. Proof overview. Fix n and m. We pick (mn )2 similar events Π1, . . . ,Π(m
n )2 ∈

U ∗ζ (n). Then we do cut-and-paste to get a dilated event Π in U ∗ζ−ε′(m).

Fix some integer j. We split Box(Cn) into 2j×2j tiles, each with size Cn
2j ×

Cn
2j ,

and label these tiles using [2j ]× [2j ]. Let TileCn(j, v) denote the tile of Box(Cn)
with label v ∈ [2j ]×[2j ]. Each TileCm(j, v) can be divided into m

n ×
m
n subtiles, each

with size Cn
2j ×

Cn
2j . We call these subtiles TileCm(j, v, w) for w ∈ [mn ]×[mn ]. Roughly

speaking, we construct the event Π by letting TileCm(j, v, w) be TileCn(j, v) in
Πw.

We will define the meaning of “similar” so that for fixed v ∈ [2j ] × [2j ], these

tiles have similar large-scale metric properties, and so that the PT(~0,m~v) in Π is

at least (1− o(1)) PT(~0, n~v) in Πw for any w ∈ [(mn )2]. Then Π ∈ U ∗ζ−ε′(m).

4.2. Base event. We define Base-Event, the set from which the smaller events
Π1, . . . ,Π(m

n )2 are picked. It has two parts.
The first part is stability. Roughly, stability means that fixing a starting point

and a direction, the metric in that direction is almost linear.

Definition 6. A tile is (δ, l, k)-stable if for every point ~z in tile, for every unit
vector ~u ∈ R2, for all 1 ≤ k′ ≤ k, we have∑

1≤i≤k′ PT(~z + (i− 1)l~u, ~z + il~u)

k′PT(~z, ~z + l~u)
∈ [

1

1 + δ
, 1 + δ].

The following lemma says that there exists a choice of parameters so that with
constant probability, almost all tiles are stable.

Lemma 7. Given small enough δ, ε1 > 0, positive integer m1 ≤ − 1
4 log2 ε1, and

positive integer J1, there exists positive integer J2 such that for all n large enough,
conditioned on U ∗ζ (n), there exists j ∈ [J1, J2] such that with with probability at

least 1
J2

the fraction of v ∈ [2j ]× [2j ] such that TileCn(j, v) is not (δ, l, k)-stable is

at most ε1, where l = n
2j+m1

and k = 22m1 .
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Therefore there exists a set A ⊆ [2j ] × [2j ] of size O(ε122j) such that with
probability exp(−o(n2)), all unstable tiles are in A. In Base-Event, we require
that in every Πw, all unstable tiles are in A.

The second part of Base-Event is large scale distances. Fix a discretization
parameter η. Let GridCn(j) be the points in Box(N) ∩ n

2j Z
2. Define Proj :

GridCn(j + m1

2 )×Grid(Cn)(j + m1

2 )→ R as the function

Proj(~x, ~y) = η|~x− ~y|bPT(~x, ~y)

η|~x− ~y|
c.

We can count that the number of possible choices of Proj is exp(o(n2)). So
there exists a function P such that Proj = P with probability exp(−o(n2)). In
Base-Event, we require that Proj = P in every Πw.

Summing up, we have

Base-Event = U ∗ζ (n) ∩ {unstable tiles ⊆ A} ∩ {Proj = P}.

The following lemma says that we do not lose much measure if we replace U ∗ζ with
Base-Event.

Lemma 8. Given ε4 > 0, there exists a choice of parameters such that

logP(Base-Event)

n2
≥

logP(U ∗ζ (n))

n2
− ε4.

4.3. Favorable event. Now we can describe in detail the construction of the di-
lated event Π on Box(Cm). In fact, for technical reasons, we slightly increase the
size of the box and work with Box(C (1 + 2ε6)m). Starting from the construction
described in Section 4.1, we add the following region.

(1) Between any two adjacent TileCm(j, v)’s, we insert a row/column of width
ε6Cm.

(2) For fixed v ∈ [2j ] × [2j ], between any two adjacent TileCm(j, v, w)’s, we
insert a row/column of width ε6C

m
2j .

After inserting these columns/rows to Box(Cm), we get a Box(C (1+2ε6)m). The
inserted region is called corridor.

The event Fav is described as following.

(1) Each edge in corridor has length ∈ [b− ε7, b].
(2) For v 6∈ A, TileCm(j, v, w) is TileCn(j, v) in Πw.
(3) For v ∈ A, each edge in TileCm(j, v) has length ∈ [b− ε7, b].

Now we abuse notation and replace (1 + 2ε6)m with m. Thus Fav is an event
defined on Box(Cm).

Lemma 9. Given ε8 and ε9, there exists a choice of parameters such that

logP(Fav)

m2
≥

logP(U ∗ζ (n))

n2
− ε8

and Fav ⊆ U ∗ζ−ε9(m).

The hard part of the proof is that PT(~0,m~v) ≥ (ζ − ε9)m. Given a path from
~0 to m~v, we first modify it to satisfy some useful conditions.

Lemma 10. Conditioned on Fav, given any path α from ~0 to m~v, we can construct
a path β satisfying the following conditions.
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(1) If β touches TileCm(j, v), then it is large in TileCm(j, v). Here a path
is large in a tile with side length L means that if the path enters tile from
point ~x and exits from point ~y, then there exists a point ~z in tile such that

min{|~x− ~z|, |~y − ~z|} ≥ ε26L.
(2) If β touches TileCm(j, v, w), then it is large in TileCm(j, v, w).
(3) β is regular, in the sense that whenever it exits TileCm(j, v), it enters an

adjacent tile using a completely vertical or completely horizontal path.
(4) |α| ≥ (1−O(ε7 + ε6))|β|.

The proof of lemma is by performing modifications step by step. The existences
of corridors helps reduce short zig-zags between adjacent tiles.

Now that we have path β satisfying all these conditions. It can be decomposed
into β1χ1β2 · · ·χs−1βs such that each βi is an excursion in some TileCm(j, v), and
each χi is a (completely vertical or completely horizontal) path in corridor. Let ~xi
be the start point of βi. Let ~xSi be the closest point in GridCn(j + m1

2 ) to n
m~xi.

1

Let ~xS′i be the point adjacent to ~xSi in the tile containing ~xSi+1. Now let βSi be the

shortest path from ~xSi to ~xS′i and βS be the path concatenated from βSi for all i.

Lemma 11. Given any ε11 > 0, there exists a choice of parameters such that

|βi| ≥ (1− ε11)
m

n
|βSi |.

LHS is computed under Fav and RHS is computed under any environment in
Base-Event.

The proof of Lemma 11 uses stability of tiles and the function Proj which
governs the large-scale metric. This finishes the proof of Lemma 9 and therefore
Proposition 3 holds.

References

[ADH17] A. Auffinger, M. Damron, and J. Hanson. 50 years of first-passage percolation, vol-

ume 68. American Mathematical Soc., 2017.
[BGS17] R. Basu, S. Ganguly, and A. Sly. Upper tail large deviations in first passage percolation.

arXiv preprint arXiv:1712.01255, 2017.

[Kes86] H. Kesten. Aspects of first passage percolation. In École d’été de probabilités de Saint
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1Here we are abusing notation by pretending that corridors do not exist. The correct thing to
do is to first remove the corridors, and then do proper scaling of coordinates.
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