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1 Introduction

Let M be a complete minimal surface in R3. Then it is naturally equipped with a Gauss map
g : M → S2 which sends a point to the unit normal vector at this point. It is interesting to
study properties of g. When M is flat, g is a constant function, thus im g contains a single
point. However, when M is non-flat, it turns out that im g is dense in S2. This was conjectured
by Nirenberg and was proved by Osserman [Oss59]. This is Osserman’s theorem, which says
that the image of the Gauss map of a complete non-flat minimal surface is dense in S2. Later,
Xavier [Xav81] drastically improved the result and proved that the Gauss map can omit at most
6 points. Fujimoto [Fuj88] then proved the optimal result that the Gauss map can omit at most
4 points. Fujimoto’s result is optimal in the sense that the value 4 is taken when M is a Scherk
surface. Actually, Voss [Vos64] showed that given any q ≤ 4 points on S2, there is a complete
minimal surface whose Gauss map omits exactly those q points.

There has been stronger results conditioned on the total curvature of M . Osserman [Oss64]
proved that if M is non-flat and has finite total curvature, then its Gauss map can omit at most
3 points. Weitsman and Xavier [WX87] proved that if such M has total curvature > −16π, then
its Gauss map can omit at most 2 points. Fang [Fan93] improved Weitsman and Xavier’s result
to complete non-flat minimal surfaces with total curvature > −20π. It is still open whether a
complete non-flat minimal surface with finite total curvature can have Gauss map omit exactly 3
points. In infinite total curvature case, Mo and Osserman [MO90] proved that if M has infinite
total curvature, then its Gauss map can take at most 4 points a finite number of times.

In this expository paper we will review Osserman’s proof of Nirenberg conjecture, Fujimoto’s
theorem, and Voss’ theorem.

2 Preliminaries

A (regular) minimal surface M is an isometric immersion I : Ω → R3 where Ω is a Riemann
surface, and I is harmonic in each coordinate. Some authors use a definition where I is not
necessarily an immersion. We assume I is an immersion so that M is regular.

2.1 Enneper-Weierstrass representation

Theorem 1 (Enneper-Weierstrass) A simply connected minimal surface M determines, and is
uniquely (up to translation in R3) determined by the Enneper-Weierstrass representation (f, g),
where:
• f : Ω→ C is holomorphic;
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• g : Ω→ C is meromorphic;
• when g(z) 6=∞, f(z) 6= 0.
• when g has a pole of order k ≥ 0 at z ∈ Ω, then f has zero of order exactly 2k at z.

(The domain Ω is implicit in the Enneper-Weierstrass representation.)

Proof Assume given f, g satisfying the conditions. Let φ1 = 1
2(1 − g2)f , φ2 = i

2(1 + g2)f ,
φ3 = fg. Choose some point (x1, x2, x3) ∈ R3. Let Ii = xi + Re

∫ z
0 φi. Then we can check that

I = (I1, I2, I3) gives a conformal harmonic immersion, i.e. a minimal surface. Note that for I to
be a immersion, we need

∑
1≤i≤3 |φi|2 6= 0, which is equivalent to the last two conditions on (f, g)

in the statement of the theorem.
Given M , we can use I1, I2, I3 to uniquely recover φ1, φ2, φ3. Let f = φ1 − iφ2, g = φ3

φ1−iφ2 .
We can check that (f, g) satisfies the requirements.

Also, we can check that the above two maps are inverse to each other, and finish the proof.�

The Enneper-Weierstrass representation has many interesting properties. We can derive im-
mediately from the definitions the following properties.

Proposition 2 LetM be a simply connected minimal surface and (f, g) be its Enneper-Weierstrass
representation. Then
(1) g is just the Gauss map if we identify C and S2 using the stereographic projection.
(2) the metric on M is given by ds = λ|dz|, where λ = 1

2 |f |(1 + |g|2).

Proof Direct calculation. Omitted. �

2.2 Completeness

A complete surface, roughly speaking, is a surface without boundary. There are two equivalent
definitions.

Definition 3 A complete surface is a surface S where any parametrized geodesic γ : [0, ε) → S
can be extended to a paremetrized geodesic γ̄ : R→ S defined on R.

Definition 4 A divergent curve is a curve γ : [0, a) → S such that for every compact subset
K ⊆ S, there exists t0 ∈ (0, a) such that for all t ∈ (t0, a), γ(t) 6∈ K. A complete surface is a
surface S on which every divergent curve has unbounded length.

Definition 3 agrees with intuition, and Definition 4 is usually easier to use in proofs. In the
following we will use Definition 4 more often.

Some examples of complete surfaces are Rn, Sn, the catenoid. Some examples of non-complete
surfaces are Rn − {0}, Dn = {|z| < 1 : z ∈ Rn}. These examples agree with the intuition.

2.3 Reduce to simply connected case

Let M := I : Ω→ R3 be a minimal surface. Let π : Ω̂→ Ω be the universal covering of Ω. Then
M̂ := I ◦ π : Ω̂ → R3 is a simply connected minimal surface. Universal covering preserves many
good properties. In particular we have the following proposition.

Proposition 5 M is complete if and only if M̂ is complete. The image of the Gauss map of M
equals the image of Gauss map of M̂ .
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Proof M is locally indistinguishable from M̂ . The Gauss map is defined locally, so g(π(x)) = g(x)
for all x ∈M . π is surjective, so g(M) = g(M̂).

Now consider completeness. If M is complete, then for any curve γ : [0, a) → M̂ , π ◦ γ can
be extended to a curve on M defined over R. Universal covering has path lifting property, so this
gives an extension of γ to a curve on M̂ defined over R. So M̂ is complete.

Conversely, assume M̂ is complete, then any curve γ : [0, a)→M can be lifted to M̂ , extended
to a curve on M̂ defined over R, and then projected back to M . So M is complete. �

As we focus on Gauss maps of complete minimal surfaces, we can assume that our surface
is simply connected, so that we can apply the uniformization theorem. We have the following
proposition.

Proposition 6 Let M := I : Ω→ R3 be a simply connected minimal surface. Then Ω is confor-
mally equivalent to the complex plane C or the open unit disk D.

Proof By the uniformization theorem, Ω is conformally equivalent to C, D, or the Riemann
sphere C. For the sake of contrary, assume Ω is conformally equivalent to C. Then Ω is compact.
However there is no compact minimal surface in R3. �

3 Osserman’s Theorem

In this section we prove Osserman’s theorem, which says that the Gauss map of a complete
minimal surface cannot omit a nonempty open set in S2.

By definition of completeness and properties of Enneper-Weierstrass representation, we see
that for any divergent curve γ on a complete minimal surface M with Enneper-Weierstrass repre-
sentation (f, g), we have

∫
γ |f |(1 + |g|2)|dz| =∞. However, if the factor 1 + |g|2 is removed, this

is not necessarily true.

Lemma 7 Let f : D → C be a holomorphic function that omits 0 (where D is the open unit disk).
Then there exists a divergent curve γ such that

∫
γ |f ||dz| <∞.

Proof Define F (z) =
∫ z

0 f(ζ)dζ. For θ ∈ [0, 2π), define γθ to be the path that lifts the path
t 7→ teiθ, i.e. γθ(0) = 0 and F (γθ(t)) = teiθ. This lifting exists because f omits 0. Let tθ be the
maximum value such that γθ is defined on [0, tθ).

We prove that there exists some θ such that tθ <∞. Assume that such θ does not exist. Then
we can define G : C → D as G(0) = 0, G(teiθ) = γθ(t). Then F (G(teiθ)) = F (γθ(t)) = teiθ. So
F ◦ G = id. By inverse function theorem, G is a holomorphic function. However, G : C → D is
bounded, so is constant by Liouville’s theorem. This contradicts with that F ◦G = id.

So there exists some θ such that tθ <∞. Fix one such θ. Then γθ : [0, tθ)→ D is a divergent
curve because limt→tθ |γθ(t)| = 1. Then∫

γθ

|f ||dz| =
∫ tθ

0
|f(t)γ′θ(t)|dt =

∫ tθ

0
|(F ◦ γθ)′(t)|dt = tθ <∞.

We are done. �

Now we prove Osserman’s theorem.
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Theorem 8 (Osserman) The Gauss map of a complete non-flat minimal surface cannot omit
an nonempty open set.

Proof LetM = I : Ω→ R3 be a complete non-flat minimal surface and with Enneper-Weierstrass
representation (f, g) such that g omits a nonempty open set in S2. We can assume that g(M)
omits a neighborhood of ∞. Then g is bounded.

By the discussion in section 2, we can assume that M is simply connected. By Proposition 6,
we can assume that Ω = C or Ω = D.

When Ω = C, g(M) is bounded. However g ◦ I : C→ C is holomorphic. By Picard theroem,
g(M) must be constant, which means that M is flat. Contradiction.

Now assume Ω = D. g(M) is bounded, so f is nowhere zero (becauze g does not have pole).
By completeness, for any divergent curve γ, we have

∫
γ |f |(1 + |g|2)|dz| = ∞. |g| is bounded, so

this means that
∫
γ |f ||dz| =∞. However, this contradicts with Lemma 7. �

Remark We assume throughout the paper that M is regular. In non-regular case, Osserman’s
theorem no longer holds. Actually, for arbitrary small open set U in S2, we can construct a non-
regular complete non-flat minimal surface whose Gauss map has image in U . For the construction,
see Dierkes, Hildebrandt, and Sauvigny [DHS10], pp. 193.

Remark Osserman’s theorem easily implies Bernstein’s theorem.

Theorem 9 (Bernstein) A minimal graph over R2 in R3 is flat.

Proof Such a minimal graph must be complete. The image of the Gauss map is contained in half
of S2, so cannot be dense. Using 8 we get the desired result. �

4 Fujimoto’s Theorem

In this section we prove Fujimoto’s theorem. We will follow the proof in Dierkes, Hildebrandt,
and Sauvigny [DHS10], section 3.7.

For the case Ω = C, the proof is the same. For the case Ω = D, we construct a divergent curve
with finite length. The construction is in some sense similar to the construction in Osserman’s
theorem. The following lemma is the core lemma which will be used to prove the constructed
curve has finite length.

Lemma 10 Let DR be the open disk of radius R. For any ε, η satisfying 0 < 4η < ε < 1, there
exists B > 0 such that for any holomorphic function g : DR → C which omits α1, . . . , α4, we have

(1 + |g|2)
3−ε
2

∏
1≤j≤4

|g − αj |η−1|g′| ≤ BR

R2 − |z|2
.

Proof Let Ω = C\{α1, . . . , α4}. Let Ω̂ be its universal cover. Then Ω̂ is a Riemann surface
conformally equivalent to the open unit disk D. By pulling back the Poincaré metric on Ω̂, we
get a metric ds = ρ|dw| on Ω whose Gauss curvature is −1.

Then we know that as w → αj we have

ρ(w) ∼ Cj
|w − αj | log |w − αj |
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for some nonzero constant C. Also, as w →∞, we have

ρ(w) ∼ C0

|w| log |w|

for some nonzero constant C. (See Nevanlinna [1] pp. 259-260 and 250.)
Now consider the function ψ : Ω→ C be defined as

ψ(w) = (1 + |w|2)
3−ε
2 ρ(w)−1

∏
1≤j≤4

|w − αj |η−1.

From the previous approximations of ρ, we see that as w → αj ,

ψ(w) ∼ C ′j |w − αj |η log |w − αj | ∼ 0,

and when w →∞,
ψ(w) ∼ C ′0|w|4η−ε log |w| ∼ 0.

So ψ is bounded on some neighborhood of ∞ and α1, . . . , α4. However, Ω minus these neighbor-
hood is compact, so ψ is bounded. Say ψ ≤ C.

Now consider g : DR → Ω. There exists a function G : DR → D such that the composition

DR
G−→ D −→ Ω̂

π−→ Ω

equals g (where the second map is the map defining a conformal equivalence between D and Ω̂).
Now consider the map G◦τ : D → D where τ : D → DR is the conformal rescaling map. Applying
Schwartz-Pick theorem, we get that

ρ(g(z))|g′(z)| ≤ 2R

R2 − |z|2
.

Multiplying this inequality by the bound on ψ, we get the desired result. �

Theorem 11 (Fujimoto) The Gauss map of a complete non-flat minimal surface cannot omit
5 points.

Proof Let M := I : Ω → R3 be a non-flat complete minimal surface with Enneper-Weierstrass
representation (f, g) where g omits (at least) 5 points in S2. As before, we can assume Ω = C or
Ω = D.

When Ω = C, g is a holomorphic function C → C which omits (at least) 5 points. Picard
theorem says that g must be constant, and therefore M is flat. So we can assume Ω = D.

Now assume g omits distinct points α1, . . . , αq ∈ C where q = 5. By changing coordinates we
can assume that αq =∞. We will construct a divergent curve with finite length onM , and derive
a contradiction with that M is complete.

Let Σ = {g′(z) = 0 ∈ Ω}. Choose numbers ε, η such that 0 < 4η < ε < 1. Let p = 2
3−ε . Define

u : Ω\Σ→ C as

u(w) = (
1

2
f(w))

1
1−p

∏
1≤j≤4

(g(w)− αj)
p(1−η)
1−p (g′(w))

− p
1−p .

(This u has similar function as f in Lemma 7. However here f is already used for the first
component of the Enneper-Weierstrass representation, so we call this function u.)
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Let B̂ be the universal covering of B = Ω\Σ with projection map π : B̂ → B. Define
F̂ : Ω̂→ C as F̂ (w) =

∫ w
0 u(π(ζ))dζ (where 0 is a point we pick on Ω̂). Then we can find a largest

R such that we have a inverse Ĝ : DR → B̂ of Ĝ, i.e. F̂ ◦ Ĝ = id. By Liouville’s theorem R must
be finite. There exists a singular point z0 ∈ ∂DR of Ĝ. Define G : DR → B as G = π ◦ Ĝ.

From the definitions, we can see that u(G(z)) = 1
G′(z) . So for w = G(z), we have

|u(w)| = 1

2
|f(w)|

∏
1≤j≤4

|g(w)− αj |p(1−η)|g′(w)|−p|u(w)|p

=
1

2
|f(G(z))|

∏
1≤j≤4

|g(G(z))− αj |p(1−η)|(g ◦G)′(z))|−p|G′(z)|p|u(w)|p

=
1

2
|f(G(z))|

∏
1≤j≤4

|g(G(z))− αj |p(1−η)|(g ◦G)′(z))|−p

With this setup we can define our curve. Define γ∗ : [0, 1) → DR as γ∗(t) = tz0. Define
γ : [0, 1)→M as γ = G ◦ γ∗. We first prove that γ has finite length.

L(γ) =
1

2

∫
γ
|f |(1 + |g|2)|dw|

=
1

2

∫
γ∗
|f ◦G|(1 + |g ◦G|2)|dw

dz
||dz|

=
1

2

∫
γ∗
|f ◦G|(1 + |g ◦G|2)|u(w)|−1|dz|

=

∫
γ∗
|1 + |g ◦G|2|

∏
1≤j≤4

|g ◦G− αj |p(η−1)|(g ◦G)′|p|dz|

Now apply Lemma 10 (using g ◦G as g in lemma). We get that

L(γ) ≤
∫
γ∗

(
BR

R2 − |z|2
)p|dz| <∞.

(Recall that p = 2
3−ε <

2
3 .)

It remains to prove that γ is divergent. Assume the contrary. Then there exists a compact
set K ⊆ M such that there exists t0 such that for t > t0, γ(t) ∈ K. So there exists a sequence
{tn} approaching 1 such that γ(t) approaches some point w0 ∈ K.

Assume we can choose w0 such that w0 ∈ Ω\Σ. Then u(w0) 6= 0. (f is nowhere zero because
g is holomorphic (and by properties of the Enneper-Weierstrass representation).) Choose a lifting
w′0 ∈ B̂ of w0. Then there exists an open neighborhood of w′0 such that F̂ is invertible. Say the
invert is Ĝ′. Then

F̂ (w′0) = lim
n→∞

F̂ (Ĝ′(tnz0)) = lim
n→∞

tnz0 = z0.

So we can use Ĝ′ to extend Ĝ to a neighborhood of z0. However this contradicts with the definition
of z0. So w0 6∈ Ω\Σ.

So all possible w0 are in Σ. Σ is discrete, so there exists w0 ∈ Σ such that limt→1 γ(t) = w0.
g′(w0) = 0, so the power expansion of g′ at w0 has terms of exponent ≥ 1. So the power expansion

6



of (g′)
p

1−p at w0 has terms of exponent > 2. ( p
1−p = 2

1−ε > 2.) So we have

R =

∫
γ∗
|dz| =

∫
γ
|u(w)||dw| > C

∫
γ
|w − w0|−2|dw| =∞

where C is some positive constant. However we know that R <∞. So there is contradiction.
We are done with the proof. �

Remark Essentially the same proof shows that given a (not necessarily) minimal surface M
whose Gauss map omits at most 5 points α1, . . . , α5, then there exists a positive constant C
depending only on α1, . . . , α5 such that K(p) ≤ C

d(p)2
, where K(p) is the Gauss curvature at p and

d(p) is the distance from p to the boundary of M .

Remark The proof of Theorem 11 is used in the proof of Mo and Osserman’s theorem [MO90],
which says that a complete non-flat minimal surface whose Gauss map takes 5 points finitely
many times has finite curvature.

Assume such M exists, then we can find a nonempty compact set D such that the Gauss map
restricted to D omits 5 points. In the proof of Theorem 11 we essentially defined a new metric on
B = Ω\Σ and proved that B is complete with this metric. Replacing B with (Ω\Σ) ∪D, we can
prove that (Ω\Σ) ∪ D is complete with the defined metric. This then helps us bound the total
curvature on (Ω\Σ) ∪D and then on M .

5 Voss’ Theorem

In this section we prove Voss’ theorem on constructing complete minimal surfaces whose Gauss
map omits given points.

Theorem 12 (Voss) Given any q ≤ 4 distinct points α1, . . . , αq ∈ C, there exists a complete
minimal surface whose Gauss map omits exactly α1, . . . , αq.

Proof By changing coordinate we can assume αq = ∞. Let Ω = C\{α1, . . . , αq}, π : Ω̂ → Ω be
the universal covering of Ω. Define f : Ω̂→ C as

f(z) =
π′(z)∏

1≤i≤q−1 |π(z)− αi|
.

Let g : Ω̂ → C as g(z) = π(z). f is nowhere zero and g is holomorphic, so (f, g) satisfies the
properties in Proposition 1. So (f, g) determines (up to translation in R3) a minimal surface M̂ .
Clearly, by definition, the Gauss map of M̂ (i.e. g) omits exactly the points α1, . . . , αq. We only
need to prove that M̂ is complete.

One thing to note that is for x ∈ Ω̂, f(x) and g(x) only depends on π(x). So f and g can be
restricted to Ω. Let us denote them as fΩ : Ω→ C and gΩ : Ω→ C. Then

fΩ(z) =
1∏

1≤i≤q−1 |z − αi|

and gΩ(z) = z. This (fΩ, gΩ) gives a metric on Ω defined as ds2 = 1
4 |fΩ|2(1 + |gΩ|2)2|dz|2. So this

gives a Riemann surface M . (Note that this does not necessarily give a minimal surface structure
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on M .) The completeness part of Proposition 5 holds for non-minimal surfaces, so we only need
to prove that M is complete.

Let γ : [0, a)→M be a divergent curve. Then

L(γ) =
1

2

∫
γ
|fΩ|(1 + |gΩ|2)|dz|

=
1

2

∫
γ

1 + |z|2∏
1≤i≤q−1 |z − αi|

|dz|

Now we consider the limit points of γ. Consider the compact set K defined as C −
⋃

1≤i≤q Ui,
where Ui is a small enough neighborhood of αi such that Ui ∩ Uj = ∅ for i 6= J . By definition
of completeness, this means that there exists t0 ∈ [0, a) such that for t ∈ (t0, a), γ(t) 6∈ K. This
means that γ(t) will be restricted in some small neighborhood of a point in {α1, . . . , αq}. By
restricting the neighborhood to be smaller and smaller, we can see that that point is the unique
limit point of γ, i.e. limt→a γ(t) = αj for some 1 ≤ j ≤ q.

If j = q, then limt→a γ(t) =∞. Then

1 + |z|2∏
1≤i≤q−1 |z − αj |

∼ C

|z|q−3

as t→ a, for some positive constant C. So L(γ) =∞. (Note that q ≤ 4 is used crucially here.)
If j < q, then as t→ a, we have

1 + |z|2∏
1≤i≤q−1 |z − αj |

∼ C

|z − αj |

for some positive constant C. Again we get L(γ) =∞.
So any divergent curve on M has infinite length. So M is complete. By the above discussion,

M is a complete minimal surface whose Gauss map omits the given points α1, . . . , αq. �
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