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1. Introduction

In this expository paper we discuss numerical criteria for ampleness and nefness,
including Nakai-Moishezon criterion for ampleness, Kleiman’s theorem on nefness,
and Kleiman’s criterion for ampleness. These criteria are based on intersection
theoretic properties, which are invariant under numerical equivalences, thus are
called “numerical criteria”. The main references are Lazarsfeld [Laz04] Chapter 1
and Vakil [Vak] Chapter 20.

Throughout this paper, X is a projective scheme over a field k. Although almost
all results hold for proper schemes in general, we focus on the projective case because
the proofs are easier.

2. Basics of ampleness

We recall some basic definitions and properties.

Definition 2.1. A line bundle L on X is called

(1) base-point-free if it is generated by global sections.
(2) very ample if there exists a closed immersion i : X ↪→ PN for some positive

integer N such that L = i∗OPN (1).
(3) ample if L⊗m is very ample for some positive integer m.

The Cartan-Serre-Grothendieck theorem is a cohomological criteria for ample-
ness.

Theorem 2.2 (Cartan-Serre-Grothendieck theorem, [Laz04] Theorem 1.2.6). Let
L be a line bundle on X. The following are equivalent:

(1) L is ample.
(2) For any coherent sheaf F on X, we have Hi(X,F ⊗ L⊗m) = 0 for i > 0

and m large enough.
1
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(3) For any coherent sheaf F on X, F ⊗ L⊗m is generated by global sections
for m large enough.

(4) L⊗m is very ample for m large enough.

The proof is omitted.

Proposition 2.3 ([Vak] Exercise 16.6.C). If L1 is very ample and L2 is base-point-
free, then L1 ⊗ L2 is very ample.

Proof. By assumption, we have a closed immersion i : X → PN such that L1 =
i∗OPN (1). L2 is generated by global sections, so we have a morphism j : X → PM

(not necessarily an immersion) such that L2 = j∗PPN (1). Let S : PN × PM →
PNM+N+M be the Segre embedding and ∆ : X → X × X be the diagnoal map.
Clearly L1 ⊗ L2 = (S ◦ (i × j) ◦ ∆)∗OPNM+N+M (1). We only need to prove that
S ◦ (i × j) ◦ ∆ is a closed immersion. S is known to be a closed immersion. Let
π : PN → Spec k be the structure morphism. Then (id× π) ◦ (i× j) ◦∆ = i, which
is a closed immersion. id× π is separated, so (i× j) ◦∆ is a closed immersion. □

Corollary 2.4 ([Vak] Exercise 16.6.E). If L1 is ample and L2 is any line bundle,
then L⊗m

1 ⊗ L2 is very ample for large enough m.

Proof. Take some n > 0 such that L⊗n
1 is very ample. By Theorem 2.2, L⊗(m−n)

1 ⊗
L2 is base-point-free for m large enough. By Proposition 2.3, L⊗m

1 ⊗ L2 is very
ample for m large enough. □

Corollary 2.5 ([Vak] Exercise 16.6.F). Any line bundle L can be written as L1⊗L∨
2

where L1 and L2 are very ample.

Proof. Take any ample line bundle L3 and m large enough. Let L2 = L⊗m
3 and

L1 = L2 ⊗L. By Corollary 2.4 and Theorem 2.2, when m is large enough, both L1

and L2 are very ample. □

The following proposition helps us reduce to the case X is integral.

Proposition 2.6 ([Laz04] Proposition 1.2.16). Let L be a line bundle on X.

(1) L is ample on X iff Lred is ample on Xred.
(2) L is ample on X iff for every irreducible component Xi of X, L|Xi is ample

on Xi.

Proof. The only if parts are easy. We prove the if parts.
(1): Assume Lred is ample on Xred. Let F be an arbitrary coherent sheaf on X.

Let N be the nilradical of OX . Say N r = 0. We have a filtration

F ⊇ NF ⊇ · · · ⊇ N rF = 0.

We perform induction on j from j = r to j = 0 to prove thatHi(X,N jF⊗L⊗m) = 0
for i > 0 and m large enough. The base case j = r is trivial.

The quotients N jF/N j+1F are coherent OXred
-modules. Lred is ample, so

Hi(X, (N jF/N j+1F) ⊗ L⊗m) = 0 for i > 0 and m large enough. We have an
exact sequence 0 → N j+1F → N jF → N jF/N j+1F → 0. Tensoring with L⊗m,
taking Hi, and applying induction hypothesis, we see that Hi(X,N jF ⊗L⊗m) = 0
for i > 0 and m large enough.

(2): By (1), assume X is reduced. Let X1, . . . , Xr be the irreducible components
of X. Assume that L is ample on L1, · · · ,Lr. We apply induction on r.
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Let I be the ideal sheaf of X1. Then we have an exact sequence

0 → IF → F → F/IF → 0.

IF and F/IF are supported on X2 ∪ · · · ∪Xr. So Hi(X,−⊗L⊗m) of them are 0
for i > 0 and m large enough, by induction hypothesis. Applying Hi to the above
short exact sequence, we see that Hi(X,F ⊗ L⊗m) = 0 for i > 0 and m large
enough. □

3. The intersection product

Definition 3.1. Let L1, . . . ,Ln be line bundles on X and F be a coherent sheaf on
X with dimSupp F ≤ n. Define the intersection product of L1, . . . ,Ln with
F to be

(L1 · · · Ln · F) =
∑

S⊆{1,...,n}

(−1)|S|χ(X,F ⊗
⊗
i∈S

L∨
i ).

If F = OV is the structure sheaf some closed subscheme V , then we write (L1 · · · Ln ·
V ). If all Li’s are the same, say L, then we write (Ln · F).

Proposition 3.2 ([Vak] Exercise 20.1.C). If D is an effective Cartier divisor that
does not contain any associated point of F , then

(L1 · · · Ln−1 · O(D) · F) = (L1 · · · Ln−1 · F|D).

Proof. Under the assumption, we have an exact sequence

0 → F(−D) → F → F|D → 0.

For any line bundle L, by tensoring we get an exact sequence

0 → F(−D)⊗ L → F ⊗ L → F|D ⊗ L → 0.

Therefore χ(F ⊗ L) = χ(F(−D)⊗ L) + χ(F|D ⊗ L). By expanding the definition
of intersection products we get the desired result. □

Hi of quasi-coherent sheaves are preserved under base field extension, so the
intersection product is preserved under base field extension ([Vak] Exercise 20.1.D).
Using this, we can always assume that we are working with k algebraic closed. In
this case, for any very ample line bundle L and coherent sheaf F , there is an effective
Cartier divisor D such that O(D) = L and D misses the associated points of F
([Vak] Exercise 18.6.A).

Proposition 3.3 ([Vak] Proposition 20.1.3). Fix n and coherent sheaf F such
that dimSupp F ≤ n. The intersection product (L1 · · · Ln · F) is symmetric and
multilinear in L1, . . . ,Ln.

Proof. Symmetricity is clear. For multilinearity, we perform induction on n. When
n = 0 the result is trivial.

Now assume n > 0 and that multilinearity is true for n′ < n. Consider the
formula

A = (L1 · L2 · · · Ln · F) + (L′
1 · L2 · · · Ln · F)− ((L1 ⊗ L′

1) · L2 · · · Ln · F)

= (L1 · L′
1 · L2 · · · Ln · F).

The equality is by expanding the definition of intersection products.
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If Ln is very ample, then we can choose an effective Cartier divisor D such that
O(D) = Ln and D misses associated points of F . In this case, by Proposition 3.2,
A = (L1 · L′

1 · L2 · · · Ln−1 · F|D). Therefore A = 0 by induction hypothesis.
By symmetricity, if L1 is very ample, we have A = 0. Now let A and B be two

arbitrary very ample line bundles, and take L1 = A, L2 = B ⊗A∨. We get

(A · L2 · · · Ln · F) + ((B ⊗A∨) · L2 · · · Ln · F)− (B · L2 · · · Ln · F) = 0.

The first term and the last term are linear in Ln, so the second term is also linear
in Ln. By Corollary 2.5, any line bundle L can be written as B ⊗ A∨. Therefore
(L · L2 · · · Ln · F) is linear in Ln. □

Remark 3.4. The proof of the proposition says that (L1 · · · Ln·F) = 0 if dimSupp F <
n. Therefore the intersection product is interesting only when n = dimSupp F .

Using intersection products we can define numerical equivalence.

Definition 3.5. Two line bundles L1, L2 are numerically equivalent (L1 ·C) =
(L2 · C) for every curve C ⊆ X.

Proposition 3.6 ([Vak] Proposition 20.1.4). The intersection product (L1 · · · Ln ·
F) only depends on the numerical equivalence classes of the Li’s.

Proof. We prove that if L1 and L′
1 are numerically equivalent, then

(L1 · L2 · · · Ln · F) = (L′
1 · L2 · · · Ln · F).

By Proposition 3.3 and Corollary 2.5, we can assume L2, . . . ,Ln are very ample.
By Proposition 3.2, we can remove one Li at a time. Therefore we only to prove
that (L1 · G) = (L′

1 · G) when dim supG ≤ 1. This clearly follows from that L1 and
L′
1 are numerically equivalent. □

Proposition 3.7 (Asymptotic Riemann-Roch, [Vak] Exercise 20.1.I). Let L be a
line bundle and F be a coherent sheaf with dimSupp F ≤ n. Then χ(X,L⊗m ⊗F)

is a polynomial in m with degree ≤ n and the coefficient of mn is (Ln·F)
n! .

Proof. By Remark 3.4, we have (L∨(n+1) · (F ⊗L⊗i)) = 0 for all i ≥ 0. Expanding
the definition, we get∑

0≤k≤n+1

(−1)k
(
n+ 1

k

)
χ(X,F ⊗ L⊗i+k) = 0.

Let ∆ be the operator that maps a function f : N → Z to m 7→ f(m+1)−f(m).
Let F : N → Z be defined as m 7→ χ(X,F ⊗ L⊗m). The above formula says that
∆n+1F = 0. Therefore F (m) is a polynomial with degree ≤ n.

The coefficient of mn in F (m) is (∆nF )(0)
n! . We have

(∆nF )(0) =
∑

0≤k≤n

(−1)n−k

(
n

k

)
χ(X,F ⊗ L⊗k) = (−1)n(L∨n · F) = (Ln · F).

□

Remark 3.8. When X is a complex variety, the intersection product (L1 · · · Ln ·V )
can be defined alternatively as follows.

Consider the analytificationsXan and (Li)an. We have the Chern class c1((Li)an) ∈
H2(Xan,Z). Taking cup product, we get c1((L1)an) · · · c1((Ln)an) ∈ H2n(Xan,Z).
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V gives rise to its fundamental class [V ] ∈ H2n(Xan,Z). Taking cap product, we
get (c1((L1)an) · · · c1((Ln)an)) ∩ [V ] ∈ H0(Xan,Z) = Z.

This is the definition of intersection products used in [Laz04].

4. Nakai-Moishezon criterion for ampleness

Nakai-Moishezon criterion is an important numerical criterion for ampleness.
First we prove a proposition used in the proof of the Nakai-Moishezon criterion.

Proposition 4.1 ([Laz04] Corollary 1.2.15). Let L be a base-point-free line bundle
and i : X → PN be the morphism defined by L. The following are equivalent:

(1) L is ample.
(2) i is finite.
(3) (L · C) > 0 for every curve C ⊆ X.

Proof. (1) ⇒ (3): By linearity we can replace L with L⊗m for some m large enough
and assume that L is very ample. Then (L·C) is the degree of C in the embedding
defined by L and is positive.

(2) ⇒ (1): We have L = i∗OPN (1) and pullbacks of ample line bundles along
finite morphisms between projective schemes are ample.

(3) ⇒ (2): If i is not finite, then some curve C ⊆ X is mapped to a point by i,
and we have (L · C) = 0. □

Theorem 4.2 (Nakai-Moishezon criterion, [Laz04] Theorem 1.2.23). A line bundle
L on a projective k-scheme X is ample iff (LdimV ·V ) > 0 for every closed subvariety
V ⊆ X.

Proof. Assume L is ample. We prove that (LdimV · V ) > 0 for every closed sub-
variety V ⊆ X. By multilinearity of the intersection product, we can assume L is
very ample. Then (LdimV · V ) is the degree of V in the embedding defined by L
and is positive.

Conversely, assume (LdimV · V ) > 0 for every closed subvariety V ⊆ X. The
proof is in several steps.

Step 1. By Proposition 2.6 we can assume that X is integral. By applying
induction on dimension, we can assume that L is ample on any closed subvariety
of X that is not equal to X.

Step 2. We prove that H0(X,L⊗m) ̸= 0 for m large enough. Using Corollary
2.5, write L = A ⊗ B∨ where A and B are very ample. Write A = O(A) and
B = O(B). From the exact sequence 0 → O(−A) → O → O|A → 0, we have an
exact sequence

0 → L⊗m(−B) → L⊗(m+1) → L⊗(m+1)|A → 0.

From the exact sequence 0 → O(−B) → O → O|B → 0, we have an exact sequence

0 → L⊗m(−B) → L⊗m → L⊗m|B → 0.

By induction hypothesis, L is proper on every closed subvariety of X not equal to
X. So for m large enough, we have Hi(X,L⊗(m+1)|A) = 0 and Hi(X,L⊗m|B) = 0
for all i ≥ 1. Taking Hi on the above two exact sequences, we get

Hi(X,L⊗(m+1)) = Hi(X,L⊗m(−B)) = Hi(X,L⊗m)

for all i ≥ 2.
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By asymptotic Riemann-Roch (Proposition 3.7), χ(X,L⊗m) is a polynomial in

m with degree dimX and top degree coefficient (LdimX ·X)
(dimX)! > 0. So χ(X,L⊗m) goes

to ∞ as m goes to ∞.
On the other hand, χ(X,L⊗m) = h0(X,L⊗m) − h1(X,L⊗m) + constant for m

large enough. So h0(X,L⊗m) goes to ∞ as m goes to ∞. We can replace L with
L⊗m for some large enough m and assume that L = O(D) where D is an effective
Cartier divisor.

Step 3. We prove that L⊗m is base-point-free for m large enough. D is effective,
so L⊗m is generated by global sections away from Supp D. We only need to prove
that L⊗m is generated by global sections in D.

Consider the exact sequence

0 → L⊗(m−1) → L⊗m → L⊗m|D → 0.

By induction hypothesis, L⊗m|D is ample. So H1(X,L⊗m|D) = 0 for m large
enough. Taking cohomology of the above exact sequence, we see thatH1(X,L⊗(m−1)) →
H1(X,L⊗m) is surjective for m large enough. However, H1(X,L⊗m) is finite di-
mensional. So H1(X,L⊗(m−1)) → H1(X,L⊗m) must be an isomorphism for m
large enough.

Considering again the cohomology long exact sequence, we see thatH0(X,L⊗m) →
H0(X,L⊗m|D) is surjective form large enough. By induction hypothesis,H0(X,L⊗m|D)
is base-point-free. So for every point in D, there is a global section of L⊗m that
does not vanish at that point. Therefore L⊗m is generated by global sections in D.

Step 4. Apply Proposition 4.1. □

Corollary 4.3 ([Laz04] Corollary 1.2.24). Ampleness of line bundles depends only
on the numerical equivalence class.

Proof. By Proposition 3.6. □

5. Q-line bundles and R-line bundles

In the following, tensor products of line bundles (resp. Q- or R-line bundles) are
often written as additions. For example, L1 ⊗L2 is written as L1 +L2 and L⊗m is
written as mL.

Recall that Pic(X) is the abelian group of line bundles.

Definition 5.1. A Q-line bundle is a finite Q-linear combination of line bundles.
The Q-vector space of Q-line bundles is PicQ(X) = Pic(X)⊗Z Q.

An R-line bundle is a finite R-linear combination of line bundles. The R-vector
space of R-line bundles is PicR(X) = Pic(X)⊗Z R.

Recall that two line bundles L1, L2 are called numerically equivalent if (L1 ·C) =
(L2 ·C) for every curve C ⊆ X. Numerical equivalence is preserved under addtion.
Denote N1(X) to be the abelian group of numerical equivalence classes of line
bundles.

Remark 5.2. In [Laz04], N1(X) is called the Néron-Severi group, which often
refers to the abelian group of algebraic equivalence classes of line bundles.

Definition 5.3. We extend several notions for line bundles to Q- and R-line bun-
dles.
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(1) Let L1, . . . ,Ln be Q- (resp. R-) line bundles and F be a coherent sheaf
with dimSupp F ≤ n. The intersection product (L1 · · · Ln ·F) is defined
by extending by multilinearity.

(2) Two Q- (resp. R-) line bundles L1, L2 are called numerically equivalent
if (L1 ·C) = (L2 ·C) for every curve C ⊆ X. Define N1

Q(X) (resp. N1
R(X))

to be the Q- (resp. R-) vector space of numerical equivalence classes of Q-
(resp. R-) line bundles. We have N1

Q(X) = N1(X) ⊗Z Q and N1
R(X) =

N1(X)⊗Z R.
(3) A Q- (resp. R-) line bundle is called ample if it can be written as a

nonempty finite positive Q- (resp. R-) linear combination of ample line
bundles.

With essentially the same proof as the proof of Proposition 3.6, we can prove
that the intersection product for Q- (resp. R-) line bundles only depends on the
numerical equivalence classes.

Sum of two ample line bundles is ample. If nL is ample then L is ample. There-
fore the notion of ampleness for Q-line bundles agrees with the notion of ampleness
for line bundles. If a positive R-linear combination of line bundles L1, . . . ,Ln is a
line bundle, then it is a positive Q-linear combination of L1, . . . ,Ln. Therefore the
notion of ampleness for R-line bundles agrees with the notion of ampleness for line
bundles.

Recall that N1(X) has finite rank by the Néron-Severi theorem. Therefore
N1

Q(X) and N1
R(X) have finite dimension. We can equip N1

Q(X) (resp. N1
R(X))

with the natural topology induced from the usual topology on Q (resp. R).

Proposition 5.4 (Nakai-Moishezon criterion for Q-line bundles, [Laz04] Definition
1.3.6). A Q-line bundle L is ample iff (LdimV · V ) > 0 for every closed subvariety
V ⊆ X.

Proof. mL is a line bundle for some positive integer m. L is ample iff mL is
ample. □

Corollary 5.5 ([Laz04] Definition 1.3.6). Ampleness of Q-line bundles depends
only on the numerical equivalence class.

Therefore ampleness of Q-line bundles is defined in N1
Q(X). The set of numerical

equivalence classes of ample Q-line bundles is convex in N1
Q(X) and is called the

ample cone in N1
Q(X).

Proposition 5.6 ([Laz04] Proposition 1.3.7). The ample cone in N1
Q(X) is open.

Proof. LetA be an ample Q-line bundle and L1, . . . ,Ln be arbitrary Q-line bundles.
We prove that A+

∑
ϵiLi is ample when |ϵi|’s are sufficiently small.

We can assume that A and Li’s are line bundles. By Corollary 2.4, we can choose
m such that mA± Li are ample.

When |ϵi|′s are sufficiently small,

A+
∑

ϵiLi = (1−
∑

mϵi)A+
∑

(mϵiL+ ϵiLi)

is a positive linear combination of ample Q-line bundles, thus is ample. □

Remark 5.7. The Nakai-Moishezon criterion is also true for R-line bundles. How-
ever, this is not immediate from the Theorem 4.2. See [Laz04] Remark 1.3.12.



8 YUZHOU GU

Nevertheless, we can prove many properties of ample R-line bundles without
using the Nakai-Moishezon criterion for R-line bundles.

Proposition 5.8 ([Laz04] Proposition 1.3.13). Ampleness of R-line bundles de-
pends only on the numerical equivalence class.

Proof. We need to prove that if A is an ample R-line bundle and B is a numerically
trivial R-line bundle, then A+B is ample. B can be written as

∑
ciLi where ci ∈ R

and Li’s are line bundles. Note that (Li · C) are integers. That B is numerically
trivial means that

∑
ci(Li ·C) = 0 for all curves C ⊆ X. This is a system of linear

equations in variables ci with integral coefficients, so every solution can be written
as R-linear combinations of integral solutions. This means that B can be written
as an R-linear combination of numerically trivial line bundles. So we can assume
B = rL where L is a numerically trivial line bundle and c ∈ R.

Now A can be written as
∑

ciLi where ci > 0 and Li’s are ample line bundles.
To prove that A + B is ample, we only need to choose some di ∈ R such that∑

cidi = r and prove that Li + diL is ample. So we can assume A is an ample line
bundle.

Therefore we need to prove that A + rL is ample where A is an ample line
bundle, r ∈ R and L is a numerically trivial line bundle. Choose r1, r2 ∈ Q such
that r1 < r < r2. By Corollary 5.5, A+ r1L and A+ r2L are ample. So A+ rL is
also ample. □

Therefore ampleness of R-line bundles is defined in N1
R(X). The set of numerical

equivalence classes of R-line bundles is convex in N1
R(X) and is called the ample

cone in N1
R(X).

Proposition 5.9 ([Laz04] Example 1.3.14). The ample cone in N1
R(X) is open.

Proof. Let A be an ample R-line bundle and L1, . . . ,Ln be arbitrary R-line bundles.
We prove that A+

∑
ϵiLi is ample when |ϵi|’s are sufficiently small. We can assume

that ϵi’s are rational.
Since Li’s are R-linear combinations of line bundles, we can assume that Li are

line bundles. Write A =
∑

ciAi where Ai are ample line bundles and ci > 0.
Choose some c ∈ Q such that 0 < c < c1. Then

A+
∑

ϵiLi = (cA1 +
∑

ϵiLi) + (c1 − c)A1 +
∑
i≥2

ciAi.

cA1 +
∑

ϵiLi is ample by the proof of Proposition 5.6. So RHS is a positive
R-linear combination of ample R-line bundles, which is ample. □

6. Nef line bundles and Kleiman’s theorem

Definition 6.1. An R-line bundle L on X is called numerically effective (nef)
if (L · C) ≥ 0 for all irreducible curves C ⊆ X. The notion of nefness is defined in
the same way for line bundles and Q-line bundles.

Proposition 6.2 ([Laz04] Definition 1.4.1). Nefness of R-line bundles (resp. Q-
line bundles, line bundles) only depends on the numerical equivalence class.

Proof. By definition. □
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Therefore nefness is defined in N1
R(X) (resp. N1

Q(X), N1(X)). The set of nef R-
(resp. Q) line bundles is a convex subset of N1

R(X) (resp. N1
Q(X)), and is called

the nef cone in N1
R(X) (resp. N1

Q(X)).

Theorem 6.3 (Kleiman’s theorem, [Laz04] Theorem 1.4.9). A Q-line bundle L
on a projective k-scheme X is nef iff (LdimV · V ) ≥ 0 for every closed subvariety
V ⊆ X.

Proof. The if part is trivial. We prove the only if part.
Reduce to the case X is integral. Applying induction on n = dimX, we can

assume that (LdimV · V ) ≥ 0 for every closed subvariety V ⊆ X not equal to X.
We prove that (Ln ·X) ≥ 0.

Fix any very ample line bundle A. Consider the function P : R → R defined as
t 7→ ((L+ tA)n ·X). Then

((L+ tA)n ·X) =
∑

0≤k≤n

tk
(
n

k

)
(Ln−k · Ak ·X)

is a polynomial.
(Ln ·X) is the constant term of P (t). For k ≥ 1, the coefficient of tk is

(
n
k

)
(Ln−k ·

Ak ·X). Choose any effective Cartier divisor D with O(D) = A. We get (Ln−k ·
Ak ·X) = (Ln−k · Ak−1 ·D), which is non-negative by induction hypothesis. Also,
(An ·X) > 0. So P (t) is a polynomial with degree n and coefficients of non-constant
terms are positive.

Assume for the sake of contrary that (Ln ·X) < 0. Then there exists a unique
t0 > 0 such that P (t0) = 0. Let Q(t) = (L · (L+ tA)n−1 ·X) and R(t) = (tA · (L+
tA)n−1 ·X). We have P (t) = Q(t) +R(t).

R(t) is a polynomial with non-negative coefficients. Coefficient of tn is (An ·X) >
0, so R(t0) > 0.

Let t1 ∈ Q and t1 > t0. We prove that L + t1A is ample. By Proposition 5.4,
we only need to prove that ((L + t1A)dimV · V ) > 0 for every closed subvariety
V ⊆ X. When V = X, this is true because t1 > t0. Assume V ̸= X. By induction
hypothesis, (LdimV · V ) ≥ 0. So ((L + tA)dimV · V ) is a polynomial in t with
nonegative coefficients. Furthermore, the coefficient of tdimV is (AdimV ·V ), and is
positive because A is very ample. Therefore ((L+ t1A)dimV · V ) > 0.

Now consider Q(t1) = (L · (L + t1A)n−1 · X). L + t1A is ample, so Q(t1) is
c(L · C) for some c > 0 and C effective 1-cycle. So Q(t1) ≥ 0 for all t1 ∈ Q with
t1 > t0. By continuity, Q(t0) ≥ 0.

Then P (t0) = Q(t0)+R(t0) > 0, which contradicts with the definition of t0. □

Corollary 6.4 (Kleiman’s theorem for R-line bundles, [Laz04] Theorem 1.4.9). An
R-line bundle L is nef iff (LdimV · V ) ≥ 0 for every closed subvariety V ⊆ X.

Proof. Choose ample Q-line bundles L1, · · · ,Lr such that they span N1
R(X). This

can be done because of Proposition 5.6. For ϵi > 0, L +
∑

ϵiLi is sum of a nef
R-line bundle with several ample Q-line bundles, which is nef.

The set of sums in the form L +
∑

ϵiLi contains a nonempty open subset of
N1

R(X) whose closure contains L. Therefore we can find a sequence of nef Q-line
bundles that approaches L in N1

R(X).
By Theorem 6.3 and continuity, we see that (LdimV · V ) ≥ 0 for every closed

subvariety V ⊆ X. □
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Proposition 6.5 ([Laz04] Corollary 1.4.10). Let L be an R-line bundle and A be
an ample R-line bundle. L is nef iff L+ ϵA is ample for sufficiently small ϵ > 0.

Proof. The if part is trivial by continuity. For the only if part, we only need to
prove that L+A is ample when L is nef and A is ample.

We first prove the case where L+A is a Q-line bundle. By Proposition 5.4, we
only need to prove that ((L+A)dimV · V ) ≥ 0 for every closed subvariety V ⊆ X.
Write m = dimV . We have

((L+A)m · V ) =
∑

0≤k≤m

(
m

k

)
(Lm−k · Ak · V ).

A is a positive R-linear combination of ample line bundles, so each (Lm−k · Ak · V )
is a positive R-linear combination of (Lm−k · V ′) for some effective (m − k)-cycle
V ′. So (Lm−k · Ak · V ) is nonnegative by Proposition 6.4. When k = m, we have a
summand (Am · V ) which is positive. Therefore ((L+A)dimV · V ) > 0.

Now we consider that case where L+A is not necessarily a Q-line bundle. This
is similar to the proof of Proposition 6.4. Choose ample Q-line bundles L1, . . . ,Lr

such that they span N1
R(X). For ϵi > 0 with |ϵi| sufficiently small, A −

∑
ϵiLi is

ample by Proposition 5.9.
The set of sums in the form L+A−

∑
ϵiLi (with |ϵi| sufficiently small) contains

a nonempty open subset of N1
R(X). Therefore there exists some choice of ϵi such

that L + A −
∑

ϵiLi is a Q-line bundle. We have proven that L + A −
∑

ϵiLi is
ample. So L+A = (L+A−

∑
ϵiLi) +

∑
ϵiLi is also ample. □

Corollary 6.6 ([Laz04] Corollary 1.4.11). Let A be an ample R-line bundle and
L be an arbitrary R-line bundle. Then L is ample iff there exists ϵ > 0 such that
(L·C)
(A·C) ≥ ϵ for every curve C ⊆ X.

Proof. The condition is equivalent to that L − ϵA is nef. The if part is by Propo-
sition 5.9. We prove the only if part. Note that the “sufficently-smallness” of ϵ in
Proposition 6.5 only depends on A. So we can choose ϵ small enough such that
L = (L − ϵA) + ϵA is ample. □

7. Kleiman’s criterion for ampleness

Denote Amp(X) to be the ample cone in N1
R(X) and Nef(X) to be the nef cone

in N1
R(X).

Theorem 7.1 (Kleiman, [Laz04] Theorem 1.4.23). Amp(X) is the interior of
Nef(X) and Nef(X) is the closure of Amp(X).

Proof. Nef(X) is closed by definition and Amp(X) is open by Proposition 5.9.
Clearly Amp(X) ⊆ Nef(X).

By Proposition 6.5, any nef R-line bundle is a limit of ample R-line bundles.
Therefore Nef(X) is the closure of Amp(X).

Now let L be an R-line bundle in the interior of Nef(X). Fix an ample line
bundle A. For ϵ sufficiently small, L − ϵA is nef. Therefore L = (L − ϵA) + ϵA is
ample by Proposition 6.5. □

Definition 7.2. An R-1-cycle is a finite R-linear combination of curves in X.
Define Z1(X)R to be the R-vector space of R-1-cycles on X.
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The intersection product can be extended linearly to R-1-cycles. Two R-cycles
C1, C2 are called numerically equivalent if (L · C1) = (L · C2) for every L ∈
N1

R(X). Define N1(X)R to be the R-vector space of numerical equivalence classes
of R-1-cycles.

By definition, we have a perfect paring (− · −) : N1
R(X) × N1(X)R → R. The

set of all effective R-1-cycles is a cone, and is called cone of curves NE(X). Denote
NE(X) to be the closure of NE(X) in N1(X)R.

Proposition 7.3 ([Laz04] Proposition 1.4.28). NE(X) is the set of R-1-cycles C
that satisfies (L · C) for every L ∈ Nef(X).

Proof. N1(X)R = N1
R(X)∗ via the perfect paring. By Proposition 6.4, Nef(X) is

the dual of NE(X). Therefore NE(X) is the dual of Nef(X). □
Theorem 7.4 (Kleiman’s criterion for ampleness, [Laz04] Theorem 1.4.29). Let L
be an R-line bundle on a projective k-scheme X. The following are equivalent.

(1) L is ample.
(2) (L · C) > 0 for every C ∈ NE(X)\0.
(3) Fix a norm || || on N1(X)R. There exists ϵ > 0 such that (L · C) ≥ ϵ||C||

for every C ∈ NE(X).
(4) Fix a norm || || on N1(X)R. There exists ϵ > 0 such that (L · C) ≥ ϵ||C||

for every curve C ⊆ X.

Proof. (1) ⇒ (2): Assume L is ample. Then (L · C) > 0 for every curve C ⊆ X.
So (L · C) ≥ 0 for C ∈ NE(X) by continuity. Assume that (L · C0) = 0 for some
C0 ∈ NE(X)\0. Choose an arbitrary line bundle L′ such that (L′ · C0) < 0. Then
for arbitrary small ϵ > 0, ((ϵL′ + L) · C0) < 0. So ϵL′ + L is not ample, which
contradicts with Proposition 5.9.

(2) ⇒ (3): Let S be the unit sphere in N1(X)R under the norm || ||. Then
NE(X) ∩ S is compact. So there exists ϵ > 0 such that (L · C) ≥ ϵ for all C ∈
NE(X) ∩ S.

(3) ⇒ (4): Trivial.
(4) ⇒ (1): Choose ample line bundles A1, . . . ,Ar which form a basis of N1

R(X).
Then we have a norm || ||t defined as ||C||t =

∑
|(Ai · C)|. N1(X)R is finite

dimensional, so there exists some c > 0 such that || ||t ≤ c|| ||. Take A =
∑

Ai.
Then A is ample and (Ai · C) = ||C||t ≤ c||C|| for every curve C ⊆ X. By

assumption (L·C)
(C·C) ≥ ϵc−1 for every curve C ⊆ X. By Theorem 7.1 L is ample. □
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