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1. Introduction

Work over C. Consider K0VarC, the Grothendieck ring of varieties. As an
abelian group, K0VarC is generated by isomorphism classes of varieties, modulo
the relation [X] = [Y ] + [U ] where Y is a closed subvariety of X and U = X − Y .
The multiplicative structure is induced by multiplication of varieties. A motivic
measure is a ring homomorphism K0VarC → A for some ring A.

For X a variety, denote Symn(X) to be the n-th symmetric product of X. Define
X’s motivic zeta function to be

ζX(t) =
∑
n≥0

[Symn(X)]tn ∈ 1 + tK0VarC[[t]].

The motivic zeta function was first defined by Kapranov [Kap00]. In that paper,
Kapranov showed that ζX(t) is rational when X is a curve and asked whether ratio-
nality holds in general. Larsen and Lunts [LL03] negatively answered Kapranov’s
question and proved that ζX(t) is not rational when X is a complex surface with
geometric genus ≥ 2. In [LL04], Larsen and Lunts strengthened their result and
showed that when X is a complex surface, ζX(t) is rational iff κ(X) = −∞.

This expository paper reviews the results of [LL04].

2. Rationality of Power Series

Before proving rationality or irrationality results, we need to define what ratio-
nality of power series means. This is actually non-trivial, as we will see in this
section.

Let R be a commutative ring and f ∈ R[[t]]. There are several different notions
of rationality of f .

Definition 2.1. f is called globally rational if there exists g, h ∈ A[t] such that
f is the unique solution to the equation gx = h in A[[t]].

Definition 2.2. f is called determinantally rational if there exists n ∈ N such
that

det


ai ai+1 · · · ai+m

ai+1 ai+1 · · · ai+m+1

· · · · · ·
. . . · · ·

ai+m ai+m+1 · · · ai+2m

 = 0

for large enough i.

Definition 2.3. f is called pointwise rational if for any ring homomotphism
ϕ : A→ K where K is a field, ϕ(f) ∈ K[[t]] is pointwise rational.
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Proposition 2.4. Globally rational implies determinantally rational. Determinan-
tally rational implies pointwise rational. When R is a domain, the three definitions
of rationality agree. In general, pointwise rational does not imply determinantally
rational and determinantally rational does not imply globally rational.

It has been shown by Poonen that K0VarC is not a domain ([Poo02]). So it is
not meaningless to distinguish the three different notions of rationality. All the
results of Larsen and Lunts are in the strongest sense: the rationality results say
that the motivic zeta functions are globally rational, and the irrationality results
say that the motivic zeta functions are not pointwise rational.

3. Rationality Result

In this section we prove the main rationality result in [LL04].

Theorem 3.1 ([LL04], Theorem 3.9). ζX(t) is globally rational when X is a com-
plex surface with κ(X) = −∞.

We go over the proof.

Proposition 3.2. Let X be a variety, Y ⊆ X be a closed subvariety. U = X − Y .
Then

[Symn(X)] =
∑

0≤i≤n

[Symi(Y )][Symn−i(U)].

Corollary 3.3. In the setting of Proposition 3.2, we have ζX(t) = ζY (t)ζU (t). So
if two of ζX(t), ζY (t), ζU (t) are globally (resp. pointwise) rational, then the third
is also globally (resp. pointwise) rational.

We need some results about motivic zeta functiosn of vector bundles.

Lemma 3.4. Let X be a variety and E → X be a Zariski-locally trvial fiber bundle
with fiber F . Then [E] = [X][F ].

The following proposition is by Totaro [Göt03].

Proposition 3.5 ([Göt03], Lemma 4.4). Let X be a variety and E be a vector
bundle over x with rank r. Then [SymnE] = [SymnX]Lrn.

Proof Sketch. First observe that we can assume E is a trivial vector bundle. Then
by trivial induction we can assume r = 1. The main part of the proof is stratifying
SymnX according to the partition of n corresponding to each n-tuple in SymnX
and proving the result on each strata. □

Totaro’s result together with Lemma 3.4 immediately implies the following corol-
lary.

Corollary 3.6. In the setting of Proposition 3.5, we have ζE(t) = ζX(Lrt). In
particular, if ζX(t) is globally (resp. pointwise) rational, then ζE(t) is globally
(resp. pointwise) rational.

By observing that [Pr] = 1 + L+ · · ·+ Lr, we can prove the following result.

Corollary 3.7. Let X be a variety and P → X be a Zariski-locally trivial projective
bundle of rank r. Then ζP (t) = ζX(t)ζX(Lt) · · · ζX(Lrt). In particular, if ζX(t) is
globally (resp. pointwise) rational, then ζP (t) is globally (resp. pointwise) rational.
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Kapranov [Kap00] proved that the motivic zeta functions for curves are rational
in 1 + tMC[[t]], where MC = (K0VarC)L. The invertibility of L is needed because
Kapranov’s proof is based on motivic integration. However, the proof can be easily
modified into a proof for K0VarC.

Theorem 3.8 (Kapranov). ζX(t) is globally rational when X is a curve.

Proof Sketch. By Corollary 3.3, we can assume X is smooth projective. For n ≥
2g − 1, we have a map SymnX → Jac0X which realizes SymnX as a projective
bundle over Jac0X. We also have maps between projective bundles Symn−1X →
SymnX. The complement of the image is a vector bundle over Jac0X. So we have

[Symn+1X]− [SymnX] = [Jac0X]Ln+1−g.

Trivial calculation shows that ζX(t)(1−t)(1−Lt) is a polynomial of degree ≤ 2g. □

By Kapranov’s theorem and Corollary 3.3, we have

Corollary 3.9. The rationality of ζX(t) when X is a surface depends only on the
birational class of X.

Now we can easily prove the main rationality result.

Proof of Theroem 3.1. We have birational classification of complex surfaces. When
κ(X) = −∞, we know that X is birationally equivalent to P1 × C where C is a
curve. The rationality of P1 × C follows from Theorem 3.8 and Corollary 3.7. □

4. Preparations for the Irrationality Result

The remaining of this expository paper is devoted to the proof of the main
irrationality result in [LL04].

Theorem 4.1 ([LL04], Theorem 7.6). A complex surface X with κ(X) ≥ 0 has
ζX(t) not pointwise rational.

The proof is by constructing a motivic measure µ : K0VarC → R (where R is a
domain) that factors through Z[SB], and then proving that µ(ζX(t)) ∈ 1 + tR[[t]]
is not rational. To define the motivic measure, we need the theory of λ-rings.

Definition 4.2. A λ-ring is a commutative ring R equipped with a sequence
λ0, λ1, . . . of set-functions R→ R, such that

(1) λ0(x) = 1;
(2) λ1(x) = x;
(3) λn(x+ y) =

∑
0≤i≤n λ

i(x)λn−i(y).

Definition 4.3. A special λ-ring is a λ-ring R such that

(1) λn(xy) = Pn(λ
1x, . . . , λnx, λ1y, . . . , λny).

(2) λmλn(x) = Pm,n(λ
1x, . . . , λmnx).

In the definition, Pn and Pm,n are some universal polynomials with coefficients in
Z.

Remark 4.4. In some literature, λ-rings are called “pre-λ-rings” and special λ-
rings are called “λ-rings”.
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Definition 4.5. Let R be a λ-ring. We define theAdams operations ψn : R→ R
as

ψn(x) = (−1)n+1
∑

0≤i≤n

iλi(x)λn−i(−x).

Proposition 4.6. Several properties of ψn.

(1) ψn is a polynomial in λi, 0 ≤ i ≤ n.
(2) ψn is a ring homomorphism when R is special.
(3) ψn(x) = xn when x is a one-dimensional element, i.e. λi(x) = 0 for i ≥ 2.

Now we define the λ-ring that is used in constructing the motivic measure.

Definition 4.7. LetX be a variety. DefineK(X) to be the abelian group generated
by classes of vector bundles on X, modulo the relation [M ] = [N ] + [P ] when
M ≃ N ⊕ P . Multiplication on K(X) is multiplication of vector bundles. Lambda
operations on K(X) are exterior powers of vector bundles.

Remark 4.8. The usual K(X) is a quotient of K(X) as λ-rings.

We needK(X) instead ofK(X) because we have a group homomorphismK(X) →
Z by taking the dimension of the global sections.

It is well-known that K(X) is a special λ-ring by using the splitting principle.
However, the splitting principle only produces short exact sequences, which in gen-
eral do not split. Larsen and Lunts proved that K(X) is special in a different
way.

Theorem 4.9 ([LL04], Theorem 5.1). K(X) is special.

Proof Sketch. Note that the conditions in Definition 4.3 only involve two elements
x and y. For arbitrary x and y, we construct a homomorphism from some special
λ-ring to K(X), whose image contains x and y. Then we know that the conditions
are satisfied.

The special λ-ring is chosen to be R2, the free special λ-ring with two generators,
which can be characterized using representation rings of the symmetric groups. An
explicit homomorphism R2 → X that sends the generators to x and y is not difficult
to construct. □

The main result of [LL03], which is a characterization of K0VarC/L, is needed
in the proof of the irrationality result.

Definition 4.10. For two varieties X, Y , say X and Y are stably birational
if X × Pk is birational to Y × Pl for some k, l. Define SB to be the set of sta-
ble birational classes in VarC. SB equipped with multiplication of varieties is a
commutative monoid.

Theorem 4.11 ([LL03], Theorem 2.3, Proposition 2.8). There is a ring homomor-
phism K0VarC → Z[SB] which sends the class of a variety to its stable birational
class, and the kernel is ⟨L⟩.

5. Irrationality Result

In this final section we prove the irrationality result.
The first step of the proof is to construct a sequence of motivic measures.



RATIONALITY CRITERIA FOR MOTIVIC ZETA FUNCTIONS 5

Definition 5.1. LetM = 1+sZ[s] be the commutative monoid of polynomials with
coefficients in Z and constant 1, equipped with multiplication of polynomials. Let
Z[M ] be the monoid ring. For n ≥ 1, define motivic measure µn : K0VarC → Z[M ]
by

µn(X) =
∑

0≤i≤dimX

h0(X,ψnΩi
X)si.

Proposition 5.2. Properties of µn.

(1) µn is birational invariant.
(2) µn(X × Y ) = µn(X)µn(Y ).
(3) µn(Pk) = 1.

Combining the proposition with Theorem 4.11, we get

Corollary 5.3. µn factors through Z[SB].

We would like to prove that for some n, µn(ζX(t)) is irrational. In the formula,
we have terms involving ΩSymmX . SymmX is not smooth in general, so we would
like a smooth replacement of it. It is known that HilbmX is smooth when X is a
smooth surface, and that HilbmX and SymmX are closely related. The following
theorem of Göttsche makes the replacement possible.

Theorem 5.4 ([Göt03], Theorem 1.1).

[HilbnX] =
∑

α∈P (n)

[SymαX]Ln−|a|.

In the formula, P (n) is the set of partitions of n. Each α ∈ P (n) is written as
(1α1 · · ·nαn). |a| =

∑
i αi and SymαX =

∏
i Sym

αiX.

Corollary 5.5. In Z[SB], [HilbnX] = [SymnX].

We need three more propositions.

Proposition 5.6 ([LL04], Proposition 7.2, Proposition 7.3).

H0(HilbmX,ω⊗n
HilbmX) = SymmH0(X,ω⊗n

X ).

Proof Sketch. It is easy to show that

H0(Xm, ω⊗n
Xm)Sm = SymmH0(X,ω⊗n

X ).

So we only need to prove

H0(HilbmX,ω⊗n
HilbmX) = H0(Xm, ω⊗n

Xm)Sm .

This is by

(1) restricting to an open subset of Hilbm whose complement is of codimension
2,

(2) injecting the sheaves on two sides into a larger sheaf on some variety,
(3) proving that the images coincide.

□

Proposition 5.7 ([LL04], Proposition 7.1, Proposition 7.5). The coefficients of
µn(Hilb

mX) are bounded independent of m.
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Proof Sketch. ψnλi are polynomials in λj , and exterior powers are summands of
tensor products. So we only need to prove that h0(HilbmX, (Ω1

HilbmX)⊗n) are
bounded independent of m. It is easy to prove that

H0(HilbmX, (Ω1
HilbmX)⊗n) ⊆ H0(Xm, (Ω1

Xm)⊗n)Sm .

So we only need to bound the right hand side.
(Ω1

Xm)⊗n can be decomposed as a direct sum of tensor products of pullbacks
of Ω1

X from different factors of Xm. The direct sum is over {1, . . . , n}m, and by
considering Sm action we can simplify it into a direct sum over partitions of n.
Finally we see that in each summand of the direct sum, H0 do not depend on
m. □
Proposition 5.8 ([LL04], Theorem 2.9). Let G be a free abelian group and F =
Frac Z[G]. Then a power series f =

∑
i≥0 git

i ∈ G[[t]] ⊆ F [[t]] is rational iff
there exists n ≥ 1 and h0, . . . , hn−1 ∈ G such that for gi+n = hi mod ngi for i large
enough.

Proof of Theorem 4.1. κ(X) ≥ 0, so we can choose n such that H0(X,ω⊗n
X ) ̸= 0.

By Proposition 5.6, H0(HilbmX,ω⊗n
HilbmX) ̸= 0. In particular, this implies that the

degree of µn(HilbmX) is 2m.
Assume that µn(ζX(t)) is rational. Let G be the group completion of M .

Then by Proposition 5.8, there exists some p and h0, . . . , hp−1 ∈ G, such that

µn(Hilb
m+pX) = hm mod pµn(HilbmX) for m large enough. µn(HilbmX) ∈ M for

all m, so hi ∈ M . µn(Hilb
mX) has degree 2m and constant term 1, so hi is not a

monomial.
Form large enough, and all k ≥ 0, we have µn(Hilbm+kpX) = hkm mod pµn(HilbmX).

hi’s are not monomials, so the coefficients of µn(Hilbm+kpX) are unbounded as k
goes to ∞. This contradicts with Proposition 5.7. □
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