
TURING DEGREES

YUZHOU GU

1. Introduction

Turing degrees, defined by Post [Pos44], measure the degree of undecidability of
sets. All recursive sets can be decided by a Turing machine, so they have the same
Turing degree. The halting set, which is the set of pairs (Turing machine, input)
that halt, is an undecidable set, so it has a Turing degree harder than all recursive
sets.

The set of all Turing degrees has a natural structure of a poset, where the partial
order is given by Turing reducibility. This poset has many interesting properties.
For example, Kleene and Post [KP54] proved, among many other results, that there
exist two incomparable Turing degrees. They used a very powerful method called
the finite extension method.

An interesting subset of Turing degrees is the set of r.e. degrees, which are
degrees that are Turing equivalent to some r.e. sets. Post [Pos44] asked whether
there are r.e. degrees that are not recursive nor Turing equivalent to the halting set.
Friedberg [Fri57] and Muchnik [Muc56] developed the finite injury priority method
and solved Post’s problem.

In this expository paper we study the finite extension method and the finite
injury priority method, and prove many interesting results using them.

The main references for the finite extension method are Odifreddi [Odi92] and
Shore [Sho13]. The main references for the finite injury priority method are Soare
[Soa76] and Soare [Soa16].

2. Preliminaries

In this section we give basic definitions and state basic properties of Turing
degrees.

The basic objects of study in recursion theory are sets of natural numbers. They
can also be interpreted as infinite boolean strings. In the following, we do not make
distinction between sets of natural numbers and infinite boolean strings. A set of
natural numbers is often just called a set.

Definition 2.1 (Computation). Let A be a boolean string (which can be finite
or infinite). Let e, s, x be natural numbers. Let Me be the Turing machine with
oracle A encoded by e.

We say ΦA
e,s(x) ↓ if Me run on input x halts in no more than s steps. We write

ΦA
e (x) ↓ for ∃s(ΦA

e,s(x) ↓). We write ΦA
e (x) ↑ if Me run on input x loops forever.

If ΦA
e (x) ↓, then we write φAe (x) for the output (a boolean value) of Me run on

input x. If for all x, we have ΦA
e (x) ↓, then we write φAe for the infinite boolean

string whose x-th entry is φAe (x).
When A is the empty string, we omit superscripts in the above definitions.

1

Remark 2.2. Note that ΦA
e ↑ is not the same as ¬ΦA

e ↓. This is because Me may
access some x such that A(x) not defined. In this case Me is broken and does not
halt nor loop forever.

When A is complete, i.e., A(x) is defined for every x, we have ΦA
e ↑⇔ ¬ΦA

e ↓.
Definition 2.3 (Turing reducibility). Let A, B be sets. We say A is Turing
reducible to B (denoted as A ≤T B) if there exists e such that φBe = A. We say A
is Turing equivalent to B (denoted as A ≡T B) if A ≤T B and B ≤T A.

Definition 2.4 (Turing degrees). A Turing degree is an equivalence class under
Turing equivalence.

Remark 2.5. As we will see, many natural operations on sets preserve Turing
equivalence, so we will not make big distinction between sets and Turing degrees.

Remark 2.6. There are other reductions: many-one reduction, truth-table reduc-
tion, etc. Each of them gives rise to a different definition of degrees. In this paper
we only study Turing reductions and Turing degrees, so sometimes we omit the
word “Turing” without ambiguity.

Let D denote the poset of Turing degrees with partial order ≤T . Let 0 denote
the degree of recursive sets. It is the minimum element of D.

We list some cardinality properties.

Proposition 2.7. (1) Every Turing degree contains countably many sets.
(2) There are 2ℵ0 different Turing degrees.
(3) For every Turing degree A, there are at most countably many Turing degrees

B such that B ≤T A.

Proof. (1) Let A be a set. There are at most countably many B such that B ≡T A
because each B is φAe for some e, and the set of different e’s is countable. There
are at least countably many such B’s because for each x ∈ N, A∆{x} ≡T A (where
∆ is symmetric difference).

(2) There are 2ℵ0 sets, and each Turing degree contains countably many sets.
(3) For a set A, there are countably many B such that B ≤T A. �

Definition 2.8 (Join). Let A, B be two sets. Define the join A ⊕ B = {2x : x ∈
A} ∪ {2y + 1 : y ∈ B}.

This operation naturally extends to Turing degrees.

Proposition 2.9. D is an upper semilattice with join ⊕; i.e., for any sets A, B,
C, we have (A ≤T C ∧B ≤T C)⇔ A⊕B ≤T C.

The proof is rather obvious.

Remark 2.10. For a countable list of sets {Ai}i∈N, we can also define their join⊕
i∈NAi = {〈i, x〉 : x ∈ Ai} where 〈−,−〉 : N× N→ N is a recursive bijection.
However, countable join does not extend to Turing degrees; i.e., there exist lists

{Ai}i∈N, {Bi}i∈N such that Ai ≡T Bi for all i ∈ N, but
⊕

i∈NAi 6≡T

⊕
i∈NBi. (If

{ei}i∈N is a list of natural numbers such that Ai = φBi
ei , then it is not always true

that we can combine them to get a natural number e such that
⊕

i∈NAi = φ
⊕

i∈N Bi

e .
This is because the list {ei}∈N may not be uniform, i.e., generated by a single Turing
machine.)

Also, in D, the degree of
⊕

i∈NAi is not the join of the degree of Ai for i ∈ N.
Actually, Corollary 3.11 shows that D does not admit arbitrary countable joins.

2

There is a special operator on D.

Definition 2.11 (Jump operator). Let A be a set. Define A′ = {e : ΦA
e (e) ↓}.

Then A′ is called the jump of A.
This operation naturally extends to Turing degrees.

Remark 2.12. The jump A′ of a set A is Turing equivalent to the problem of de-
ciding whether a Turing machine with oracle A halts on a given input. In particular,
0′ is the degree of the halting problem.

Proposition 2.13. For any set A, A <T A′; i.e, A ≤T A′ and A′ 6≤T A.

Proof. That A ≤T A′ is obvious from the previous remark. We only prove that
A′ 6≤T A.

Assume A′ ≤T A. Then there exists e0 such that φAe0 = A′. So for any e,

ΦA
e0(e) = 1⇔ ΦA

e (e) ↓. Using e0, we can construct a Turing machine with oracle A

that on input e halts if ΦA
e (e) ↑, and loops forever if ΦA

e (e) ↓. Let e1 be its index
number. Then we have ΦA

e1(e) ↓⇔ ΦA
e (e) ↑. Taking e = e1, we get ΦA

e1(e1) ↓⇔
ΦA

e1(e1) ↑, which is a contradiction. �

Definition 2.14. A set A is called low if A′ ≤T 0′.

A set A is low if and only if A′ ≡T 0′, because 0′ ≤T A′ holds for all sets A.
Finally we define r.e. degrees.

Definition 2.15. A Turing degree is called an r.e. degree if it contains an r.e. set.

Remark 2.16. Clearly every r.e. degree A satisfies A ≤T 0′. The converse is not
true: there are degrees A such that A ≤T 0′ but A is not r.e.

3. Finite extension method

Assume we have a countable list of requirements that we would like to satisfy.
In the finite extension method, we start with the empty string, and in each step, we
extend the string we have so that more requirements are satisfied, and previously
satisfied requirements are still satisfied.

Let the requirements be {Ri}i∈N. We start with the empty string A0 = ∅, and at
step s, we construct a finite string As+1 that contains As, and makes sure that As+1

satisfies Ri for i ≤ s + 1. In the end, we take A =
⋃

iAi, and this string satisfies
all requirements. (In the simplest cases, As is a prefix of As+1. For full generality,
we allow a string to have three possible values in each position: 0, 1, or undefined.
That As+1 contains As means for each position x, if As(x) is defined, then As+1(x)
is defined and As(x) = As+1(x). So here strings are actually understood as partial
functions.)

We illustrate the finite extension method with a standard example.

Theorem 3.1 (Kleene-Post [KP54]). There exist two incomparable sets A and B,
i.e., A 6≤T B and B 6≤T A.

Proof. We need to satisfy a list of requirements R2e : φAe 6= B, and R2e+1 : φBe 6= A.
(In the case φAe is undefined (i.e., ΦA

e (x) ↑ for some x), the requirement R2e is
considered to be automatically satisfied.)

We start with A0 = B0 = ∅.
Step s = 2e: We construct As+1 and Bs+1 from As and Bs. Choose some

x such that Bs(x) is undefined. If there is a finite extension As+1 of As such
3

that Φ
As+1
e (x) ↓, then we fix this As+1, and let Bs+1 extend Bs by Bs+1(x) =

1− φAs+1
e (x). Therefore in this case, Rs is satisfied.

If there does not exist such an extension, let As+1 = As and Bs+1(x) be an
arbitrary value (0 or 1). In this case Rs is also satisfied because ΦA

e (x) ↑ for any
extension A of As.

Step s = 2e+ 1: The construction is similar (with A and B exchanged).
Let A =

⋃
sAs and B =

⋃
sBs. From the analysis above, all requirements are

satisfied. So we get the desired sets. �

Remark 3.2. We can strengthen the conditions on A and B.
Note that in step R2e, we only need to answer the question “is there a finite

extension A2e+1 of A2e such that Φ
A2e+1
e (x) ↓?”, which can be answered with oracle

0′, the degree of the halting problem. So A,B ≤T 0′.
We can make A and B low (Definition 2.14) by adding additional requirements.

This is a technique called forcing the jump, which will be introduced in Theorem
3.12.

We can make A and B r.e. sets. This needs the finite injury priority method,
which will be introduced in the next section.

Theorem 3.1 can be easily extended to countably many sets.

Theorem 3.3 (Kleene-Post [KP54]). There exists a sequence of sets {Ai}i∈N such
that for all i ∈ N, we have Ai 6≤T

⊕
j 6=iAj.

Proof. We need to satisfy countably many requirements Rk,e : φ
⊕

i6=k Ai

e 6= Ak.
Let 〈−,−〉 : N× N→ N be a bijection. We start with Ai,0 = ∅ for all i ∈ N.
Step s = 〈k, e〉: We construct {Ai,s+1}i∈N from {Ai,s}i∈N, and make sure that⊕
i∈NAi,s+1 is a finite string.
Choose some x such that Ak,s(x) is undefined. If there is a finite extension

of
⊕

i 6=k Ai,s such that Φ
⊕

i6=k Ai,s+1

e (x) ↓, then we choose this extension, and let

Ak,s+1 extend Ak,s by Ak,s+1(x) = 1−φ
⊕

i6=k Ai,s+1

e (x). In this case Rk,e is satisfied.
If there does not exist such an extension, then let Ai,s+1 = Ai,s for all i 6= k,

and Ak,s+1(x) be an arbitrary value. In this case Rk,e is also satisfied because

φ
⊕

i6=k Ai ↑ for any extensions Ai of Ai,s.
Finally, let Ai =

⋃
sAi,s. From the analysis above, all requirements are satisfied.

So we get the desired sets. �

Theorem 3.3 can be seen as an embedding of the countable discrete poset into
D. In fact, it can be used to show that every countable poset can be embedded
into D. We need the following lemma.

Lemma 3.4 (Mostowski [Mos38]). There exists a recursive countable poset P such
that every countable poset can be embedded into P.

Proof. We construct a list of finite approximations of P.
Let P0 be the empty poset. At step i, we construct Pi+1 from Pi. Consider

every possible order relation between a new element and elements in Pi. (There
can be at most 3|Pi| possible relations.) For each of them, we add a new element
in Pi+1 with this order relation. Finally, we add relations between new elements
required by poset axioms.

4

Clearly Pi+1 extends Pi. Let P =
⋃

i Pi. Clearly P is recursive. We prove that
every countable poset Q can be embedded into P.

We list the elements of Q as q1, q2, · · · , and put them into P one by one. Say
pi ∈ P corresponds to qi. We choose pi in such a way that pi ∈ Pi\Pi−1. In
each step, if we have chosen p1, . . . , pi, we let pi+1 ∈ Pi+1\Pi be such that the
order relation between pi+1 and p1, . . . , pi is exactly the same as the order relation
between qi+1 and q1, . . . , qi. By the construction of Pi+1, such pi+1 can be found.

�

Theorem 3.5 (Sacks [Sac63a]). Every countable poset can be embedded into D.

Proof. Let P be the poset constructed in Lemma 3.4. We only need to prove that
P can be embedded into D. Actually we only need the fact that P is recursive.

Let {Ai}i∈N be as in Theorem 3.3. Let the elements of P be {pi}i∈N and the
partial order be ≤P . Define Bi =

⊕
pj≤P pi

Aj .

For pj ≤P pi, we have Bj ≤T Bi by definition of the Bi’s (and the fact that P is
recursive). For pj 6≤P pi, we have Bj 6≤T Bi, because Aj ≤T Bj , Bi ≤T

⊕
k 6=j Ak,

and Aj 6≤T

⊕
k 6=j Ak. So {Bi}i∈N defines an embedding of P into D. �

In the above examples, all strings are initially empty. The following theorem
shows that some strings can be fixed in the beginning.

Theorem 3.6 (Kleene-Post [KP54]). For every nonrecursive set B, there exists a
set A that is incomparable with B.

Proof. We need to satisfy the requirements R2e : φAe 6= B, and R2e+1 : φBe 6= A.
We start with A0 = ∅.

Step s = 2e + 1: Choose x such that As(x) is undefined. If ΦB
e (x) ↓, let As+1

extend As by As+1(x) = 1− φBe (x). Otherwise, let As+1(x) be an arbitrary value.
In either case, R2e+1 is satisfied.

Step s = 2e: Choose some finite extension As+1 of As and some x such that

either Φ
As+1
e (x) ↑ or φ

As+1
e (x) 6= B(x). Clearly, if such As+1 and x exist, then R2e

is satisfied. We only need to prove their existence. Assume such As+1 and x do not
exist. This means that for any complete extension A of As and any x, ΦA

e (x) ↓ and
φAe (x) = B(x). (Recall that A is complete means that A(x) is defined for every x.)
This enables us to construct a Turing machine with a finite oracle As that decides
B. This contradicts the assumption that B is nonrecursive.

Finally, take A =
⋃

sAs. By the above analysis, all requirements are satisfied.
�

The following theorem states the existence of a minimal pair. Although the
requirements look different from previous examples, we can actually use the same
argument to deal with them.

Theorem 3.7 (Kleene-Post [KP54]). For every nonrecursive set B, there exists a
nonrecursive set A such that if C ≤T A and C ≤T B, then C ≡T 0.

Proof. We need to satisfy the requirements R2e : φe 6= A and R2〈e,f〉+1 : φAe =

φBf = C ⇒ C ≡T 0. We start with A0 = ∅.
Step s = 2e: Choose x such that As(x) is undefined. If Φe(x) ↓, let As+1 extend

As by As+1(x) = 1−φe(x). Otherwise, let As+1(x) be an arbitrary value. In either
case, R2e is satisfied.

5

Step s = 2〈e, f〉+1: If we can choose some finite extension As+1 of As and some

x such that either Φ
As+1
e (x) ↑, or ΦB

f (x) ↑, or φ
As+1
e (x) 6= φBf (x), then As+1 satisfies

Rs (because such C does not exist). So we only need to consider the case where
such As+1 and x do not exist. This means that for any complete extension A of As

and any x, ΦA
e (x) ↓, ΦB

f (x) ↓, and φAe (x) = φBf (x). This enables us to construct a

Turing machine with a finite oracle As that decides C = φBf . So C is recursive.

Finally, take A =
⋃

sAs. By the above analysis, all requirements are satisfied.
�

The following theorem shows an amazing property of D. Its proof uses a gen-
eralization of the finite extension method, called the coinfinite extension method.
In the coinfinite extension method, in each step we make sure that the set {x :
As(x) is undefined} is infinite and recursive. So As itself can have infinitely many
positions defined.

Theorem 3.8 (Spector [Spe56]). For every countable ascending sequence C0 ≤T

C2 ≤T · · · , there exist A, B such that for any D, we have

(D ≤T A ∧D ≤T B)⇔ ∃n(D ≤T Cn).

Proof. We need to satisfy the following requirements: R2n : Cn ≤T A ∧ Cn ≤T B
and R2〈e,f〉+1 : φAe = φBf = C ⇒ ∃n(C ≤T Cn). We start with A0 = B0 = ∅.

Step s = 2n: Choose a recursive, infinite, and coinfinite subset {xi}i∈N of {x :
As(x) is undefined}. Let As+1 extend As by As+1(xi) = Cn(i). We have Cn ≤T

As+1 because {xi}i∈N is recursive. Construct Bs+1 similarly.
Step s = 2〈e, f〉 + 1: If we can find extensions As+1 of As, Bs+1 of Bs, and a

natural number x such that

(1) {y : As+1(y) is defined and As(y) is undefined} is finite;
(2) {y : Bs+1(y) is defined and Bs(y) is undefined} is finite;

(3) either Φ
As+1
e (x) ↑, or Φ

Bs+1

f (x) ↑, or φ
As+1
e (x) 6= φ

Bs+1

f (x),

then they satisfy Rs because such C does not exist.
So we only need to consider the case where such As+1, Bs+1, and x do not

exist. This means that for any complete extension A of As, complete extension B
of Bs and natural number x, we have ΦA

e (x) ↓, ΦB
f (x) ↓, and φAe (x) = φBf (x). This

enables us to construct a Turing machine with oracle As that decides C = φAe = φBf .

(Note that C does not depend on the choice of A and B.) So C ≤T As. Choose
largest n such that 2n ≤ s. Then As ≤T

⊕
i≤n Ci ≡T Cn. So C ≤T Cn. Thus Rs

is satisfied.
Finally, we take A =

⋃
sAs and B =

⋃
sBs. By the above analysis, all require-

ments are satisfied. �

Corollary 3.9 (Spector [Spe56]). Let C ⊆ D be a countable ideal, i.e., C is closed
under finite joins, and for all A ∈ C, if B ≤T A, then B ∈ C. Then there exists A
and B such that C = {C : C ≤T A ∧ C ≤T B}.

Proof. List the elements of C as {Ci}i∈N. Define Di =
⊕

j≤i Cj . Apply Theorem

3.8 to {Di}i∈N. �

Corollary 3.10 (Kleene-Post [KP54]). The poset D of Turing degrees is not a
lattice.

6

Proof. Apply Theorem 3.8 to the sequence defined by C0 = 0 and Ci = C ′i−1. Then
there exist A and B such that (D ≤T A ∧D ≤T B) ⇔ ∃n(D ≤T Cn). Assume D
is a lattice. Then there exists E such that (D ≤T A ∧ D ≤T B) ⇔ D ≤T E. So
D ≤T E ⇔ ∃n(D ≤T Cn). Taking D = E, we get ∃n(E ≤T Cn). Take m such
that E ≤T Cm. By Proposition 2.13, Cm+1 6≤T E. However, Cm+1 ≤T A and
Cm+1 ≤T B. This contradicts the fact that E is the meet of A and B. �

Corollary 3.11 (Spector [Spe56]). A sequence of sets {Cn}n∈N has a join in D iff
there exists some m such that Ci ≤T

⊕
j≤m Cj for all i.

Proof. The if part is trivial. We prove the only if part. Assume the join is E. This
means for all set F , E ≤T F ⇔ ∀n(Cn ≤T F). Define Di =

⊕
j≤i Cj . Apply

Theorem 3.8 to {Di}i∈N. We get sets A and B such that (F ≤T A ∧ F ≤T B) ⇔
∃n(F ≤T Dn). Because for all n, Cn ≤T Dn ≤T A and Cn ≤T Dn ≤T B, we have
E ≤T A and E ≤T B. So there exists an m such that E ≤T Dm. Then for all n,
Cn ≤T E ≤T Dm. �

Next we study some properties of the jump operator. First is the existence of
nonrecursive low sets.

Theorem 3.12 (Spector [Spe56]). There exists a nonrecursive set A such that
A′ ≡T 0′.

Proof. We only need to construct a set A such that A 6≡T 0 and A′ ≤T 0′. Recall
that A′ ≤T 0′ means that there is a Turing machine with oracle 0′ that decides
{e : ΦA

e (e) ↓}.
The requirements we have are R2e : φe 6= A and R2e+1 : decide whether ΦA

e (e) ↓.
It may appear unclear what R2e+1 means. It will be clarified by the construction.
We start with A0 = ∅.

Step s = 2e: Choose x such that As(x) is undefined. If Φe(x) ↓, let As+1 extend
As by As+1(x) = 1−φe(x). Otherwise, let As+1(x) be an arbitrary value. In either
case, R2e is satisfied.

Step s = 2e+1: If there exists a finite extension As+1 of As such that Φ
As+1
e (e) ↓,

we choose this extension, and know that ΦA
e (e) ↓. Otherwise, we know that ΦA

e (e) ↑.
Finally we let A =

⋃
sAs. All requirements are satisfied. Because this construc-

tion only needs an 0′ oracle, we get A′ ≤T 0′. �

Theorem 3.12 shows that the jump operator is not injective. Another natural
question to ask is what the image of the jump operator is. Clearly, any degree C in
the image should satisfy 0′ ≤T C. The following theorem shows that the converse
is also true.

Theorem 3.13 (Jump inversion theorem, Spector [Spe56]). For every set C such
that 0′ ≤T C, there exists a set A such that A′ ≡T C.

Proof. That A′ ≡T C contains two parts: A′ ≤T C and C ≤T A′. So we will
construct A with an oracle for C (which also gives us an oracle for 0′ because
0′ ≤T C).

The requirements we have are R2e : decide whether ΦA
e (e) ↓, and R2x+1 : encode

C(x) into A.

Step s = 2e: If there exists a finite extension As+1 of As such that Φ
As+1
e (e) ↓, we

choose this extension, and know that ΦA
e (e) ↓. Otherwise, we know that ΦA

e (e) ↑.
7

Step s = 2x + 1: Let y be the minimum position such that As(y) is undefined.
Let As+1 extend As by As+1(y) = C(x).

Finally, let A =
⋃

sAs. The construction only needs an oracle for C, so A′ ≤T C.
Step s = 2e only needs an oracle for 0′, so C ≤T A⊕ 0′ ≤T A′. We get the desired
set. �

4. Finite injury priority method

The finite extension method has some limits: although the sets constructed are
often Turing reducible to 0′, they are hardly r.e. The finite injury priority method is
a way to make the finite extension method r.e. We start with the empty set A0 = ∅.
In step s, we add some elements to As to get As+1 to satisfy some new requirements.
(Note that each As is a set instead of a finite boolean string.) However, because we
cannot prevent elements from entering As, we may break some requirements that
have been satisfied before. In this case, the broken requirement is called “injured”.

In the finite injury priority method, each requirement is given a priority, such
that

(1) for each requirement, there can only be finitely many requirements with
higher priority;

(2) each requirement can only be injured by requirements with higher priority.

In this way, every requirement is eventually satisfied.
The use function enables us to measure when injuries occur.

Definition 4.1. Let A be a set and e, s, x be natural numbers. Define the use
function uAe,s(x) as

(1) if ΦA
e,s(x) ↓, uAe,s(x) = max{z : A(z) is accessed during execution};

(2) otherwise, uAe,s(x) = −1.

At each step s, for each restriction Re we will define a restriction function re,s
using the use function, and Re is said to be injured if As+1 − As contains some
x ≤ re,s.

We illustrate the finite injury priority method with an easy example.

Theorem 4.2. There exists a low simple set.

Proof. Recall that a set A is simple if A is coinfinite, r.e., and for every infinite r.e.
set W , W ∩A 6= ∅.

Let We be the r.e. set generated by the Turing machine with index e. Let We,s

be the set generated by the Turing machine with index e when it has run s steps.
Clearly We,s+1 ⊇We,s and We =

⋃
sWe,s.

The requirements we need to satisfy are Re : decide whether ΦA
e (e) ↓ and

Pe : We infinite ⇒ We ∩ A 6= ∅. The coinfiniteness will be satisfied during the
construction.

We first describe the way to construct A, and then prove its correctness. We
start with A0 = ∅.

Step s: We construct As+1 from As. Compute re,s = uAs
e,s(e) for e ≤ s. We

choose the minimum i ≤ s such that Wi,s ∩ As = ∅ and there exists x such that
x ∈ Wi,s, x ≥ 2i, and for all j ≤ i, we have x > rj,s. If there exists such i and x,
we let As+1 = As ∪ {x}. Otherwise, we let As+1 = As.

Finally, let A =
⋃

sAs.
Now we prove the correctness of the construction.

8

(1) Each Re is injured a finite number of times.
Proof: Requirement Re is injured at step s if some element x ≤ re,s is added.

By our strategy of adding elements, Re is injured only when some Wi with i < e is
chosen. Each Wi is chosen at most once, so Re is injured at most e times.

(2) For all e, lims re,s exists and is finite. Also, Re is satisfied.
Proof: Choose s0 so that Re is not injured at step s for all s ≥ s0. If for some

s ≥ s0, ΦAs
e,s(e) ↓, then for all t ≥ s, we have ΦAt

e,t(e) ↓ and re,t = re,s. Otherwise,

for all s ≥ s0, we have re,s = −1. So ΦA
e (e) ↓ if and only if ∃s ≥ s0(ΦAs

e,s(e) ↓), and
the later can be decided with an oracle 0′. So Re is satisfied.

(3) For all e, Pe is satisfied.
Proof: By (2), define re = lims re,s. If We contains an element x such that x ≥ 2e

and x > max{ri : i ≤ e}, then We is chosen at some step, and thus We ∩A 6= ∅. In
particular, if We is infinite, then We ∩A 6= ∅.

(4) The set A is a low simple set.
Proof: The set A is r.e. because the construction is r.e. The set A is coinfinite

because for each We we add at most one element larger than or equal to 2e, and
no elements smaller than 2e. The set A is low by (2). By (3), for every infinite r.e.
set W , we have W ∩A 6= ∅. �

The following theorem is the first result proved using the finite injury priority
method. It is slightly more complicated than Theorem 4.2.

Theorem 4.3 (Friedberg [Fri57], Muchnik [Muc56]). There exist two incomparable
r.e. sets A and B.

Proof. We need to satisfy the requirements R2e : φBe 6= A and R2e+1 : φAe 6= B.
We say x is a witness for R2e at step s if ΦBs

e,s(x) ↓, and φBs
e,s(x) 6= As(x).

Similarly, we define witnesses for R2e+1 at step s.
In each step s, we compute xi,s+1 and ri,s+1, where xi,s+1 is a witness for Ri at

step s+ 1, and ri,s+1 is the restriction function for step i+ 1. That is, in each step
we compute the restriction function for the next step. That xi,s+1 = ri,s+1 = −1
indicates that we do not know a witness yet. We maintain that for all i ≥ s, we
have xi,s = ri,s = −1.

We start with A0 = B0 = ∅ and xi,0 = ri,0 = −1 for all i.
Step s: We construct As+1, Bs+1, and compute xi,s+1 and ri,s+1. We work for

each i from 0 to s. In the following, fix i = 2e (the case i = 2e+ 1 is similar).

(a) If xi,s 6= −1, let xi,s+1 = xi,s and ri,s+1 = ri,s. Skip step (b) and (c).
(b) Assume xi,s = −1. Let x be the minimum number such that x 6∈ As and

for all j < i, we have x > rj,s. If ¬ΦBs
e,s(x) ↓, let xi,s+1 = ri,s+1 = −1 and

skip step (c).
(c) Now assume ΦBs

e,s(x) ↓. Let xi,s+1 = x and ri,s+1 = max{xi,s+1, u
Bs
e,s(xi,s+1)}.

If φBs
e,s(xi,s+1) = 1, let As+1 = As, Bs+1 = Bs; otherwise, let As+1 =

As ∪ {xi,s+1}, Bs+1 = Bs. End step s; i.e., we do not work for larger i’s.

If there is some i that survives at step (c), then As+1 and Bs+1 have been defined.
Otherwise, let As+1 = As and Bs+1 = Bs. Note that for some i’s, xi,s+1 and ri,s+1

may be undefined. We let xi,s+1 = ri,s+1 = −1 for all such i’s.
Finally, let A =

⋃
sAs, B =

⋃
sBs.

Now we prove the correctness of the construction.
(1) Each Ri is injured a finite number of times.

9

Proof: Requirement Ri is injured at step s if some x ≤ ri,s is added. This
only happens when some j < i survives at step (c). Define a number gi,s =∑

j<i,xj,s 6=−1 2−j−1. Each time Ri is injured, we have gi,s+1 − gi,s ≥ 2−i. This

is because the smallest j < i such that xj,s 6= xj,s+1 must have xj,s = −1 and
xj,s+1 6= −1, and then gi,s+1− gi,s ≥ 2−j−1−

∑
j<k<i 2−k−1 = 2−i. Clearly, for all

s, 0 ≤ gi,s ≤ 1− 2−i. So Ri can be injured at most 2i − 1 times.
(1′) For each i, there exists s0 such that for all s ≥ s0, for all j < i, j does not

survive at step (c).
Proof: Similar to (1).
(2) For all i, lims ri,s and lims xi,s exist and are finite. Also, Ri is satisfied.
Proof: Assume i = 2e (the case i = 2e + 1 is similar). Choose s0 so that Ri

is not injured at step s for all s ≥ s0. If for some s ≥ s0, xi,s 6= −1, then for

all t ≥ s, we have xi,t = xi,s, ri,t = ri,s, At(xi,t) = As(xi,s), ΦBt
e,t(xi,t) ↓, and

φBt
e,t(xi,t) 6= At(xi,t). So in this case Ri is satisfied.

Now assume for all s ≥ s0, we have xi,s = −1. We choose s0 large enough such
that it also satisfies the condition in (1′). At step s ≥ s0, min{x : x 6∈ As,∀j <
i(x > rj,s)} is fixed. Call this number y. That xi,s = −1 for all s ≥ s0 means that
¬ΦBs

e,s(y) ↓ for all s ≥ s0. So ΦB
e (y) ↑, and Ri is also satisfied.

(3) The sets A and B are two incomparable r.e. sets.
Proof: They are r.e. because the construction is r.e. They are incomparable

because all requirements are satisfied. �

Suppose in some problem, we would like to construct A such that some require-
ment φAe 6= C is satisfied. The natural idea is to define the restriction function so
that a witness x (that is, φAe (x) 6= C(x)) is always a witness unless the requirement
is injured. This is called preserving disagreement. However, sometimes we need
also preserve agreement, i.e., preserve x such that φAe (x) = C(x).

Theorem 4.4 (Sacks [Sac63c]). For every nonrecursive r.e. set C there exists a
simple set A such that C 6≤T A.

Proof. We know C is infinite because it is nonrecursive. Let {Cs}s∈N be a recursive
enumeration of C, i.e., |Cs| = s, Cs ⊆ Cs+1, C =

⋃
s Cs, and there is a Turing

machine that on input Cs outputs Cs+1. Recall the notations We and We,s in the
proof of Theorem 4.2.

The requirements we need to satisfy are Re : φAe 6= C and Pe : We infinite ⇒
We ∩A 6= ∅.

We start with A0 = ∅.
Step s: Compute le,s = max{x : ∀y < x(ΦAs

e,s(y) ↓ and φAs
e,s(y) = Cs(y))} and

re,s = max{uAs
e,s(x) : x ≤ le,s}. (Note that le,s and re,s are computable even if

le,s =∞. This is because the possible number of s-step traces of a Turing machine
is finite.)

We choose the minimum i ≤ s such that Wi,s ∩ As = ∅ and there exists x such
that x ∈ Wi,s, x ≥ 2i, and for all j ≤ i, we have x > rj,s. If there exist such i and
x, we let As+1 = As ∪ {x}. Otherwise, we let As+1 = As.

Finally, let A =
⋃

sAs.
We prove the correctness of the construction.
(1) Each Re is injured a finite number of times.

10

Proof: Re is injured at step s only when some x ≤ re,s is added, which occurs
only when some Wi (i < e) is chosen. Each Wi is chosen at most once, so Re is
injured at most e times.

(2) For all e, φAe 6= C. So Re is satisfied.
Proof: Assume that φAe = C for some e. This means that lims le,s =∞. Choose

s0 so that Re is not injured at step s for all s ≥ s0.
We prove that for s ≥ s0, le,s is non-decreasing. Actually, the only reason

for le,s+1 < le,s is that Cs+1 − Cs contains an element x < le,s. However, this
disagreement will be preserved forever, so le,t ≤ x for all t ≥ s. This contradicts
lims le,s =∞.

Now we build a Turing machine that decides C. On input x, the Turing machine
finds the minimum s such that le,s > x and output φAs

e,s(x). Because le,s never

decreases, for all t ≥ s, we have φAs
e,s(x) = φAt

e,t(x) = Ct(x). For t large enough,

Ct(x) = C(x). So φAs
e,s(x) = C(x). Therefore the Turing machine decides C. This

contradicts the assumption that C is nonrecursive.
(3) For all e, lims re,s exists and is finite.
Proof: By (2), choose the minimum x such that φAe (x) 6= C(x). Choose s0 such

that for all s ≥ s0,

(a) Re is not injured at step s;
(b) φAe (y) = φAs

e,s(y) for y ≤ x;
(c) Cs(y) = C(y) for y ≤ x.

If for some t ≥ s0 we have ΦAt
e,t(x) ↓, then φAt

e,t(x) = 1 − C(x) and lims re,s = re,t.

Otherwise, ΦA
e (x) ↑ and lims re,s = re,s0 .

(4) For all e, Pe is satisfied.
Proof: By (3), define re = lims re,s. If We contains an element x such that x ≥ 2e

and x > max{ri : i ≤ e}, then We is chosen at some step, and thus We ∩A 6= ∅. In
particular, if We is infinite, then We ∩A 6= ∅.

(5) The set A is a simple set such that C 6≤T A.
Proof: The set A is r.e. because the construction is r.e. The set A is coinfinite

because for each We we add at most one element larger than or equal to 2e, and
no elements smaller than 2e. The set A is simple because all requirements Pe are
satisfied. We have C 6≤T A because all requirements Re are satisfied. �

Remark 4.5. Actually, the set A constructed in the proof is low. Construct a
Turing machine Mg that on input e, outputs a natural number g(e) such that
Mg(e) is a Turing machine with oracle A that on input x, outputs C(0) if x = 0

and ΦA
e (e) ↓, and loops forever otherwise.

We have e ∈ A′ ⇔ ΦA
e (e) ↓⇔ (ΦA

g(e)(0) ↓ ∧φAg(e)(0) = C(0)) ⇔ lims lg(e),s > 0.

The last condition can be decided with an oracle 0′. So A′ ≤T 0′.

We extend the method of proof of Theorem 4.4 to prove the following theorem.

Theorem 4.6 (Sacks splitting theorem, Sacks [Sac63b]). Let B and C be r.e. sets
such that C is nonrecursive. Then there exist two low r.e. sets A0, A1 such that
(A0, A1) is a partition of B and C 6≤T Az for z = 0, 1.

Proof. We know C is infinite because it is nonrecursive. If B is finite, then we can
let A0 = ∅ and A1 = B. So we can assume that B is infinite. Let {Bs}s∈N and
{Cs}s∈N be recursive enumerations of B and C, respectively.

The requirements we would like to satisfy are
11

R2e+z : φAz
e 6= C for z = 0, 1;

Ps : if Bs+1 −Bs = {x}, then x ∈ Az for exactly one z.

Lowness does not need extra requirements because it can be proved using exactly
the same method as Remark 4.5.

Start with Az,0 = ∅ for z = 0, 1.

Step s: Compute l2e+z,s = max{x : ∀y < x(Φ
Az,s
e,s (y) ↓ and φ

Az,s
e,s = Cs(y))} and

r2e+z,s = max{uAz,s
e,s (x) : x ≤ l2e+z,s}.

Let Bs+1 − Bs = {x}. Choose the smallest 2e + z such that x ≤ r2e+z,s. Let
Az,s+1 = Az,s and A1−z,s+1 = A1−z,s ∪ {x}.

Finally, let Az =
⋃

sAz,s for z = 0, 1.
We prove the correctness of the construction. We prove by induction on 2e+ z

that

(a) R2e+z is injured a finite number of times;
(b) φAz

e 6= C;
(c) lims r2e+z,s exists and is finite.

By the induction hypothesis, for 2e′+ z′ < 2e+ z, the three properties above are
satisfied. Choose s0 such that for all s ≥ s0, we have

(A) for all 2e′ + z′ < 2e+ z, r2e′+z′,s = lims r2e′+z′,s;
(B) if Bs+1 −Bs = {x}, then x > max{r2e′+z′,s : 2e′ + z′ < 2e+ z}.

Property (A) ensures that there exists s0 such that (B) holds. Property (B) ensures
that 2e′+z′ < 2e+z is not chosen at step s for s ≥ s0. Then at each step s ≥ s0, if
2e+z is chosen, then R2e+z is not injured because Az,s+1 = Az,s; if 2e′+z′ > 2e+z
is chosen, then R2e+z is not injured because x > r2e+z,s (where Bs+1 −Bs = {x}).
So R2e+z is never injured at step s for s ≥ s0. This proves (a).

The proof for (b) and (c) assuming (a) is exactly the same as part (2) and (3)
of proof of Theorem 4.4.

By above discussion, all requirements R2e+z are satisfied. Requirement Ps is
satisfied at step s+ 1. So all requirements are satisfied. The Az’s are r.e. because
the construction is r.e. The Az’s are low by the same method as Remark 4.5. �

Let us discuss some applications of Theorem 4.6. We need the following lemma.

Lemma 4.7. Let B, A0, A1 be r.e. sets such that (A0, A1) is a partition of B.
Then B ≡T A0 ⊕A1.

Proof. Clearly B ≤T A0⊕A1. To prove that A0⊕A1 ≤T B, we construct a Turing
machine with oracle B that decides A0 and A1. On input x, we first ask oracle if
x ∈ B. If not, then x 6∈ Az for z = 0, 1. Otherwise, we can recursively enumerate
A0 and A1 at the same time until one of them outputs x. �

Corollary 4.8. Let B be an r.e. set. Then there exists two incomparable low r.e.
sets A0, A1 such that (A0, A1) is a partition of B.

Proof. In Theorem 4.6, take C = B. We only need to prove incomparability.
Without loss of generality, assume A0 ≤T A1. Then C = B ≤T A0 ⊕ A1 ≤T A1,
which is a contradiction. �

Corollary 4.9. Low r.e. degrees with finite joins generate all r.e. degrees.

Proof. Direct from Theorem 4.6 and Lemma 4.7. �
12

Corollary 4.10. No r.e. degree is minimal.

Proof. Direct from Corollary 4.8 and Lemma 4.7. �

References

[Fri57] Richard M. Friedberg. Two recursively enumerable sets of incomparable degrees of un-

solvability (solution of Post’s problem, 1944). Proceedings of the National Academy of
Sciences, 43(2):236–238, 1957.

[KP54] Stephen C. Kleene and Emil L. Post. The upper semi-lattice of degrees of recursive

unsolvability. Annals of mathematics, pages 379–407, 1954.
[Mos38] Andrzej Mostowski. Über gewisse universelle Relationen. Annales de la Société Polonaise

de Mathématique, 17:117–118, 1938.

[Muc56] Albert A. Muchnik. On the unsolvability of the problem of reducibility in the theory of
algorithms. In Dokl. Akad. Nauk SSSR, volume 108, pages 194–197, 1956.

[Odi92] Piergiorgio Odifreddi. Classical recursion theory: The theory of functions and sets of

natural numbers, volume 125 of Studies in logic and the foundations of mathematics.
Elsevier, 1992.

[Pos44] Emil L. Post. Recursively enumerable sets of positive integers and their decision prob-

lems. Bull. Amer. Math. Soc., 50(5):284–316, 1944.
[Sac63a] Gerald E. Sacks. Degrees of unsolvability. Number 55. Princeton University Press, 1963.

[Sac63b] Gerald E. Sacks. On the degrees less than 0′. Annals of Mathematics, pages 211–231,
1963.

[Sac63c] Gerald E. Sacks. Recursive enumerability and the jump operator. Transactions of the

American Mathematical Society, 108(2):223–239, 1963.
[Sho13] Richard A. Shore. Lecture notes on Turing degrees. Computational Prospects of Infinity

II: AII Graduate Summer School, 2013.

[Soa76] Robert I. Soare. The infinite injury priority method. The Journal of Symbolic Logic,
41(02):513–530, 1976.

[Soa16] Robert I. Soare. Turing Computability: Theory and Applications. Springer, 2016.

[Spe56] Clifford Spector. On degrees of recursive unsolvability. Annals of Mathematics, pages
581–592, 1956.

13

