Summary of last lecture

- **Greenhouse gases**: H₂O, CO₂, and other GHG
 - capture outgoing IR radiation from earth
 - reradiate IR down to surface
 - raise surface temperature T_s

- **Radiative forcing**: net (down - up) tropopause flux change [W/m²]

- RF from CO₂ grows logarithmically

Global models $\Rightarrow F_{2x} \approx 3.7$ W/m² [IPCC 2001, 2007]

- All else fixed, $F_{2x} \approx 3.7$ W/m² $\Rightarrow \Delta T_s \approx 1.2^\circ$C

 feedbacks $\rightarrow \Delta T_{2x} \approx \sigma F_{2x}$, σ “climate sensitivity parameter”

Today: consider feedbacks
Summary of last lecture

- Greenhouse gases: \(\text{H}_2\text{O}, \text{CO}_2 \), and other GHG
 - capture outgoing IR radiation from earth
 - reradiate IR down to surface
 - raise surface temperature \(T_s \)

- Radiative forcing: net (down - up) tropopause flux change [W/m\(^2\)]

- RF from CO\(_2\) grows logarithmically

\[
\text{Global models} \Rightarrow F_{2x} \approx 3.7 \text{ W/m}^2
\]

- All else fixed, \(F_{2x} \approx 3.7 \text{ W/m}^2 \) \(\Rightarrow \) \(\Delta T_s \approx 1.2^\circ \text{C} \)

feedbacks \(\rightarrow \) \(\Delta T_{2x} \approx \sigma F_{2x} \), \(\sigma \) “climate sensitivity parameter”

Today: consider feedbacks
Summary of last lecture

- Greenhouse gases: H$_2$O, CO$_2$, and other GHG
 — capture outgoing IR radiation from earth
 — reradiate IR down to surface
 — raise surface temperature T_s

- Radiative forcing: net (down - up) tropopause flux change [W/m2]

- RF from CO$_2$ grows logarithmically

Global models $\Rightarrow F_{2x} \approx 3.7$ W/m2

- All else fixed, $F_{2x} \approx 3.7$ W/m2 $\Rightarrow \Delta T_s \approx 1.2^\circ$C

feedbacks $\rightarrow \Delta T_{2x} \approx \sigma F_{2x}$, σ “climate sensitivity parameter”

Today: consider feedbacks
Summary of last lecture

• Greenhouse gases: H₂O, CO₂, and other GHG
 — capture outgoing IR radiation from earth
 — reradiate IR down to surface
 — raise surface temperature T_s

• Radiative forcing: net (down - up) tropopause flux change [W/m²]

• RF from CO₂ grows logarithmically

<table>
<thead>
<tr>
<th>Global models $\Rightarrow F_{2x} \simeq 3.7$ W/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>[IPCC 2001, 2007]</td>
</tr>
</tbody>
</table>

• All else fixed, $F_{2x} \simeq 3.7$ W/m² $\Rightarrow \Delta T_s \simeq 1.2{\degree}C$

feedbacks $\rightarrow \Delta T_{2x} \simeq \sigma F_{2x}$, σ “climate sensitivity parameter”

Today: consider feedbacks
Climate change: feedback, history, predictions and mitigation

Today:

• Carbon cycle and CO₂ emissions
• Feedbacks and modeling
• Paleoclimate data

Friday 11/30:

• Predictions and consequences of climate change
• Mitigation
Conclusive evidence: anthropogenic CO$_2$ increase

Pre-industrial: 280 ppm, Current: 391 ppm (by volume)

Increase: $\approx +2$ ppm/year
Carbon cycle and emission

Where is atmospheric CO$_2$ coming from?

2010 values: (carbon mass)
(http://www.globalcarbonproject.org/carbontrends/)

Net atmosphere:
$(5.14 \times 10^{18} \text{ kg}) \times \frac{12}{44} \times 588 \text{ ppm(m)}$
$\cong 824 \text{ Gt}$
(note: 588 ppmm $\cong 387 \text{ ppmv}$)

Fossil fuel + cement: $\sim 8.7 \text{ Gt}$

Land use: $\sim 1.5 \text{ Gt}$

Net ocean uptake: $\sim 2.3 \text{ Gt/year}$
(1000’s of years to equilibrate (?))

Net land uptake: $\sim 3 \text{ Gt/year}$

Atmosphere increase: $+ 5 \text{ Gt/year net}$
Estimated historical carbon emissions (fossil fuels + cement)

2010 land & ocean sinks removed 1/2 of added carbon

– How long will natural sinks continue?
Other sources of ± RF besides CO₂ (current $F_{CO2} \approx 1.7 \text{ W/m}^2$)
– Other sources generally relevant on shorter time scales

- **Methane:**
 Pre-industrial 400-700 ppb (last 650,000 years); current: 1800 ppb
 Sources: wetlands, biomass burning, cow gas, industrial processes
 $F_{CH4} \approx 0.5 \text{ W/m}^2$ (> CO₂ GHG effect per unit mass)
 Destroyed in atmosphere in ~ 12 years
 Possible large-scale nonlinear release from tundra

- **Nitrous oxide, CFC’s, ozone:**
 CFC’s: strong greenhouse gases (and destroy ozone) $F_{CFC} \approx 0.35 \text{ W/m}^2$
 Ozone in troposphere, $F_{ozone} \approx 0.35 \text{ W/m}^2$

- **Aerosol:**
 Small particles in atmosphere absorb + scatter sunlight
 Power plants (coal) \rightarrow sulfur dioxide \rightarrow sulphate particles
 Nucleate reflective clouds
 Difficult to estimate, maybe $F_{aerosol} \sim -1.2 \text{ W/m}^2$; recent estimate higher
 Particulates (black carbon) on ice accelerate melting (next lecture)
Other sources of ± RF besides CO$_2$ (current $F_{\text{CO}_2} \approx 1.7$ W/m2)
– Other sources generally relevant on shorter time scales

- **Methane:**
 Pre-industrial 400-700 ppb (last 650,000 years); current: 1800 ppb
 Sources: wetlands, biomass burning, cow gas, industrial processes
 $F_{\text{CH}_4} \approx 0.5$ W/m2 (> CO$_2$ GHG effect per unit mass)
 Destroyed in atmosphere in ~ 12 years
 Possible large-scale nonlinear release from tundra

- **Nitrous oxide, CFC’s, ozone:**
 CFC’s: strong greenhouse gases (and destroy ozone) $F_{\text{CFC}} \approx 0.35$ W/m2
 Ozone in troposphere, $F_{\text{ozone}} \approx 0.35$ W/m2

- **Aerosol:**
 Small particles in atmosphere absorb + scatter sunlight
 Power plants (coal) \rightarrow sulfur dioxide \rightarrow sulphate particles
 Nucleate reflective clouds
 Difficult to estimate, maybe $F_{\text{aerosol}} \sim -1.2$ W/m2; recent estimate higher
 Particulates (black carbon) on ice accelerate melting (next lecture)
Other sources of ± RF besides CO₂ (current $F_{CO2} \approx 1.7 \text{ W/m}^2$)
– Other sources generally relevant on shorter time scales

- **Methane:**
 Pre-industrial 400-700 ppb (last 650,000 years); current: 1800 ppb
 Sources: wetlands, biomass burning, cow gas, industrial processes
 $F_{CH4} \approx 0.5 \text{ W/m}^2$ ($> CO₂$ GHG effect per unit mass)
 Destroyed in atmosphere in ~ 12 years
 Possible large-scale nonlinear release from tundra

- **Nitrous oxide, CFC’s, ozone:**
 CFC’s: strong greenhouse gases (and destroy ozone) $F_{CFC} \approx 0.35 \text{ W/m}^2$
 Ozone in troposphere, $F_{ozone} \approx 0.35 \text{ W/m}^2$

- **Aerosol:**
 Small particles in atmosphere absorb + scatter sunlight
 Power plants (coal) \rightarrow sulfur dioxide \rightarrow sulphate particles
 Nucleate reflective clouds
 Difficult to estimate, maybe $F_{aerosol} \sim -1.2 \text{ W/m}^2$; recent estimate higher
 Particulates (black carbon) on ice accelerate melting (next lecture)
Feedbacks + climate sensitivity

CO$_2$ radiative forcing $F_{2x} \simeq 3.7$ W/m2 → $\Delta T \simeq 1.2^\circ$C direct → feedbacks

Many sources of \pm feedbacks
- H$_2$O vapor: $T \uparrow \Rightarrow$ H$_2$O$\uparrow \Rightarrow +F$
- Lapse rate: H$_2$O$\uparrow \Rightarrow$ LR$\downarrow \Rightarrow -F$
- Ice albedo: $T \uparrow \Rightarrow$ ice$\downarrow \Rightarrow \alpha \downarrow \Rightarrow +F$
- Clouds: can be $\pm F$

...

Note: linear feedbacks assume \exists continuous range of equilibria

Not necessarily true — abrupt/nonlinear changes possible
(e.g. 13 ka: draining of Lake Agassiz → shutdown MOC?)
Feedbacks + climate sensitivity

CO₂ radiative forcing \(F_{2x} \cong 3.7 \text{ W/m}^2 \rightarrow \Delta T \cong 1.2^\circ \text{C direct} \rightarrow \text{feedbacks} \)

\[
F \quad -F \quad F' = \lambda \Delta T
\]

Forcing

\[
F \Rightarrow \Delta T (= -F/\lambda_0) \\
\Delta T \Rightarrow \text{change } \lambda \Rightarrow F' \\
F' \Rightarrow \Delta T' \ldots
\]

Many sources of ± feedbacks

- H₂O vapor: \(T \uparrow \Rightarrow \text{H₂O} \uparrow \Rightarrow +F \)
- Lapse rate: \(\text{H₂O} \uparrow \Rightarrow \text{LR} \downarrow \Rightarrow -F \)
- Ice albedo: \(T \uparrow \Rightarrow \text{ice} \downarrow \Rightarrow \alpha \downarrow \Rightarrow +F \)
- Clouds: can be ±F

\[
\lambda = \frac{\Delta T}{F - F'_0}
\]

\(F' \) is the climate feedback coefficient.

\[
\text{Forcing} \Rightarrow \text{Climate} \Rightarrow \text{Feedbacks} \Rightarrow \Delta T
\]

Note: linear feedbacks assume \(\exists \) continuous range of equilibria

Not necessarily true — abrupt/nonlinear changes possible

(e.g. 13 ka: draining of Lake Agassiz \(\rightarrow \) shutdown MOC?)
Feedbacks + climate sensitivity

CO_2 radiative forcing $F_{2x} \approx 3.7 \text{ W/m}^2 \rightarrow \Delta T \approx 1.2\degree C$ direct \rightarrow feedbacks

Forcing

$F \Rightarrow \Delta T (= -F/\lambda_0)$

$\Delta T \Rightarrow$ change $\lambda \Rightarrow F'$

$F' \Rightarrow \Delta T'$...

Many sources of \pm feedbacks

- H_2O vapor: $T \uparrow \Rightarrow H_2O \uparrow \Rightarrow +F$
- Lapse rate: $H_2O \uparrow \Rightarrow LR \downarrow \Rightarrow -F$
- Ice albedo: $T \uparrow \Rightarrow ice \downarrow \Rightarrow \alpha \downarrow \Rightarrow +F$
- Clouds: can be $\pm F$

...
Carbon cycle
Feedbacks and climate models
Past and present climate

Feedbacks + climate sensitivity

CO_2 radiative forcing $F_{2x} \equiv 3.7 \text{ W/m}^2 \rightarrow \Delta T \equiv 1.2^\circ \text{C direct} \rightarrow \text{feedbacks}$

Many sources of \pm feedbacks
- H_2O vapor: $T \uparrow \Rightarrow \text{H}_2\text{O} \uparrow \Rightarrow +F$
- Lapse rate: $\text{H}_2\text{O} \uparrow \Rightarrow \text{LR} \downarrow \Rightarrow -F$
- Ice albedo: $T \uparrow \Rightarrow \text{ice} \downarrow \Rightarrow \alpha \downarrow \Rightarrow +F$
- Clouds: can be $\pm F$

Note: linear feedbacks assume \exists continuous range of equilibria

Not necessarily true — abrupt/nonlinear changes possible
(e.g. 13 ka: draining of Lake Agassiz \Rightarrow shutdown MOC?)
Feedback analysis

Feedback parameter λ [W/m2°C]: change in RF from change in T_s

$\lambda_0 \approx -3.2$ W/m2°C “uniform temp.” radiative cooling response

Other feedbacks: water vapor, clouds, CO$_2$, ice albedo, . . .

Radiative equilibrium when $(\lambda_0 + \lambda_1 + \ldots \lambda_n)\Delta T + F = 0$

Iterative mechanism (1 λ): Forcing $F \Rightarrow (\Delta T)_0 = -F/\lambda_0 \Rightarrow \lambda$

λ gives additional forcing $F_\lambda = \lambda \Delta T = -F\lambda/\lambda_0 \Rightarrow (\Delta T)_1 = F\lambda/\lambda^2$

$\Delta T = -\frac{F}{\lambda_0} \left[1 - \frac{\lambda}{\lambda_0} + \frac{\lambda^2}{\lambda^2_0} + \cdots \right] = -F/(\lambda_0 + \lambda)$

$\lambda > 0$ feedbacks \Rightarrow amplify warming by $f = \lambda_0/(\lambda_0 + \lambda) = 1/(1 - \lambda/|\lambda_0|)$

Note that $\lambda > |\lambda_0| \Rightarrow$ runaway feedback!

(complete runaway unlikely– log forcing, paleo data: ok w/higher CO$_2$, T)
Feedback analysis

Feedback parameter λ [W/m2°C]: change in RF from change in T_s

$\lambda_0 \cong -3.2$ W/m2°C “uniform temp.” radiative cooling response

Other feedbacks: water vapor, clouds, CO$_2$, ice albedo, . . .

Radiative equilibrium when

$$(\lambda_0 + \lambda_1 + \ldots \lambda_n) \Delta T + F = 0$$

Iterative mechanism (1 λ): Forcing $F \Rightarrow (\Delta T)_0 = -F/\lambda_0 \Rightarrow \lambda$

λ gives additional forcing $F_\lambda = \lambda \Delta T = -F \lambda/\lambda_0 \Rightarrow (\Delta T)_1 = F \lambda/\lambda_0^2$

$$\Delta T = -\frac{F}{\lambda_0} \left[1 - \frac{\lambda}{\lambda_0} + \frac{\lambda^2}{\lambda_0^2} + \cdots \right] = -\frac{F}{(\lambda_0 + \lambda)}$$

$\lambda > 0$ feedbacks \Rightarrow amplify warming by $f = \lambda_0/(\lambda_0 + \lambda) = 1/(1 - \lambda/|\lambda_0|)$

Note that $\lambda > |\lambda_0| \Rightarrow$ runaway feedback!

(complete runaway unlikely– log forcing, paleo data: ok w/higher CO$_2$, T)
Feedback analysis

Feedback parameter $\lambda [W/m^2^\circ C]$: change in RF from change in T_s

$\lambda_0 \approx -3.2 \ W/m^2^\circ C$ “uniform temp.” radiative cooling response

Other feedbacks: water vapor, clouds, CO_2, ice albedo, . . .

Radiative equilibrium when $(\lambda_0 + \lambda_1 + \ldots \lambda_n)\Delta T + F = 0$

Iterative mechanism (1 λ): Forcing $F \Rightarrow (\Delta T)_0 = -F/\lambda_0 \Rightarrow \lambda$
λ gives additional forcing $F_\lambda = \lambda \Delta T = -F \lambda/\lambda_0 \Rightarrow (\Delta T)_1 = F \lambda/\lambda_0^2$

$\Delta T = -\frac{F}{\lambda_0} [1 - \lambda/\lambda_0 + \lambda^2/\lambda_0^2 + \ldots] = -F/(\lambda_0 + \lambda)$

$\lambda > 0$ feedbacks \Rightarrow amplify warming by $f = \lambda_0/(\lambda_0 + \lambda) = 1/(1 - \lambda/|\lambda_0|)$

Note that $\lambda > |\lambda_0| \Rightarrow$ runaway feedback!
(complete runaway unlikely– log forcing, paleo data: ok w/higher CO_2, T)
General Circulation Models (GCM’s)

Compute dynamics of coupled atmosphere + ocean processes
many processes not modeled, parameterized to match observation

- **Atmosphere**
 - grid simulation well-developed
 - clouds parameterized, difficult

- **Oceans**
 - less well developed,
 - fewer observations available

- **Ice (cryosphere), land surface**
 - included recently, limited

- **Couplings (evap., wind stress, . . .)**
 - increase complexity

Currently, grids down to 1.25° latitude/longitude, 20 pts. vertical
Time steps 30m-1h, integrate years/decades → Tflop years

GCM’s in general agreement, but some variance (e.g. clouds)
Issues/uncertainties: shared code, limited precision, missing physics
General Circulation Models (GCM’s)

Compute dynamics of coupled atmosphere + ocean processes
many processes not modeled, parameterized to match observation

- Atmosphere
 - grid simulation well-developed
 - clouds parameterized, difficult

- Oceans
 - less well developed,
 - fewer observations available

- Ice (cryosphere), land surface
 - included recently, limited

- Couplings (evap., wind stress, . . .)
 - increase complexity

Currently, grids down to 1.25° latitude/longitude, 20 pts. vertical
Time steps 30m-1h, integrate years/decades → Tflop years

GCM’s in general agreement, but some variance (e.g. clouds)
Issues/uncertainties: shared code, limited precision, missing physics
Feedback estimates from general circulation models (∼ 20 GCM’s)

Upshot: estimate total $\lambda \approx 2 \text{ W/m}^2\text{°C}$

So $f = 1/(1 - \lambda/|\lambda_0|) \approx 1/(1 - 2/3.2) \approx 2.67, \quad \sigma = -f/\lambda_0$

So IPCC estimates $\Delta T_{2x} \approx \sigma F_{2x} \approx 3.2\text{°C} \pm 0.7\text{°C}$

Without cloud feedback (most uncertain): $\Delta T_{2x} \approx 1.9\text{°C} \pm 0.15\text{°C}$
Recent temperature data [Hadley climate centre, monthly data]

- Warming after little ice age → 1940, ~ flat to 1975
- Since 1975, believed warmest on record in > 1 million years
- Perhaps 0.1°C warming from “urban heat islands”
 (note: 500 EJ ≪ 50000 EJ/year from RF)
Temperature data, take 2

- Relatively flat since 2000, but 2010 second hottest (after 1998) (negative RF from sulphates from coal emissions?)

Global average temperature 1850-2011
Based on Brohan et al. 2006

Smoothed yearly temperature data [Hadley climate centre]
Paleoclimate data

Comparison to historical record useful in many ways —

- Compare current era to historical
- Isolate anthropogenic/natural sources of change
- Check GCM’s

Sources of data

Instrumental data: back 150-200 years max

Tree rings (dendrochronology): several 1000’s years data

Ice cores, deep sea sediment cores: back 100,000’s of years
 CO₂ data, 18O → ice mass, temperature back ~ 600,000 years

Further back, challenging but some data
Paleoclimate data

Comparison to historical record useful in many ways —

- Compare current era to historical
- Isolate anthropogenic/natural sources of change
- Check GCM’s

Sources of data

Instrumental data: back 150-200 years max

Tree rings (dendrochronology): several 1000’s years data

Ice cores, deep sea sediment cores: back 100,000’s of years
 CO$_2$ data, 18O \rightarrow ice mass, temperature back \sim 600,000 years

Further back, challenging but some data
Reconstructions of surface temperature over 2000 years

Medieval climatic optimum 1000-1300 AD
Little ice age: 1400-1900 AD (incl. Maunder, Sporer sunspot minima)
Ice core data: Vostok and EPICA

Antarctic ice cores: 700,000 year climate record
– Ice cores > 3 km long
– Trapped air bubbles: information about atmosphere
– Levels of deuterium (in HDO) proxy for temperature
Paleo data — last 650,000 years

- CO$_2$ 180-300 ppm, varies with (following) T.
- \sim 100 kyr glacial cycle, warm interglacials \sim 10 – 30 kyr
- Last glacial max \sim 20 kyrs ago. $\Delta T \sim -5^\circ$C (sea level -120m)
- 9ka-1200 AD relatively warm, very stable; 1250-1850 little ice age
Natural causes of climate change

Many natural phenomena influence climate

- Solar variation (sunspots, gradual intensity increase)
- Configuration of land masses on earth
- Particulate matter in atmosphere (e.g. volcanos, meteor impact)

Generally agreed, main factor over last 0.5 Myrs is orbital geometry

Milankovitch (orbital parameter) theory

Obliquity (tilt) Φ: tilt of axis relative to ecliptic plane

Eccentricity e: ellipticity, departure of orbit from circle

Axial precession Λ: tilt direction vs. perihelion
Natural causes of climate change

Many natural phenomena influence climate

- Solar variation (sunspots, gradual intensity increase)
- Configuration of land masses on earth
- Particulate matter in atmosphere (e.g. volcanos, meteor impact)

Generally agreed, main factor over last 0.5 Myrs is orbital geometry

Milankovitch (orbital parameter) theory

Obliquity (tilt) Φ: tilt of axis relative to ecliptic plane

Eccentricity e: ellipticity, departure of orbit from circle

Axial precession Λ: tilt direction vs. perihelion
Orbital parameters and ice ages

Orbital parameters vary with characteristic periods.

\(e \): 100 ky, 400 ky \(\rightarrow \) small (~ 0.18\%) total insolation variation

\(\Phi \): 22.1°-24.5°, cycle \(\sim 41,000 \) y \(\rightarrow \) latitudinal insolation variation

\(e \sin \Lambda \): \(\sim 26,000 \) y \(\rightarrow \) latitudinal insolation variation

Minimum northern summer insolation when \(\Phi \) small, \(e \sin \Lambda \) negative

Small effects but with feedbacks, believed drive ice ages
Orbital parameters and ice ages

Orbital parameters vary with characteristic periods.

\(e \): 100 ky, 400 ky \(\rightarrow \) small (\(\sim 0.18\% \)) total insolation variation

\(\Phi \): 22.1°-24.5°, cycle \(\sim 41,000 \) y \(\rightarrow \) latitudinal insolation variation

\(e \sin \Lambda \): \(\sim 26,000 \) y \(\rightarrow \) latitudinal insolation variation

Minimum northern summer insolation when \(\Phi \) small, \(e \sin \Lambda \) negative

Small effects but with feedbacks, believed drive ice ages
Further back ... Cretaceous period

145-65 million years ago

- Quite warm in Cretaceous/Eocene
 - dinosaurs near (then) South Pole
 - seas 100-200m > now; deep sea 10-15°C > now

- Estimated 3x-12x current CO$_2$
 - poorly understood: GCM’s indicate higher tropical T than data

- Continents configured differently, different ocean flow

- Life abundant, 60% current oil reserves from Cretaceous
55 million years ago: CO$_2$~5x current, mammals proliferated

Cooling over last 50 million years:

CO$_2$ removal by weathering from Tibetan Plateau (?)

35 Ma: permanent glaciation in Antarctica, major growth 13 Ma

7-3 Ma: permanent ice sheets in Greenland, 2.75 Ma: northern glaciation
Causes of recent warming

- IPCC: “Most of the observed increase in global average temperatures since the mid-20th-century is very likely [> 90%] due to the observed increase in anthropogenic GHG concentrations”.