Energy and Climate I: Earth atmosphere and the greenhouse effect

November 26, 2012
So far, have focused on isolated energy systems.

Many factors influence energy choices:
- Resource availability/scarcity
- Convenience (energy density, difficulty of conversion)
- Cost (generally controlled by availability/convenience)

Until recently, these factors have favored fossil fuels. But not indefinitely.
- Energy independence/politics
- External consequences of specific energy sources (nuclear waste, climate)

Need to understand and incorporate consequences in use, cost.

Latter factors motivate switching to renewables sooner, not later (opinion).
So far, have focused on isolated energy systems

Many factors influence energy choices

- Resource availability/scarcity
- Convenience (energy density, difficulty of conversion)
- Cost (generally controlled by availability/convenience)

Until recently, these factors have favored fossil fuels. But not indefinitely.

- Energy independence/politics
- External consequences of specific energy sources (nuclear waste, climate)

Need to understand and incorporate consequences in use, cost.

Latter factors motivate switching to renewables sooner, not later (opinion)
Energy plays a fundamental role in earth systems

- Energy flow connects and unifies earth systems, controls climate
- Human energy usage affects earth systems and climate

Climate: the statistical distribution of meteorological phenomena (temperature, precipitation, *etc.*) over long times.

Climate depends on Earth’s surface, atmosphere, hydrosphere (water), cryosphere (ice), and biosphere.

Human activity impacts all these “‘spheres”

In next 3 lectures, study energy-climate connections.

I. Earth atmosphere and the greenhouse effect (today)
II. The carbon cycle, feedbacks and climate history
III. Projections, consequences, and mitigation
Energy plays a fundamental role in earth systems

- Energy flow connects and unifies earth systems, controls climate
- Human energy usage affects earth systems and climate

Climate: the statistical distribution of meteorological phenomena (temperature, precipitation, *etc.*) over long times.

Climate depends on Earth’s surface, atmosphere, hydrosphere (water), cryosphere (ice), and biosphere.

Human activity impacts all these “spheres”

In next 3 lectures, study energy-climate connections.

I. Earth atmosphere and the greenhouse effect (today)
II. The carbon cycle, feedbacks and climate history
III. Projections, consequences, and mitigation
Energy plays a fundamental role in earth systems

- Energy flow connects and unifies earth systems, controls climate
- Human energy usage affects earth systems and climate

Climate: the statistical distribution of meteorological phenomena (temperature, precipitation, *etc.*) over long times.

Climate depends on Earth’s surface, atmosphere, hydrosphere (water), cryosphere (ice), and biosphere.

Human activity impacts all these “spheres”

In next 3 lectures, study energy-climate connections.

I. Earth atmosphere and the greenhouse effect (today)
II. The carbon cycle, feedbacks and climate history
III. Projections, consequences, and mitigation
Earth climate: simplified models — insolation and albedo

Albedo: $\alpha = \text{fraction of reflected incident solar energy}$

Water, forest, etc.: low α

Desert, ice, sheep, etc.: high α

Earth in current state: $\alpha \approx 0.3$
[\sim0.06 \text{ atmosphere}, \sim0.1 \text{ surface}, \sim0.15 \text{ clouds}]
Earth climate: simplified models — insolation and albedo

Albedo: $\alpha = \text{fraction of reflected incident solar energy}$

- **Water, forest, etc.: low α**
- **Desert, ice, sheep, etc.: high α**

Earth in current state: $\alpha \approx 0.3$

[$\sim 0.06 \text{ atmosphere}, \sim 0.1 \text{ surface}, \sim 0.15 \text{ clouds}$]

Low albedo

High albedo
Simplified climate models

Earth atmosphere

Earth climate–insolation and albedo

Start with some simple models to understand warming mechanism

Simplest model: average over surface, only O_2, N_2 in atmosphere
no atmospheric absorption of solar or IR radiation

\[
I = (1 - \alpha)I_0 \approx 0.84 \, I_0 \text{ w/o clouds}
\]

\[
I_0 = \langle I_{in} \rangle = 343 \, \text{W/m}^2 = 1370 \, \text{W/m}^2 \times \frac{\pi R^2}{4\pi R^2}
\]

In radiative equilibrium

\[
\sigma T_s^4 = 0.84I_0 \approx 288 \, \text{W/m}^2
\]

\[
\Rightarrow T_s \approx 267 \, \text{K} = -6 \, \text{°C}
\]

(Actual temperature near surface \(\approx 287 \, \text{K}\))

[Note: in reality this situation \(\rightarrow\) feedback: more ice \(\rightarrow\) \(\alpha\uparrow\) \(\rightarrow\) colder]
Earth climate–insolation and albedo

Start with some simple models to understand warming mechanism

Simplest model: average over surface, only O$_2$, N$_2$ in atmosphere
no atmospheric absorption of solar or IR radiation

\[
I = (1 - \alpha)I_0 \cong 0.84 I_0 \text{ w/o clouds}
\]

\[
I_0 = \langle I_{\text{in}} \rangle = 343 \text{ W/m}^2 = 1370 \text{ W/m}^2 \times \frac{\pi R^2}{4\pi R^2}
\]

In radiative equilibrium

\[
\sigma T_s^4 = 0.84 I_0 \cong 288 \text{ W/m}^2
\]

\[
\Rightarrow T_s \cong 267 \text{ K} = -6^\circ \text{C}
\]

(Actual temperature near surface \(\cong 287 \text{ K}\))

[Note: in reality this situation \(\rightarrow\) feedback: more ice \(\rightarrow\) \(\alpha\uparrow\rightarrow\) colder]
Greenhouse effect

Include IR absorption in atmosphere by greenhouse gases (GHG) \((\text{H}_2\text{O}, \text{CO}_2, \ldots)\)

Simple model:
1 layer, perfect IR absorption

\[
\begin{align*}
0.84I_0 & \rightarrow T_a \\
T_s & \approx 267K \\
\sigma T_s^4 & \approx 2(1 - \alpha)I_0 \\
T_a & \approx 267K \\
T_s & \approx \sqrt[4]{2} 267K \approx 318K
\end{align*}
\]

[don’t take “toy model” temperatures seriously; just qualitative effects]
Greenhouse effect

Include IR absorption in atmosphere by greenhouse gases (GHG) \((H_2O, CO_2, \ldots)\)

Simple model:
1 layer, perfect IR absorption

\[
\sigma T_a^4 = (1 - \alpha) I_0 \\
\sigma T_s^4 = 2\sigma T_a^4 = 2(1 - \alpha) I_0 \\
T_a \approx 267K \\
T_s \approx \sqrt[4]{2} 267K \approx 318K
\]

[don’t take “toy model” temperatures seriously; just qualitative effects]

Svante Arrhenius (1859-1927)
1896: predicted \(CO_2 \rightarrow\) warming
Greenhouse effect: n level model

As greenhouse gases increase, IR absorbed/emitted multiple times

Model with 2 IR absorbing layers

\[
\begin{align*}
\sigma T_1^4 &= I = (1 - \alpha)I_0 \\
\sigma T_2^4 &= 2\sigma T_1^4 \\
\sigma T_s^4 &= \sigma(2T_2^4 - T_1^4) = 3\sigma T_1^4 \\
T_s &\approx \sqrt[4]{3} \times 267K \approx 351K
\end{align*}
\]

Model with n IR absorbing layers: \(T_s = \left(\sqrt[n]{n+1}\right) \times 267 \text{ K} \)

So temperature increases with more GHG—but unrealistically fast

Really, weaker dependence on GHG— not all IR absorbed
Greenhouse effect: absorption bands

GHG only absorb some frequencies

Model: layers absorb 1/2 IR

Equations: HW

- Better model, GHG dependence still incomplete
- Real atmosphere: continuous distribution, absorption bands, convection, ...
Greenhouse effect: absorption bands

GHG only absorb some frequencies

Model: layers absorb 1/2 IR

\[I = 0.84I_0 \]

\[\frac{1}{2} \sigma T_s^4 \]

\[\frac{1}{2} \sigma T_s^4 \]

Equations: HW

- Better model, GHG dependence still incomplete
- Real atmosphere: continuous distribution, absorption bands, convection, ...
To go further . . .

Need to understand something about atmospheres

- Where is material? (density distribution)
- What is temperature profile?
- How and where does atmosphere absorb/emit radiation
- What are the effects of convection + water vapor?

We will go over some basics,

For more details: Hartmann, “Global Physical Climatology”
Atmosphere: hydrostatic equilibrium

Assume \(\rho, p \) in static equilibrium, no radiation/absorption

Pressure depends on weight of air above

\[z \uparrow: \quad dp = -g \rho \, dz \]

Combine with ideal gas law

\[pV = N k_B T = V \frac{\rho}{m} k_B T \quad \Rightarrow \quad \rho = \frac{mp}{k_B T} \]

so \(dp/p = -dz/H \) where \(H = k_B T/mg \) = “scale height”

(pressure down by \(1/e \) every \(H \) in constant \(T \) region;
earth atm. \(\approx 290 \text{ K}, \ m \approx 29 \text{ u}: \ H \approx 8.5 \text{ km near surface, decreases w/T} \)

Solution:

\[p = p_0 e^{-\int_0^z dz/H} \]

[Note: for constant \(T \), \(\rho = \rho_0 e^{-mgz/k_B T} \sim \text{Boltzmann!} \)]
Atmosphere: hydrostatic equilibrium

Assume ρ, p in static equilibrium, no radiation/absorption

Pressure depends on weight of air above

$z \uparrow$: $dp = -g\rho dz$

Combine with ideal gas law

$$pV = Nk_B T = V \frac{\rho}{m} k_B T \quad \Rightarrow \quad \rho = \frac{mp}{k_B T}$$

so $dp/p = -dz/H$ where $H = k_B T/mg =$ “scale height”

(pressure down by $1/e$ every H in constant T region;
earth atm. ≈ 290 K, $m \approx 29$ u: $H \sim 8.5$ km near surface, decreases w/T)

Solution:

$$p = p_0 e^{-\int_0^z dz/H}$$

[Note: for constant T, $\rho = \rho_0 e^{-mgz/k_B T} \sim$ Boltzmann!]
Atmosphere: hydrostatic equilibrium

Assume ρ, p in static equilibrium, no radiation/absorption

Pressure depends on weight of air above

$$z \uparrow: \quad dp = -g\rho dz$$

Combine with ideal gas law

$$pV = Nk_B T = \frac{V}{m} \rho k_B T \quad \Rightarrow \quad \rho = \frac{mp}{k_B T}$$

so $dp/p = -dz/H$ where $H = k_B T/mg = \text{“scale height”}$

(pressure down by $1/e$ every H in constant T region; earth atm. ≈ 290 K, $m \approx 29$ u: $H \sim 8.5$ km near surface, decreases w/ T)

Solution:

$$p = p_0 e^{-\int_0^z dz/H}$$

[Note: for constant T, $\rho = \rho_0 e^{-mgz/k_B T} \sim \text{Boltzmann!}$]
Atmosphere: lapse rate

Lapse rate: $\Gamma = -dT/dz$ (rate of T change with altitude)

Consider motion of packet of air in hydrostatic equilibrium

First law: $C_v dT + p \, dV = 0$ (adiabatic)

[packet up, $dV > 0$ (expands), $dT < 0$ (cools)]

\[
p \, dV + V \, dp = N k_B \, dT = (C_p - C_v) \, dT
\]
\[
\rightarrow C_p \, dT = V \, dp = -V \, g \rho \, dz
\]

so

\[
\frac{dT}{dz} = \frac{V g \rho}{C_p} = -\frac{g}{c_p} = -\Gamma_d \quad \text{“adiabatic lapse rate”}
\]

Near surface: $c_p \sim 1, \quad \Gamma_d \approx 9.8^\circ \text{C/km} = \text{dry adiabatic lapse rate @ 290 K}$

$\Gamma > \Gamma_d \Rightarrow \text{convective instability.} \quad \text{H}_2\text{O vapor} \rightarrow \Gamma_d \text{ decreases}$

Troposphere: bottom $\sim 10 \text{ km};$ global mean $\Gamma \approx 6.5^\circ \text{C/km}$

Heat transfer primarily convective, $\Gamma \sim 3 - 10^\circ \text{C/km}$
Atmosphere: lapse rate

Lapse rate: \(\Gamma = -\frac{dT}{dz} \) (rate of \(T \) change with altitude)

Consider motion of packet of air in hydrostatic equilibrium

First law: \(C_v dT + p \, dV = 0 \) (adiabatic)

\[p \, dV + V \, dp = N k_B \, dT = (C_p - C_v) \, dT \]

\[\rightarrow C_p \, dT = V \, dp = -V \, g \, \rho \, dz \]

so

\[\frac{dT}{dz} = \frac{V g \rho}{C_p} = -\frac{g}{c_p} = -\Gamma_d \quad \text{“adiabatic lapse rate”} \]

Near surface: \(c_p \sim 1, \quad \Gamma_d \approx 9.8 \, ^\circ C/km \) = dry adiabatic lapse rate @ 290 K

\(\Gamma > \Gamma_d \Rightarrow \) convective instability. \(\text{H}_2\text{O} \) vapor \(\rightarrow \) \(\Gamma_d \) decreases

Troposphere: bottom \(\sim 10 \) km; global mean \(\Gamma \approx 6.5 \, ^\circ C/km \)

Heat transfer primarily convective, \(\Gamma \sim 3 - 10 \, ^\circ C/km \)
Atmosphere: lapse rate

Lapse rate: \(\Gamma = -dT/dz \) (rate of \(T \) change with altitude)

Consider motion of packet of air in hydrostatic equilibrium

First law: \(C_v dT + p \, dV = 0 \) (adiabatic)

\[p \, dV + V \, dp = N k_B \, dT = (C_p - C_v) \, dT \]
\[\rightarrow C_p \, dT = V \, dp = -V \, g \rho \, dz \]

so

\[\frac{dT}{dz} = \frac{V g \rho}{C_p} = -\frac{g}{c_p} = -\Gamma_d \quad \text{“adiabatic lapse rate”} \]

Near surface: \(c_p \sim 1, \quad \Gamma_d \approx 9.8^\circ \text{C/km} = \text{dry adiabatic lapse rate} \) @ 290 K

\(\Gamma > \Gamma_d \Rightarrow \text{convective instability}. \quad \text{H}_2\text{O vapor} \rightarrow \Gamma_d \text{ decreases} \)

Troposphere: bottom \(\sim 10 \) km; global mean \(\Gamma \approx 6.5^\circ \text{C/km} \)

Heat transfer primarily convective, \(\Gamma \sim 3 - 10^\circ \text{C/km} \)
Atmospheric absorption

Molecules in atmosphere absorb in different parts of spectrum

IR: \(H_2O, CO_2, O_3, CH_4, N_2O, \ldots\) in troposphere \((<\sim 15 \text{ km})\) have vibration-rotation spectra in thermal IR region
lines broadened (Doppler, pressure, QM) \(\rightarrow\) bands
Small changes in minority constituents \(\rightarrow\) affect T, climate

UV: \(O_2, O_3\) in stratosphere \((\sim 50 \text{ km})\)
\(O_2\) dissociates w/ < 246 nm, (then \(O + O_2 + M \rightarrow O_3 + M\))
\(O_3\) has dissociation (Hartley, 200nm-300nm) in UV

Lambert-Beer absorption
\[
\frac{dI}{dz} = -\kappa I_0
\]

\(\kappa = \rho k\), \(\rho =\) density of absorber, \(k =\) absorption x-section
(includes \(z\)-dependent \(\rho\), most absorption \(\tau \sim 1\))

Optical depth
\[
\tau = \int_{z}^{\infty} k\rho \, dz; \quad I = I_0 e^{-\tau}
\]
Atmospheric absorption

Molecules in atmosphere absorb in different parts of spectrum

IR: \(\text{H}_2\text{O}, \text{CO}_2, \text{O}_3, \text{CH}_4, \text{N}_2\text{O}, \ldots \) in troposphere (\(< \sim 15 \text{ km}\)) have vibration-rotation spectra in thermal IR region
lines broadened (Doppler, pressure, QM) \(\rightarrow \) bands
Small changes in minority constituents \(\rightarrow \) affect T, climate

UV: \(\text{O}_2, \text{O}_3 \) in stratosphere (\(\sim 50 \text{ km} \))
\(\text{O}_2 \) dissociates w/ \(< 246 \text{ nm} \), (then \(\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M} \))
\(\text{O}_3 \) has dissociation (Hartley, 200nm-300nm) in UV

Lambert-Beer absorption
\[
\frac{dI}{dz} = -\kappa I_0
\]

\(\kappa = \rho k, \rho = \text{density of absorber, } k = \text{absorption x-section} \)
(includes \(z \)-dependent \(\rho \), most absorption \(\tau \sim 1 \))

Optical depth
\[
\tau = \int_{z}^{\infty} k\rho \, dz; \quad I = I_0 e^{-\tau}
\]
Putting it all together: 1D radiative-convective equilibrium

1D atmosphere model

— Lower atmosphere + minority constituents $p = p_0 e^{-\int_0^z dz/H}$
— Ozone 30 – 80 km (photochemical production)
— H_2O vapor \Rightarrow critical lapse rate

Integrate using Schwarzschild’s equation

$$dI_\nu = (-I_\nu + B_\nu(T))k_\nu \rho \, dz$$

$$B_\nu(T) = \frac{2\pi h\nu^3}{c^2} \frac{1}{e^{h\nu/k_BT} - 1}$$

Simplifications: bands, LR

Cloudless atmosphere [Hartmann]
Critical LR 6.5°C/km

Major component missing: clouds— less understood
More detailed modeling entails clouds, latitudinal variation, dynamics, including oceanic flow, etc. ⇒ General Circulation Models (GCM)

Actual global average radiation budget

Modeling is useful in understanding how changes affect balance
More detailed modeling entails clouds, latitudinal variation, dynamics, including oceanic flow, etc. ⇒ General Circulation Models (GCM)

Actual global average radiation budget

Modeling is useful in understanding how changes affect balance.
Can now define a key concept in the science of climate change

Radiative Forcing:

“The change in net (down minus up) irradiance (solar + longwave; in W/m\(^2\)) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values”

[IPCC 2001 + 2007 reports]

- Measured in W/m\(^2\)
- RF \(F\) related to \(\Delta T\) by \(\Delta T = \sigma F\) (assume linear response)
- Easy to calculate and compare \(F\)
- But not a full measure of climate change
Simplified climate models
Earth atmosphere

Can now define a key concept in the science of climate change

Radiative Forcing:
“The change in net (down minus up) irradiance (solar + longwave; in W/m^2) at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with surface and tropospheric temperatures and state held fixed at the unperturbed values”

[IPCC 2001 + 2007 reports]

- Measured in W/m^2
- RF \(F \) related to \(\Delta T \) by \(\Delta T = \sigma F \) (assume linear response)
- Easy to calculate and compare \(F \)
- But not a full measure of climate change
CO$_2$ 15 micron band

Radiative forcing grows logarithmically in CO$_2$ level

$$F \sim F_* + c \log_2 (M_{CO_2}/M_*)$$

[Temperature change ΔT also grows logarithmically if linear feedback.]

Why? Density increases \rightarrow saturated band grows logarithmically

Given current understanding of atmosphere, logarithmic effect of increased CO$_2$ can be computed fairly accurately

Best estimate: $c \approx 3.7$ W/m2
CO₂ 15 micron band

Radiative forcing grows logarithmically in CO₂ level

\[F \sim F_* + c \log_2 \left(\frac{M_{\text{CO}_2}}{M_*} \right) \]

[Temperature change \(\Delta T \) also grows logarithmically if linear feedback.]

Why? Density increases → saturated band grows logarithmically

Given current understanding of atmosphere, logarithmic effect of increased CO₂ can be computed fairly accurately

Best estimate: \(c \approx 3.7 \text{ W/m}^2 \)
Radiative forcing by CO₂

- RF (in W/m²) quantitative measure of effect of increasing CO₂
- Expect RF of CO₂ depends logarithmically on CO₂

Define

\[F_{2x} = \text{radiative forcing from doubling CO}_2 \text{ (e.g. } 280 \text{ ppm } \rightarrow 560 \text{ ppm}) \]

\[\text{Global models } \Rightarrow F_{2x} \approx 3.7 \text{ W/m}^2 \]

Models say: if all else held fixed
\[F_{2x} \approx 3.7 \text{ W/m}^2 \Rightarrow \Delta T_s \approx 1.2°C \]

But feedbacks \(\rightarrow \Delta T_s \approx \sigma F_{2x} \)

Key question:
what is climate sensitivity \(\sigma \)

Simple computation:
If \(T = 255 \text{ K (fits } \alpha = 0.3), \text{ what } \Delta T \rightarrow 3.7 \text{ W/m}^2? \)

\[\sigma T^4 \approx 240.1 \text{ W/m}^2 \]
\[\sigma (T + 0.98)^4 \approx 243.8 \text{ W/m}^2 \]
Radiative forcing by CO$_2$

- RF (in W/m2) quantitative measure of effect of increasing CO$_2$
- Expect RF of CO$_2$ depends logarithmically on CO$_2$

Define

\[F_{2x} = \text{radiative forcing from doubling CO}_2 \text{ (e.g. 280 ppm} \rightarrow 560 \text{ ppm)} \]

\[\text{Global models} \Rightarrow F_{2x} \approx 3.7 \text{ W/m}^2 \]

Models say: if all else held fixed

\[F_{2x} \approx 3.7 \text{ W/m}^2 \Rightarrow \Delta T_s \approx 1.2^{\circ} \text{C} \]

But feedbacks \(\Rightarrow \Delta T_s \approx \sigma F_{2x} \)

Key question:
what is climate sensitivity \(\sigma \)

Simple computation:
If \(T = 255 \text{ K} \) (fits \(\alpha = 0.3 \)),
what \(\Delta T \rightarrow 3.7 \text{ W/m}^2 \)?

\[\sigma T^4 \approx 240.1 \text{ W/m}^2 \]
\[\sigma (T + 0.98)^4 \approx 243.8 \text{ W/m}^2 \]
Radiative forcing by CO₂

- RF (in W/m²) quantitative measure of effect of increasing CO₂
- Expect RF of CO₂ depends logarithmically on CO₂

Define

\[F_{2x} = \text{radiative forcing from doubling CO}_2 \text{ (e.g. 280 ppm → 560 ppm)} \]

Global models ⇒ \(F_{2x} \approx 3.7 \text{ W/m}^2 \)

Models say: if all else held fixed

\[F_{2x} \approx 3.7 \text{ W/m}^2 \Rightarrow \Delta T_s \approx 1.2^\circ \text{C} \]

But feedbacks → \(\Delta T_s \approx \sigma F_{2x} \)

Key question:
what is climate sensitivity \(\sigma \)

Simple computation:
If \(T = 255 \text{ K} \) (fits \(\alpha = 0.3 \)), what \(\Delta T \rightarrow 3.7 \text{ W/m}^2 \)?

\[\sigma T^4 \approx 240.1 \text{ W/m}^2 \]

\[\sigma (T + 0.98)^4 \approx 243.8 \text{ W/m}^2 \]
We have considered the theory, now let’s look at the data

Conclusive evidence: anthropogenic CO$_2$ increase

pre-industrial: 280 ppm, current: 391 ppm, increase: ~ 2 ppm/year
SUMMARY

- Earth albedo $\alpha \approx 0.3 = \text{fraction of reflected solar energy}$

- Greenhouse effect raises Earth temperature

- Scale height $H = \frac{k_B T}{mg} = \text{vertical distance for pressure decrease by } 1/e$

- Lapse rate $\Gamma = -\frac{dT}{dz} = \text{rate of temperature decrease.}$
 - Dry adiabatic lapse rate $\Gamma_d \approx 9.8^\circ \text{ C/km.}$
 - Water vapor decreases Γ_d
 - $\Gamma > \Gamma_d \Rightarrow \text{convective instability}$

- Radiative forcing = increase in downward radiation at tropopause without including climate feedback
 - Radiative forcing from doubling CO$_2$ $F_{2x} \approx 3.7 \text{ W/m}^2$
SUMMARY

- Earth albedo \(\alpha \approx 0.3 = \) fraction of reflected solar energy

- Greenhouse effect raises Earth temperature

- Scale height \(H = k_B T / mg = \) vertical distance for pressure decrease by \(1/e \)

- Lapse rate \(\Gamma = -dT/dz = \) rate of temperature decrease.
 - Dry adiabatic lapse rate \(\Gamma_d \approx 9.8^\circ C/km. \)
 - Water vapor decreases \(\Gamma_d \)
 - \(\Gamma > \Gamma_d \Rightarrow \) convective instability

- Radiative forcing = increase in downward radiation at tropopause without including climate feedback
 - Radiative forcing from doubling CO\(_2\), \(F_{2x} \approx 3.7 \text{ W/m}^2 \)
SUMMARY

- Earth albedo $\alpha \approx 0.3 = \text{fraction of reflected solar energy}$

- Greenhouse effect raises Earth temperature

- Scale height $H = k_B T/mg = \text{vertical distance for pressure decrease by } 1/e$

- Lapse rate $\Gamma = -dT/dz = \text{rate of temperature decrease.}$
 - Dry adiabatic lapse rate $\Gamma_d \approx 9.8^\circ \text{C/km.}$
 - Water vapor decreases Γ_d
 - $\Gamma > \Gamma_d \Rightarrow \text{convective instability}$

- Radiative forcing $= \text{increase in downward radiation at tropopause without including climate feedback}$
 - Radiative forcing from doubling CO$_2$ $F_{2x} \approx 3.7 \text{ W/m}^2$
SUMMARY

- Earth albedo $\alpha \approx 0.3 = \text{fraction of reflected solar energy}$
- Greenhouse effect raises Earth temperature
- Scale height $H = k_B T/mg = \text{vertical distance for pressure decrease by } 1/e$
- Lapse rate $\Gamma = -dT/dz = \text{rate of temperature decrease}$.
 Dry adiabatic lapse rate $\Gamma_d \approx 9.8^\circ \text{C/km}$.
 Water vapor decreases Γ_d
 $\Gamma > \Gamma_d \Rightarrow \text{convective instability}$
- Radiative forcing $= \text{increase in downward radiation at tropopause without including climate feedback}$
 Radiative forcing from doubling CO$_2$ $F_{2x} \approx 3.7 \text{ W/m}^2$
SUMMARY

- Earth albedo $\alpha \approx 0.3 = \text{fraction of reflected solar energy}$
- Greenhouse effect raises Earth temperature
- Scale height $H = \frac{k_B T}{mg} = \text{vertical distance for pressure decrease by } 1/e$
- Lapse rate $\Gamma = -\frac{dT}{dz} = \text{rate of temperature decrease.}$

 - Dry adiabatic lapse rate $\Gamma_d \approx 9.8^\circ C/km.$
 - Water vapor decreases Γ_d
 - $\Gamma > \Gamma_d \implies \text{convective instability}$
- Radiative forcing = increase in downward radiation at tropopause without including climate feedback

 - Radiative forcing from doubling CO$_2$ $F_{2x} \approx 3.7 \text{ W/m}^2$