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Saliency models have improved dramatically at ability
to discover faces and text in images amidst clutter.

Replacing saliency predictions in regions of interest
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Evaluating the relative importance of different
image regions requires higher-level image understanding.

Finer-grained datasets can break up model performance
by image category and uncover performance gaps.
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What are saliency models missing?

Assigning correct relative importance to faces Objects of action: what Objects of gaze: what is being looked at?
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Which face is most important?

Current saliency models are good face
detectors. The next challenge is analyzing
the relative importance of faces
compared to other faces and image content.
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Recasens et al. Where are they looking? [NIPS 2015]

Which is the most important piece of text!?

An explicit model of gaze can provide important
cues not currently used by saliency models

Which text in a scene provides the most

(above). In a similar manner, body posture and
hand positions can point to objects of interest in
a scene (left).

relevant information for image understanding?
At which point does saliency modeling become
user-specific instead of populations-specific?




