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training data

LUPI (learning using privileged information) paradigm for SVM:

additional information about 
training instances provided only 

during training 
(NOT available during testing),

hence “privileged”



examples of privileged information

1) 
y: outcome of a treatment in a year
x: current symptoms of a patient
x*: development of symptoms in 3 months, 6 months, 9 months

2)
y: whether a biopsy image is cancerous or non-cancerous
x: images described in pixel space
x*: report by a pathologist describing the pictures using a high level holistic language
Goal: find a good classification rule in pixel space to make an accurate diagnosis without 
consulting with a pathologist

3) 
y: prediction of whether exchange rate will go up or down at moment t
x: observations about the rate before moment t
x*: (obtained form historical data) observations about rates after moment t



Motivation: parameter estimation

in separable case, have to estimate n parameters of w

to find optimal hyperplane in non-separable case, one 
has to estimate extra terms corresponding to the 
slack variables (as many as the training instances), for 
a total of n + l parameters

R(w, b,! ) =
1
2

< w, w > + C
l!

i =1

! i

O(h/l )

O(
!

h/l )

convergence rate:

h: VC dimension of admissible set of hyperplanes



Oracle SVM

suppose there exists an oracle function: ! i = ! (xi )

yi [< w, z i > + b] ! 1 " ! isuch that: ! i = 1 , . . . , l

in the corresponding SVM+ setting, let the teacher supply us with triplets:

(x1, ! 1, y1), . . . , (xl , ! l , yl )

then just as in separable case, have to estimate only n parameters 

functional to minimize:

subject to:

zi = ! (xi ) ! ZR(w, b, !) =
1
2

< w, w >

yi [< w, z i > + b] ! r i

! i = 1 , . . . , l

known



Motivation: parameter estimation

in separable case, have to estimate n parameters of w

to find optimal hyperplane in non-separable case, one 
has to estimate extra terms corresponding to the 
slack variables (as many as the training instances), for 
a total of n + l parameters

O(h/l )

O(
!

h/l )

convergence rate:

h:     VC dimension of admissible set of hyperplanes
h*:    VC dimension  of admissible set of correcting functions

Oracle SVM case: O(
!

h! /l )



SVM

SVM+

R(w, b,! ) =
1
2

< w, w > + C
l!

i =1

! ifunctional to minimize:

✏i � 0, i = 1, . . . , l
subject to:
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2
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yi [< w, z i > + b] ! 1 " ! i

zi = ! (xi ) ! Z

! i = [( w! , z!
i ) + b! ]

z!
i = ! ! (x!

i ) ! Z !

inner product defined in Z space
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i ) + b! ]

[< w ! , z!
i > + b! ] ! 0, i = 1 , . . . , l
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L(w, b, w! , b! , ! , " ) =
1
2

< w, w > +
#
2
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l!

i =1

[< w ! , z!
i > + b! ]

primal

very similar mathematically: quadratic optimization 
problem with similar constraints, but requires 

tuning 4 hyperparameters (instead of 2)

min   max

min       max
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dual
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admissible SVM+ solutions contain SVM solution

occurs when:

back to:

lX

i=1

↵iyi = 0 0  ↵i  C

max

consider case: ! ! 0 reject privileged information
similarity measures in 
correcting space not 

appropriate
R(!, " )then max of:
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decision and correcting functions

max

2 different kernels define similarity measures 
between objects in 2 different spaces

xi ! X, i = 1 , . . . , l

f (x) =
l!

i =1

yi ! i K (xi , x) + b

f ! (x! ) =
1
!

l!

i =1

(" i + #i ! C)K ! (x!
i , x! ) + b!

x!
i ! X ! , i = 1 , . . . , l

decision space correcting space

depends directly only on kernel in decision space 
BUT alpha depends on similarity measures in both spaces 

decision function:

correcting function:



Extension: non-smooth model for slacks



Extension: privileged information not available      
for all examples



Extension: multi-space privileged information



dSVM+



examples: advanced technical model as privileged 
information

problem statement: classification of proteins (hierarchical scheme of organization, 
to define evolutionary relations)
input: amino-acid sequences
output: classification (position in hierarchy)

note: human experts construct hierarchies according to 3D protein structures

privileged information: 3D-structures
- obtaining this is a very hard and time consuming problem

similarity measures: profile kernel for matching amino-acid sequences; MAMMOTH 
measure for matching 3D structures



examples: future events as privileged information

problem statement: time series prediction
input: historical information about the values of time series up to moment t
output: (quantitative prediction - regression framework) value of time series at 
moment t + del(t); OR (qualitative prediction - pattern recognition) whether time series 
at moment t + del(t) will be larger/smaller than at moment t

note: human experts construct hierarchies according to 3D protein structures

privileged information: future events



examples: holistic description as privileged 
information

problem statement: MNIST digit recognition (5 vs 8)
input: 10 by 10 pixel images
output: classification 

privileged information: holistic (poetic) descriptions provided by an independent 
expert

translated into 21-dimensional feature vectors, with entries like: two-part-ness (0-5), 
tilting to the right (0-3), aggressiveness (0-2), stability (0-3), uniformity (0-3), etc.



examples: holistic description as privileged 
information



final remarks by Vapnik

“We considered a new learning paradigm, the LUPI 
paradigm which allows one to introduce in the 
machine learning process, human elements of 
teaching: teacher’s remarks, explanations, analogy, 
and so on.”

“These sort of ideas lead to an integration, in 
learning techniques, of elements of an exact science 
and humanities, an exact science and emotions...”


