Detecting Reduplication in Videos of American Sign Language

Zoya Gavrilov, Stan Sclaroff*, Carol Neidle*, Sven Dickinson

Motivation

- computational significance
 - automated ASL recognition
 - sign segmentation
 - storage and retrieval
- linguistic significance
 - overt marking of plurality on nouns
 - aspectual inflection on verbs
 - nominalization of verbal forms

Approach

- Tracking
- Feature Extraction
- Codebook
- Sim. matrix
- Apriori
- Candidate Generation

Algorithm

Input:

\[S, w = S_{078618775618784525}, w = [0.06, 0.07, 0.03, 0.01, 0.07, 0.06, 0.03, 0.02, 0.07, 0.05, 0.04, 0.08, 0.18] \]

Apriori algorithm: efficiently finding repeated patterns in data streams (Agrawal et al., 1993)

Apriori property: frequency of a pattern in bounded above by the frequencies of its subpatterns

EVALUATION

Sample results:

- Input 0536556366026367235872366372358318
- Detected patterns 3'632' '638' '632' '638' '638'
- Cost Measure 18
- Validation Measure 18
- Cumulative Value 18
- Cumulative Cost 18

Corpus:

- National Center for Sign Language and Gesture Resources (NCLGR) Corpus*
- 105 lexical signs: 84 with reduplication, 21 without
- 2 native signers, 11 separately recorded videos (RGB, grayscale)

* a collection of ASL videos collected at Boston University from native signers and linguistically annotated using SignStream™ (Neidle, 2002)

http://www.bu.edu/asltp

- more complete hand representations (add articulation parameters)
- better localization of hands in space (e.g. kinect for depth)

The research reported here has been partially funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by grants from the U.S. National Science Foundation: 0705749, 0964385, 0958442, and 0964385.