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Abstract
Previous studies have identified that images carry the attribute of memorability, a
predictive value of whether a novel image will be later remembered or forgotten. In
this thesis we investigate the interplay between intrinsic and extrinsic factors that
affect image memorability.

First, we find that intrinsic differences in memorability exist at a finer-grained
scale than previously documented. Moreover, we demonstrate high consistency across
participant populations and experiments. We show how these findings generalize to an
applied visual modality - information visualizations. We separately find that intrinsic
differences are already present shortly after encoding and remain apparent over time.
Second, we consider two extrinsic factors: image context and observer behavior.

We measure the effects of image context (the set of images from which the experi-
mental sequence is sampled) on memorability. Building on prior findings that images
that are distinct with respect to their context are better remembered, we propose
an information-theoretic model of image distinctiveness. Our model can predict how
changes in context change the memorability of natural images using automatically-
computed image features. Our results are presented on a large dataset of indoor and
outdoor scene categories.

We also measure the effects of observer behavior on memorability, on a trial-by-
trial basis. Specifically, our proposed computational model can use an observer’s eye
movements on an image to predict whether or not the image will be later remembered.
Apart from eye movements, we also show how 2 additional physiological measurements
- pupil dilations and blink rates - can be predictive of image memorability, without
the need for overt responses. Together, by considering both intrinsic and extrinsic
effects on memorability, we arrive at a more complete model of image memorability
than previously available.

Thesis Supervisor: Antonio Torralba
Title: Associate Professor

Thesis Supervisor: Aude Oliva
Title: Principal Research Scientist
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Chapter 1

Introduction

This thesis lies at the intersection of the computational and psychological sciences,

containing many novel findings about image memorability, from human experiments

conducted both online and in the lab, and from computational models. Image mem-

orability, pioneered by the Oliva Lab [30, 31, 29, 38, 3, 9, 37, 36, 16, 61], is an

objective and quantifiable measure of an image that is independent of the observer

and can be computationally predicted. Thus, image memorability is driven by intrin-

sic features in an image that dictate how memorable or forgettable an image will be

across a population. However, extrinsic effects like the experimental context in which

an image appears, or how attentive an individual is while looking at an image, can

modulate the memorability of an image to finally determine whether an image will be

remembered or forgotten on a particular trial. These extrinsic effects are quantified

and modeled in this thesis.

Here we build on the initial work in image memorability conducted by [30, 31, 29, 3]

who first showed that memorability is an intrinsic property of images, independent

of observer. The consistency across people as to which images are remembered and

which forgotten allows memorability to be a property that can be computationally

estimated from images, and thus opens up the doors to computational applications,

from educational material to promotional material, visual design, and human com-

puter interfaces. In order to make these applications possible, a good understanding

of what drives and impacts image memorability is thus crucial.
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The work that is described in this thesis is motivated by a number of questions

that have been prompted by previous studies of memorability, including:

1. How generalizable are the findings about the consistency of human visual mem-

ory?

2. How do extrinsic effects such as context and observer differences affect image

memorability?

3. How quickly do differences in memorability become apparent, and how is mem-

orability modulated by time?

4. Can physiological measurements be used to predict memorability, without the

need for explicit (overt) responses from human participants?

This thesis is an attempt to answer these questions. In Chapter 2, we show

that human consistency at remembering and forgetting images holds at a within-

category level - a finer grained level than previously found. We show that intrinsic

memorability generalizes also to information visualizations - an entirely different form

of visual imagery (Chapter 6).

In Chapters 3 and 4, we show how the extrinsic effects of context and observer dif-

ferences, correspondingly, modulate the intrinsic memorability of images. We present

an information-theoretic framework to quantify context differences and image dis-

tinctiveness using state-of-the-art computer vision features, and we show correlations

with image memorability scores. We discuss where context has the greatest effect on

memorability (Chap. 3), and show how the images that are most distinct relative to

their image context are also the most memorable. In Chapter 6 we also hint at dis-

tinctiveness being a factor influencing the memorability of information visualizations.

Moreover, we demonstrate how physiological measurements, including eye move-

ments (Chap. 4), pupils (Chap. 5), and blinks (Chap. 5) can be predictive of

memorability. Specifically, in Chapter 4 we present a computational model that,

given an individual’s eye movements on an image, can predict with reasonable ac-

curacy whether the individual will remember the image at a later point in time. In

16



other words, without explicit responses from a user, it is already possible to determine

if an image has been successfully encoded into memory using eye movements as an

indicator of how much attention was paid to the image.

In Chapter 5, we show that pupils dilate more, and blinks decrease, when retrieving

less memorable images than when retrieving more memorable images (due, likely, to

differences in cognitive effort). We demonstrate how these effects change over time by

varying the lags at which images and their repeats occur. Additionally, we show that

differences in memorability are already apparent at the shortest lag (only 20 seconds

after image presentation), and become even more pronounced at later lags (Chap. 5).

Some of the computational applications made possible by this research are outlined

in Chapters 6 and 7. The robustness and predictability of memorability, as well as

the ability to use automatic, physiological measurements (such as eye movements,

pupils, and blinks) to measure a higher-level cognitive process such as memory puts

power at the hands of the application designer.
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Chapter 2

Understanding Intrinsic Effects on

Memorability

Does human consistency in image memorability generalize to finer-grained scene cat-

egories? Do people remember and forget the same images in different categories?1

2.1 Related work

Recent work in image memorability [30, 31, 29, 3] has reported high consistency rates

among participants in terms of which images are remembered and which forgotten,

indicating that memorability is a property that is intrinsic to the image, despite

individual differences between observers. The high consistency was first demonstrated

for a database of images from hundreds of scene categories [31], and later shown to

extend to narrower classes of images - faces [3]. To show that this consistency is

not a special property of face stimuli but holds more generally, here we replicate

this result across 21 separate natural scene experiments, each consisting of hundreds

of instances of a single scene category (both indoor and outdoor). This is the first

image memorability study to consider fine-grained scene categories. We further extend

these findings and show they continue to hold for an entirely different visual domain

- information visualizations - in Chapter 6.

1This chapter is closely related to publication [16]
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2.2 FIGRIM (Fine-Grained Image Memorability) dataset

For our studies, we constructed the FIne-GRained Image Memorability (FIGRIM)

dataset. We created this novel dataset by sampling high-resolution (at least 700 ×
700𝑝𝑥) images from 21 different indoor and outdoor scene categories from the SUN

Database [67]. We chose all SUN scene categories with at least 300 images of the

required dimensions. Image duplicates and near-duplicates were manually removed2.

The images were downsampled (to avoid introducing resolution discrepancies), and

cropped to 700×700𝑝𝑥3. From each scene category, 25% of the images were randomly

chosen to be targets and the rest of the images became fillers (table 2.1 lists the

number of targets and fillers per scene category). The targets are the images for which

we obtained memorability scores. Sample dataset images are provided in Fig. 2-2.

We are publicly releasing the full FIGRIM dataset4 with a range of popular image

features (including Gist and convolutional neural net features) precomputed for all

9𝐾 images of the dataset, as well as memorability scores for each of the 1754 target

images. For the target images, we provide separate memorability scores for the image

presented in the context of its own scene category (discussed in Chap. 2) and different

scene categories (discussed in Chap. 3). Additionally, for the collection of 630 target

images used for our eyetracking experiments (discussed in Chap. 4), we are providing

the eyetracking data and responses of a total of 42 participants (16.2±1.6 participants

per image).

2.3 Crowdsourcing (within-category) experiment AMT 1

We ran Amazon Mechanical Turk (AMT) studies following the protocol of Isola et

al. [31] to collect memorability scores (i.e. performance on a recognition memory

task) for each of the scene categories, separately. We set up memory games on AMT

2We calculated the Gist descriptor [47] of each image, displayed its 5 nearest neighbors, and
removed identical copies and near-duplicates. Some remaining duplicates were removed after post-
processing the experimental data.

3Images were later resized to 512 × 512𝑝𝑥 to fit comfortably in browser windows for the online
AMT experiments (Chap. 2-3), and to 1000× 1000𝑝𝑥 for the eyetracking experiments (Chap. 4).

4Available at http://figrim.mit.edu
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category targets fillers datapts HR (%) FAR (%) HR FAR
per target cons. (𝜌) cons. (𝜌)

amusement 68 296 64.2 10.2 0.85 0.80 84.8
park (SD: 15.5) (SD: 9.7) (SD: 0.3) (SD: 0.3) (SD: 3.2)

playground 74 330 63.3 14.7 0.78 0.84 86.4
(SD: 14.4) (SD: 12.7) (SD: 0.4) (SD: 0.3) (SD: 2.7)

bridge 60 260 61.2 13.2 0.77 0.84 90.2
(SD: 13.2) (SD: 12.0) (SD: 0.4) (SD: 0.2) (SD: 4.4)

pasture 60 264 59.2 11.5 0.86 0.83 86.2
(SD: 17.5) (SD: 9.5) (SD: 0.3) (SD: 0.4) (SD: 3.7)

bedroom 157 652 58.9 13.5 0.77 0.81 84.5
(SD: 14.7) (SD: 10.9) (SD: 0.2) (SD: 0.2) (SD: 3.9)

house 101 426 58.0 14.4 0.73 0.80 82.7
(SD: 13.3) (SD: 10.3) (SD: 0.3) (SD: 0.3) (SD: 3.7)

dining 97 410 57.8 14.1 0.77 0.79 83.8
room (SD: 13.6) (SD: 10.8) (SD: 0.4) (SD: 0.3) (SD: 2.8)

conference 68 348 57.1 12.5 0.77 0.80 85.2
room (SD: 13.7) (SD: 8.8) (SD: 0.4) (SD: 0.3) (SD: 3.3)

bathroom 94 398 57.1 16.3 0.73 0.82 86.6
(SD: 12.8) (SD: 13.9) (SD: 0.4) (SD: 0.3) (SD: 3.4)

living 138 573 56.9 14.4 0.77 0.73 81.2
room (SD: 14.1) (SD: 9.6) (SD: 0.3) (SD: 0.3) (SD: 2.7)
castle 83 389 56.4 12.8 0.87 0.77 91.5

(SD: 17.2) (SD: 8.9) (SD: 0.2) (SD: 0.4) (SD: 3.3)
kitchen 120 509 56.2 16.8 0.74 0.80 80.5

(SD: 14.0) (SD: 10.7) (SD: 0.3) (SD: 0.2) (SD: 3.5)
airport 75 323 55.6 14.9 0.76 0.86 95.9
terminal (SD: 13.6) (SD: 10.8) (SD: 0.3) (SD: 0.2) (SD: 3.7)
badlands 59 257 52.9 15.6 0.82 0.90 80.1

(SD: 20.3) (SD: 15.1) (SD: 0.3) (SD: 0.2) (SD: 7.0)
golf course 88 375 52.9 15.2 0.84 0.77 80.2

(SD: 17.6) (SD: 9.9) (SD: 0.3) (SD: 0.2) (SD: 3.9)
skyscraper 62 271 52.8 13.5 0.85 0.76 84.4

(SD: 17.0) (SD: 10.6) (SD: 0.3) (SD: 0.3) (SD: 4.3)
tower 86 376 52.7 18.9 0.75 0.83 82.2

(SD: 14.3) (SD: 13.0) (SD: 0.4) (SD: 0.3) (SD: 3.0)
lighthouse 56 247 52.1 15.2 0.78 0.88 90.3

(SD: 15.2) (SD: 12.4) (SD: 0.4) (SD: 0.2) (SD: 4.3)
mountain 69 302 50.2 14.9 0.87 0.83 79.3

(SD: 21.7) (SD: 11.7) (SD: 0.2) (SD: 0.2) (SD: 2.9)
highway 71 348 50.0 15.0 0.69 0.85 85.9

(SD: 12.9) (SD: 10.4) (SD: 0.5) (SD: 0.3) (SD: 4.6)
cockpit 68 320 49.5 18.2 0.70 0.88 80.6

(SD: 17.2) (SD: 14.7) (SD: 0.5) (SD: 0.2) (SD: 3.5)

Table 2.1: FIGRIM dataset statistics for AMT 1 (within-category), with a total of 1754
target and 7674 filler images. The HR and FAR scores are computed over the targets, for
which we have an average of 85 experimental datapoints per image. The average HR across
all the scene categories is 56.0% (𝑆𝐷 : 4.2%), and the average FAR is 14.6% (𝑆𝐷 : 2.0%).
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1.0 s

... ...

1.4 s
time

false alarmcorrect rejection hit
repeat

+ +

Figure 2-1: An example AMT experimental sequence. During image presentation, the partic-
ipant presses a key if the image has already appeared in the sequence, and receives feedback
at the end of the image presentation. A false alarm occurs when on first presentation, the
participant indicates that the image has repeated. No key press during first presentation is
recorded as a correct rejection. A hit occurs when a repeated image is correctly remembered,
and otherwise, the response is recorded as a miss.

where sequences of 120 images (a mix of target and filler images sampled from a single

scene category) were presented for 1 second each, with a distance of 91-109 images

between an image and its repeat, and consecutive images separated by a fixation

cross lasting 1.4 seconds. Images and repeats occurred on average 4.5 minutes apart,

thus allowing us to capture memory processes well beyond short-term and working

memory. Some filler images repeated at much shorter intervals of 1-7 images and

were used as vigilance tests to recognize when a participant wasn’t paying attention

to the game5. Participants were instructed to press a key when they detected an

image repeat, at which point they received feedback. No image repeated more than

once. Participants could complete multiple memory games, since we ensured that

a different set of images was presented each time. Figure 2-1 depicts an example

experimental sequence.

2.4 Memorability scores and comparison to other experiments

On average, 80 workers saw each target image and its repeat (see table 2.1 for a

complete breakdown), providing us with enough data points per image to collect

reliable statistics about the memorability of each image. We define a hit to be a

correct response to an image presented for the second time. A miss is when an

image was repeated, but not recognized. False alarms and correct rejections are
5Vigilance repeats also occurred at the very beginning of the game, within the first 100 images

(at which point target repeats did not yet appear) to maintain an even rate of image repeats.
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incorrect and correct responses (respectively) to target images shown for the first

time. We define hit rate (HR) and false alarm rate (FAR):

HR(I) =
hits(I)

hits(I) + misses(I)
× 100% (2.1)

FAR(I) =
false alarms(I)

false alarms(I) + correct rejections(I)
× 100% (2.2)

We also define HR and FAR to be category averages - computed over all images

belonging to a single category. The HR scores vary from 49.5% to 64.2% (𝑀 =

56.0%, 𝑆𝐷 = 4.2%)6. FAR scores vary between 10.2% and 18.9% (𝑀 = 14.6%, 𝑆𝐷 =

2.0%), following a partial mirror effect [20, 64], where high HR are often accompanied

by low FAR. The Spearman rank correlation between the HR and FAR scores is −0.66

(𝑝 < 0.01). Individual scores for all the categories can be found in table 2.1, and for

comparison, memorability scores from other experiments are included in table 7.1. For

instance, scene categories with lower memorability scores have similar performances

to experiments with face stimuli [3] and data visualizations (see Chap. 6 or [9]).

Lower variability across the stimuli in these categories could lead to lower scores (see

Chap. 3, Sec. 3.5 for the possible reason). By the same token, scene categories with

higher memorability scores have similar memory performances as the experiments

with hundreds of scenes [31], likely due to larger variability across stimuli.

Figure 2-2 includes a sample of some of the most memorable and forgettable

images in a few FIGRIM categories. The most memorable categories are amusement

parks and playgrounds, scenes consisting of a large variety of objects in different

configurations, and often containing people. Interestingly, 8/9 of the indoor categories

are in the top 13 most memorable scene categories (the last indoor category, cockpits

is the least memorable category overall). Qualitatively, the most memorable instances

across categories tend to contain people, animals, text, and objects like cars and flags.

Overall, memorable images tend to be distinct from the other images in their category

– they may have unusual objects, layouts, or perspectives. This latter point will be

quantified in Chapter 3.

6Throughout the rest of the paper, 𝑀 will refer to ‘mean’ and 𝑆𝐷 to ‘standard deviation’.
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Figure 2-2: A sample of the most memorable and forgettable images from 9 of the 21
categories in the FIGRIM dataset, sorted from most to least memorable category, with the
HR per category reported. Inset are the HR scores of the individual images.
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2.5 Some scene categories are intrinsically more memorable

How consistent is the relative ranking (the ordering in table 2.1) of the scene cate-

gories? For instance, if we select a different subset of images, is the average memo-

rability of the amusement park images still going to be at the top? We took half the

images from each category, and computed the HR scores for all the categories. We

also computed the HR scores for the other half of the images in all the categories.

Over 25 such half-splits, the rank correlation between these 2 sets of HR scores was

0.68 (with significant 𝑝-values). Thus, the relative memorability of the scene cat-

egories is stable, and some scene categories are intrinsically more memorable than

others.

2.6 Within categories, some images are intrinsically more mem-

orable

Previous studies have demonstrated that memorability is consistent across participant

populations for a general set of scene images (HR: 𝜌 = 0.75, FAR: 𝜌 = 0.66) [31] and

for the specific classes of faces (HR: 𝜌 = 0.68, FAR: 𝜌 = 0.69) [3]. Here we show

that this also holds at a fine-grained level across very different categories of scenes,

thereby both replicating and extending previous results.

The consistencies of the image memorability scores were measured separately for

each of the scene categories (see table 2.1). This was done by splitting the participants

of AMT 1 into two independent groups, computing the memorability scores of images

based on the participants in each group separately, ranking the images according to

the memorability scores, and computing the Spearman rank correlation between the

two possible rankings. Results are averaged over 25 such half-splits of the participant

data. For all of the scene categories, consistency of HR scores ranges from 0.69 to

0.86 and from 0.79 to 0.90 for FAR scores. These high values demonstrate that

memorability is a consistent measure across participant populations, indicating real

differences in memorability across images.
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Chapter 3

Computationally Modeling Context

Effects on Memorability

How can image distinctiveness be quantified for natural images? How does context

affect image memorability? When does context matter most?1

3.1 Related work

Previous studies have suggested that items that stand out from (and thus do not

compete with) their context are better remembered [39, 50, 63, 27, 53, 17, 66, 56, 2,

65]. For instance, Standing observed a large long-term memory capacity for images

that depict oddities [56]. Konkle et al. demonstrated that object categories with

conceptually distinctive exemplars showed less interference in memory as the number

of exemplars increased [39]. Additionally, for the specific categories of face images,

studies have reported that a distinctive or atypical face (i.e., a face distant from the

average) is more likely to be remembered [4, 13, 59]. Nevertheless, recent work on

predicting image memorability [31, 29, 38] has largely ignored the effects of image

context (the set of images from which the experimental sequence is sampled) on

memory performance, instead focusing on the modeling of intrinsic image features.

Here, we are able to rigorously quantify, using a large-scale natural scene database,

1This chapter is closely related to publication [16]
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category targets fillers datapts HR (%) FAR (%) HR FAR
per target cons. (𝜌) cons. (𝜌)

21 scenes 1754 7296 74.3 66.0 11.1 0.74 0.72
(SD: 7.5) (SD: 13.9) (SD: 9.5) (SD: 0.2) (SD: 0.1)

Table 3.1: FIGRIM dataset statistics for AMT 2 (across-category). The targets are the
same for AMT 1 and AMT 2. The difference in the number of fillers between AMT 1 and
AMT 2 is accounted for by demo images that were presented to participants at the beginning
of each experiment, and are included with the fillers. Each category in AMT 1 had 20 demo
images, while AMT 2 had a total of 42 demo images, sampled from all the categories.

the observation that images that are unique or distinct with respect to their image

context are better remembered. We steer away from subjective human ratings, and

instead compute statistics over automatically-extracted computer vision features. By

systematically varying the image context across experiments (AMT 1 and AMT 2),

we are able to computationally model the change in context at the feature level, and

predict corresponding changes in image memorability.

3.2 Crowdsourcing (across-category) experiment AMT 2

We ran another AMT study on the combined target and filler images across all the

scene categories, and collected a new set of memorability scores, following the same

protocol as before (see Chap. 2, Sec. 2.3). The dataset statistics are provided in table

3.1. The average memorability scores for this experiment are: HR: 𝑀 = 66.0%, 𝑆𝐷 =

13.9%, FAR: 𝑀 = 11.1%, 𝑆𝐷 = 9.5%. Per-image memorability scores correlate

strongly with those measured in the within-category experiment AMT 1 (Spearman

𝜌 = 0.60 for HR and 𝜌 = 0.75 for FAR), demonstrating that the intrinsic memorability

of images holds across different image contexts.

3.3 In-lab control experiment

We selected a subset of the target images from the AMT experiments in order to

verify replicatability of the online data using in-lab experiments. From each scene

category from AMT 1 we obtained the 15 target images with the highest and 15 with

the lowest memorability scores. This was done to capture the range of memorabilities
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of images in each of the scene categories. These 630 images became the targets for

our in-lab experiments. We recruited 20 participants for our experiments.

An experimental sequence was composed of about 1000 images, of which 210

were targets that repeated exactly once in the sequence, spaced 91-109 images apart.

Images in the test sequence were presented for 2 sec, separated by a fixation cross

lasting 0.5 sec. Participants were instructed to respond (by pressing the spacebar)

anytime they noticed an image repeat in the sequence, at which point they would

receive feedback. In a single experimental session, the targets consisted of 30 images

taken from each of 7 randomly selected scene categories, making up a total of 210

targets. The filler images were chosen in equal proportions from the same set of scene

categories as the targets. Participants could choose to complete up to 3 sessions (each

with a disjoint set of 7 categories) on separate days. The memorability scores for the

in-lab experiment are HR: 𝑀 = 64.9%, 𝑆𝐷 = 21.3%, FAR: 𝑀 = 6.0%, 𝑆𝐷 = 8.9%.

Note that by changing the number of scene categories in an experiment (from 1

in AMT 1, to 7 in this in-lab experiment, to 21 in AMT 2), we are also increasing the

variability of the experimental image context. To demonstrate the effect of number of

scene categories on memorability, we sorted the HR scores of the overlapping targets

in all 3 experiments by the scores of AMT 2 and binned them into high, middle,

and low memorability. In figure 3-1, as the number of scene categories increases, the

overall memorability scores of all the images in the experiment also increase (even

for the least memorable images). At the same time, the difference between the (high,

middle, low) memorability bins remains statistically significant, indicating that some

images are intrinsically more memorable and others forgettable.

The rank correlation of the HR scores for the 630 target images used in the in-lab

experiment with the scores for the same images in AMT 1 is 0.75, and with AMT 2 is

0.77. Thus, across all 3 of the experiments (two online, one in-lab), the relative rank-

ing of these target images are highly consistent, providing further evidence that image

memorability is to a large extent an intrinsic property of images that holds across

different populations of human participants, different image contexts, and different

experimental settings.
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Figure 3-1: Memorability scores for images in the context of 21 scenes (AMT 2) are higher
than in the context of 7 scenes (in-lab), and higher still than in the context of 1 scene (AMT
1). At the same time, the most memorable images remained the most memorable, and the
most forgettable remained the most forgettable. Standard error bars have been plotted.

3.4 Contextually distinct images are more memorable

We call images contextually distinct if they are distinct with respect to their image

context (the set of images from which the experimental sequence is sampled). To

model context effects, we first estimate the probability distribution over features in

an image’s context. Then we define the distinctiveness of the image as the probability

of its features under this distribution. We consider two different contexts: (a) within-

category context composed of images from a single category (AMT 1), and (b) across-

category context composed of images from all categories (AMT 2). To estimate the

probability distribution of features in the context, we use kernel density estimation

[28].

For each image 𝐼, we compute a feature vector 𝑓𝑖 = 𝐹 (𝐼), where 𝐹 can be any

feature mapping. We model the probability of features 𝑓𝑖 appearing in image context

C as:

𝑃𝑐(𝑓𝑖) =
1

‖𝐶‖
∑︁
𝑗∈𝐶

𝐾(𝑓𝑖 − 𝑓𝑗) (3.1)

where 𝐾 can be any kernel function, and ‖𝐶‖ indicates the size of the context, mea-

sured in number of images. We use an Epanechnikov kernel and leave-one-out-cross-
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validation to select the kernel bandwidth. We tried a number of features2 (see Tables

3.2 and 3.3), but found that scene-based CNN features worked best, and that is the

feature space we use for the rest of this chapter. The features come from a convolu-

tional neural network (CNN), a popular feature space recently shown to outperform

other features in computer vision [41, 51]. Specifically, we used the Places-CNN

from [69] trained to classify scene categories. We took the 4096-dimensional features

from the response of the Fully Connected Layer 7 (𝑓𝑐7) of the CNNs, which is the

final fully-connected layer before producing class predictions. We then reduced this

feature vector to 10 dimensions using PCA. This was found to prevent overfitting and

increase efficiency in estimating the kernel densities. Note that in contrast to simple

visual descriptors like Gist, the deep features are trained to predict image semantics,

and this may account for some of the performance boost.

In figure 3-2a, we correlate the memorability score of an image, HR(𝐼), with

its distinctiveness with respect to the image context, 𝐷(𝐼;𝐶). Mathematically, we

define3:

𝐷(𝐼;𝐶) = − log𝑃𝑐(𝑓𝑖) (3.2)

Furthermore, we denote 𝐶2 as the across-category context of AMT 2, and 𝐶1 as the

within-category context of AMT 1. We find that 𝐷(𝐼;𝐶2) is positively correlated

with HR(𝐼) (Pearson 𝑟 = 0.24, 𝑝 < 0.01), as plotted in 3-2a. The correlation also

holds when images are compared to images within the same category (correlation

between 𝐷(𝐼;𝐶1) and HR(𝐼) is 𝑟 = 0.26, 𝑝 < 0.01). Thus, more contextually distinct

images are more likely to be memorable. We present the same correlations according

to some alternative measurements of memorability (definitions provided in Appendix

A) in Tables 3.2 and 3.3.

2The object-based CNN features come from a pre-trained model from Caffe available at http:
//caffe.berkeleyvision.org tuned to perform object classification [33]. The Gist features, as
defined in [47], are calculated using the LabelMe Toolbox available at http://labelme.csail.mit.
edu/Release3.0/browserTools/php/matlab_toolbox.php [52].

3In information theory, this is alternatively termed self-information and surprisal.
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feature space HR FAR ACC MI DPRIME
GIST 0.12 (𝐻𝑆) -0.19 (𝐻𝑆) 0.21 (𝐻𝑆) 0.21 (𝐻𝑆) 0.19 (𝐻𝑆)

object-based CNN 0.19 (𝐻𝑆) -0.14 (𝐻𝑆) 0.22 (𝐻𝑆) 0.22 (𝐻𝑆) 0.20 (𝐻𝑆)
scene-based CNN 0.26 (𝐻𝑆) -0.26 (𝐻𝑆) 0.35 (𝐻𝑆) 0.36 (𝐻𝑆) 0.34 (𝐻𝑆)

Table 3.2: 𝐷(𝐼;𝐶) of images (𝐶 = AMT 1) correlated with different memorability measure-
ments. Here, 𝐻𝑆 = significant at the 𝑝 = 0.01 level.

feature space HR FAR ACC MI DPRIME
GIST 0.12 (𝐻𝑆) -0.01 (𝑁𝑆) 0.12 (𝐻𝑆) 0.11 (𝐻𝑆) 0.11 (𝐻𝑆)

object-based CNN 0.13 (𝐻𝑆) -0.05 (𝑆) 0.15 (𝐻𝑆) 0.12 (𝐻𝑆) 0.12 (𝐻𝑆)
scene-based CNN 0.24 (𝐻𝑆) -0.17 (𝐻𝑆) 0.32 (𝐻𝑆) 0.33 (𝐻𝑆) 0.32 (𝐻𝑆)

Table 3.3: 𝐷(𝐼;𝐶) of images (𝐶 = AMT 2) correlated with different memorability measure-
ments. Here, 𝐻𝑆 = significant at the 𝑝 = 0.01 level, 𝑆 = significant at the 𝑝 = 0.05 level,
𝑁𝑆 = not significant.

3.5 More varied image contexts are more memorable overall

We also measure the context entropy by averaging 𝐷(𝐼;𝐶) over all the images in

a given image context. This is just the information-theoretic entropy:

𝐻(𝐶) = E𝑐[𝐷(𝐼;𝐶)]

= E𝑐[− log𝑃𝑐(𝑓𝑖)]
(3.3)

Here, E𝑐 is just expectation over the image context specified by 𝐶. As in figure 3-

2b, the Pearson correlation between 𝐻(𝐶) and 𝐻𝑅 = E𝑐[HR(I)], is 𝑟 = 0.52 (𝑝 =

0.01) - and more results provided in Table 3.4. Thus, categories that contain many

contextually distinct images are more memorable overall. For instance, the mountain

category contains a relatively stable collection and configuration of scene elements:

mountains and sky. The amusement park category, however, consists of a much

larger variability of images: images of roller-coasters, concession stands, or other

rides, consisting of different elements. Thus entropy in feature space can explain

some of the differences in average HR we observe across categories in AMT 1.
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Figure 3-2: The effects of context on memorability. In figures (a) and (c), each dot is a
single target image from the FIGRIM dataset, for a total of 1754 images. Brighter coloring
represents a greater density of points. In figures (b) and (d), all images in a given category
are collapsed into a single summary number. The trends we see are: (a) Images are more
memorable if they are less likely (more contextually distinct) relative to the other images
in the same image context; (b) Image contexts that are more varied (have larger entropy)
lead to higher memorability rates overall; (c) Images that become more distinct relative to
a new context become more memorable; (d) Scene categories that are more distinct relative
to other categories become more memorable in the context of those other categories.
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feature space HR FAR ACC MI DPRIME
GIST 0.48 (𝑆) -0.23 (𝑁𝑆) 0.34 (𝑁𝑆) 0.35 (𝑁𝑆) 0.36 (𝑁𝑆)

object-based CNN 0.51 (𝑆) -0.29 (𝑁𝑆) 0.34 (𝑁𝑆) 0.38 (𝑁𝑆) 0.32 (𝑁𝑆)
scene-based CNN 0.52 (𝑆) -0.16 (𝑁𝑆) 0.28 (𝑁𝑆) 0.37 (𝑁𝑆) 0.34 (𝑁𝑆)

Table 3.4: 𝐻(𝐶) of images in AMT 1 (within-category) correlated with different memora-
bility measurements.

feature space HR FAR ACC MI DPRIME RANK
GIST 0.24 (𝐻𝑆) 0.10 (𝐻𝑆) 0.15 (𝐻𝑆) 0.10 (𝐻𝑆) 0.12 (𝐻𝑆) 0.10 (𝐻𝑆)

object-based CNN 0.32 (𝐻𝑆) 0.00 (𝑁𝑆) 0.25 (𝐻𝑆) 0.21 (𝐻𝑆) 0.24 (𝐻𝑆) 0.15 (𝐻𝑆)
scene-based CNN 0.35 (𝐻𝑆) 0.00 (𝑁𝑆) 0.29 (𝐻𝑆) 0.25 (𝐻𝑆) 0.28 (𝐻𝑆) 0.14 (𝐻𝑆)

Table 3.5: Change in contextual distinctiveness between AMT 1 and AMT 2 correlated with
different memorability measurements.

3.6 Modeling image memorability as a function of image con-

text

AMT experiments 1 and 2 systematically vary the context for images, while keep-

ing the images constant. This allows us to isolate the effects of context from other

possible confounds4. To model the change in context, we compute the difference in

the distinctiveness of an image relative to its own scene category versus all scene

categories. In figure 3-2c we see that changing the context of an image to make it

more distinct relative to the other images in its context, increases its memorability.

The Pearson correlation between 𝐷(𝐼;𝐶2)−𝐷(𝐼;𝐶1) and HR𝐶2(𝐼) - HR𝐶1(𝐼) is 0.35

(𝑝 < 0.01) with more results provided in Table 3.5.

We can also consider change in memorability at the category level. In figure 3-3 we

see that across all categories, HR for each category goes up in the context of images

from other categories. However, how much change there is in image memorability

when we switch contexts depends on the scene category.

How does a scene category’s memorability change when the category is combined

with other categories? We measure this change in context as the Kullback—Leibler

4Spurious correlations are possible when both contextual distinctiveness and memorability cor-
relate with a third causal factor, but when we systematically change the context while keeping
everything else fixed (particularly, the experimental images), we can isolate the effects of context
alone.
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Figure 3-3: The average memorability of the images in each scene category went up when
images were presented in the context of images from other scene categories (AMT 2) com-
pared to when they were presented only in the context of images from the same category
(AMT 1).

divergence between the density functions computed over contexts 𝐶1 and 𝐶2 as:

KL(𝑃𝑐1||𝑃𝑐2) = E𝑐1 [− log𝑃𝑐2(𝑓)]− E𝑐1 [− log𝑃𝑐1(𝑓)] (3.4)

The first term is the probability of the images in a category under the context of

AMT 2, and the second term is the probability of the images under its own category

in AMT 1. Intuitively, this measures how much more (or less) likely a category’s

images are under the context of AMT 2 compared to that of AMT 1. In figure 3-

2d, the Pearson correlation between the change in context entropy and change in

memorability is 𝑟 = 0.74 (𝑝 < 0.01) with more results provided in Table 3.6.

Consider the cockpit category: many of the cockpit images look the same when

viewed only with other cockpits; however, when mixed with images from other scenes,

they become very distinct: there is no other scene category with similar images.

Compare this with dining rooms that can also look like living rooms and kitchens,
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feature space HR FAR ACC MI DPRIME
GIST 0.64 (𝐻𝑆) 0.41 (𝑁𝑆) 0.47 (𝑆) 0.39 (𝑁𝑆) 0.41 (𝑁𝑆)

object-based CNN 0.55 (𝑆) 0.24 (𝑁𝑆) 0.35 (𝑁𝑆) 0.46 (𝑆) 0.47 (𝑆)
scene-based CNN 0.74 (𝐻𝑆) 0.44 (𝑆) 0.51 (𝑆) 0.50 (𝑆) 0.60 (𝐻𝑆)

Table 3.6: Change in context entropy between AMT 1 and AMT 2 correlated with different
memorability measurements.

and thus are not as visually distinct when combined with images from these other

scene categories.

3.7 When context matters most

To better understand when context matters most, consider the images that were

memorable with respect to their own category, but became more forgettable when

combined with other categories. In figure 3-4, we can see that these images tend to

look different from other images in their category, and are more similar to images

of other categories. These images may have been more memorable in the first place

because they stood out from other images in their category. They no longer stand

out when combined with other categories.

To quantify this intuition, we mapped the Places-CNN deep features to category

labels by training a linear multi-class SVM on the filler images of the FIGRIM dataset

with labels of 21 scene categories. We then evaluated our classifier on the target

images of the FIGRIM dataset to automatically predict the most likely scene category

for each image (the overall scene classification accuracy was 91.56%). These predicted

category labels are included with each image in fig. 3-4. Notice that for the images that

decreased in memorability, more of the predicted labels come from other categories.

Compare this to the images that increased in memorability when combined with other

categories - they are more likely to be correctly classified.

We can also consider the probability, under the scene classifier, of the correct

category label. These probabilities are included with each image in fig. 3-4. Images

with a higher probability value are more typical examples of their scene category.

Across all 1754 target images, the Pearson correlation between the probability of the
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correct category label and the change in memorability due to context (from AMT 1

to AMT 2) is 𝑟 = 0.30 (𝑝 < 0.01). In other words, the images least likely to belong

to their own category experience the greatest drop in memorability when they are

combined with images of other categories.

Which images remain memorable within and across categories? It is the images

that will look distinct enough from the other images in their category, but will not

look like images from other categories either. Consider the images in the top right

quadrant in figure 3-5. These are images that are memorable across contexts. Take for

example the bridge in front of the red sky. It looks like no other scene category other

than a bridge, but it also looks like no other bridge (the red sky is unique). Compare

this to the bridge in the bottom right, which looks more like a pasture. Among

bridges, it is memorable, but among pastures it is not. Thus, the memorability of the

images in the top right quadrant is least affected by context, but the memorability of

images in the bottom right quadrant is most affected by context.
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Figure 3-4: We evaluated a scene classifier on the images in that increased most and those
that dropped most in memorability when combined with other categories. Here we show 3
categories. For each image, we provide the classifier’s predicted category label, as well as
the probability of the correct category label (where * is replaced with the correct category).
Images that drop in memorability are more likely to be confused with other categories.
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Figure 3-5: Memorability scores of images in the top right quadrant of each plot are least
affected by context whereas the scores of images in the bottom right quadrant are most
affected by context. Images in the top right are distinct with respect to both contexts, while
images in the bottom right are distinct only with respect to their own category.
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Chapter 4

Eye movements to predict individual

image memories

To what extent can one population of human participants reliably predict another?

Can an individual’s eye-movements on an image be used to predict if the image will

be later remembered?1

4.1 Related work

Little work has considered the intersection between image memorability and visual

attention [42, 46, 19, 14]. Mancas et al. [42] use saliency features to show a slight

improvement over the automatic image memorability predictions in [31]. They use

a form of visual attention (i.e. saliency, eye movements) to improve on image mem-

orability. We refer to image memorability as a population predictor because it

ignores trial-by-trial variability, effectively averaging over a population of partici-

pants or experiments. We, instead, use visual attention to improve the trial-by-trial

predictions of memory (an individual trial predictor). Bulling and Roggen [14]

use eye movement features to predict image familiarity, classifying whether images

have been seen before or not. They assume that all images seen again are remem-

bered, particularly due to the long exposure times (10 seconds) used per image, and

1This chapter is closely related to publication [16]
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by testing on a small dataset of 20 faces. They also use eye movement analysis

as a population predictor to decide whether an image was previously seen, while we

use eye movement analysis as an individual trial predictor, taking into account indi-

vidual differences in making predictions of whether an image will be later remembered.

Our work is also related to recent studies on the use of eye movements for decoding

an observer’s task [8, 23]. These studies consider features extracted from the eye

movements of individual participants to determine the task they are performing (e.g.,

what question they are answering about an image), modeled on the original Yarbus

experiment [68]. These studies utilize a very small set of images (ranging from 15-

64) with a very constrained theme (grayscale photographs taken between 1930-1979

with at least two people [23]; paintings depicting “an unexpected visitor" [8]). In our

study, we measure the eye movements of participants on 630 target images sampled

from 21 different indoor and outdoor scene categories. We extract features from eye

movements to determine whether or not an image is correctly encoded (measured by

whether it is correctly recognized on a successive exposure). We are able to solve our

decoding task using only 2 seconds of viewing time per image, whereas the previous

studies worked with durations of 10 sec [14, 23], 30 sec [8], 50 sec [57], and 60 sec

[8]. For this purpose, we learn image-specific classifiers to distinguish fixations on one

image versus fixations on other images.

4.2 Eyetracking experiments

We used a similar set-up to the in-lab experiment from Chap. 3, Sec. 3.3, but with

important differences to collect eye-movements in an un-biased manner (outlined in

Fig. 4-1). Images were presented to participants at 1000 × 1000𝑝𝑥. We used the

same set of 630 targets as in the in-lab experiment, but split the images over 4

separate experimental sessions (of 157-158 target images, randomly sampled from

all categories). Target images were repeated 3 times in the sequence, spaced 50-60

images apart. Images remained on the screen for 2 seconds, and participants gave a
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? correct + ? incorrect ? correct

2.0 s until keypress 0.3 s

... ...

0.2 s 0.4 s
time

false alarmcorrect rejection hit

repeat

Figure 4-1: An example eyetracking experimental sequence. The main differences from the
AMT experiment in Fig. 2-1 are the slightly longer image presentation times, the collection
of key presses after image presentation at the prompt, and the forced-choice response.

forced-choice response at the end of each image presentation to indicate whether the

image appeared previously or not. After a keypress response and feedback, a fixation

cross came on the screen for 0.4 seconds, followed by the next image.

Eyetracking was performed on an SR Research EyeLink1000 desktop system at a

sampling rate of 500Hz, on a 19 inch CRT monitor with a resolution of 1280× 1024

pixels, 22 inches from the chinrest mount. The experiments started with a randomized

9-point calibration and validation procedure, and at regular intervals throughout the

experiment drift checks were performed, and if necessary, recalibration. Each experi-

ment lasted 75-90 minutes, and participants could take regular breaks throughout. All

participant eye-fixations and keypresses were recorded. We recruited a total of 42 par-

ticipants for our study (16.2±1.6 participants per image). The memorability scores for

this experiment were: HR: 𝑀 = 75.8%, 𝑆𝐷 = 14.4%, FAR: 𝑀 = 5.2%, 𝑆𝐷 = 7.4%.

4.3 Classification model

Given a set of fixations on an image, we want to know: will the viewer remember

this image at a later point in time? The key idea is that if a viewer’s fixations differ

from the fixations expected on an image, the viewer may not have encoded the image

correctly. Thus, when evaluating a novel set of fixations, we want the probability

that these fixations came from this image - as opposed to some other image. If the

probability is high, we label the fixations as successful encoding fixations, since we

believe they will lead to a correct recognition of the image later. Otherwise, we assume

the image was not properly encoded, and will be forgotten. To provide some further
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intuition, a few examples are provided in figure 4-2. We construct a computational

model by training a separate classifier for each image, differentiating fixations that

belong to this image from fixations on all other images.

After preprocessing2, we convert an observer’s fixations on an image into a fixa-

tion map by binning the fixations into a 20× 20 grid, normalizing the binned map,

and smoothing it by convolution with a Gaussian with 𝜎 = 2 grid cells. Coarse

sampling and smoothing is necessary to regularize the data.

For each image, we train an ensemble classifier 𝐺𝑖 = 𝑔(𝐼) to differentiate fixation

maps on this image (positive examples) from fixation maps on all other images (neg-

ative examples). For training, we only consider successful encoding fixations -

the fixations made on an image the first time it appeared in the image sequence, and

led to a correct recognition later in the sequence.

We use a RUSBoost classifier [54], which handles the class imbalance problem3,

and balanced accuracy as a metric of performance because it avoids inflated per-

formance estimates on datasets with unequal numbers of positives and negatives [12].

It is calculated as:

balanced accuracy =
0.5× true positives

true positives + false negatives

+
0.5× true negatives

true negatives + false positives

(4.1)

Over 5 train-test splits, the balanced accuracy of our classifier on determining whether

a set of fixations comes from a specific image vs some other image is 79.7% (SD:

13.9%), where chance is at 50%. This high performance indicates that we are able to

successfully learn diagnostic fixation patterns for an image to distinguish it from all

other images. However, not all images produce diagnostic fixation patterns, and thus

predictive power varies by image (section 4.6).

2We processed the raw eye movement data using the EyeLink Data Viewer, removed all fixations
shorter than 100 ms or longer than 1500 ms, and kept all others that occurred within the 2000ms
recording segment (from image onset to image offset).

3𝑁 being the total number of images, we have order 𝑁 − 1 negatives, since those come from all
other images while the positives come from a single image.
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Image Highest-confidence instances Lowest-confidence instances

Figure 4-2: Examples of individual viewers’ fixation maps (at encoding) overlaid on top of the
images viewed. For each of these 5 example images, we include the 3 highest-confidence and
3 lowest-confidence instances under the image’s classifier (trained to differentiate fixations on
this image from fixations on other images). Fixations that later led to a correct recognition of
the image are outlined in green, and those where the image was unsuccessfully remembered
are in red. This depicts some of the successes and failure modes of our model.
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4.4 Eye movements are predictive of whether an image will

be remembered

Here we use the model developed in the previous section to make image memorability

predictions on a trial-by-trial basis. As demonstrated in previous chapters, people are

highly consistent in which images they remember and forget. Thus as a baseline we

use an image’s memorability score (HR from AMT 2, Chap. 3) to make trial-by-trial

predictions. We refer to this as a population predictor because these memorability

scores are obtained by averaging over observers.

We compare this population predictor with an individual trial predictor which

uses a viewer’s eye movements on a particular trial to predict whether an image will

be remembered. Our individual trial marker involves measuring the confidence of a

viewer’s fixation map under the classifier 𝐺𝑖. Our split of the original eyetracking

data is threefold: we have a set of participants on each image for training the classi-

fier 𝐺𝑖 to differentiate fixations on image 𝐼 from fixations on other images; another

set of participants on each image is used for estimating the threshold required to dif-

ferentiate successful from unsuccessful encoding fixations (where we use the ground

truth data on whether the participants successfully recognized the image); finally, we

evaluate the fixation maps of the last set of participants using the learned threshold to

classify fixations as successful or unsuccessful. For picking the threshold, we perform

a grid search over 200 values, and optimize for balanced accuracy.

Over 15 different threefold splits of data, we obtain a balanced accuracy of 66.02%

(𝑆𝐷 : 0.83) at determining whether a set of encoding fixations is successful and will

lead to a correct recognition of the image at a later point in time. Compare this to

60.09% (𝑆𝐷 : 1.55%) when using the memorability score of an image - our population

predictor which does not take into account the trial-to-trial variability. Additional

baselines that we considered were the similarity of the fixation map to a center prior,

achieving an accuracy of 56.35% (SD: 0.60%), and the coverage of the fixation map

(proportion of image fixated), achieving an accuracy of 55.89% (SD: 0.58%). Thus,
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neither of the baselines could explain away the predictive power of our model4.

4.5 When individual differences matter most

Consider the cases where images are not consistently memorable or forgettable across

individuals. We sort images by their AMT scores (which we obtain from AMT 2,

Chap. 3), and progressively remove images at the memorability extremes. The re-

sulting prediction performance is plotted in figure 4-3a. Memorability scores fall to

chance at predicting individual trials precisely because the images at the memorability

extremes were most predictive. Meanwhile, our eye movement features retain predic-

tive power, indicating that individual differences become most relevant for the middle

memorability images. These are the images that may not be memorable at-a-glance,

and may require the viewer to be more “attentive”.

4.6 Not all images are equally predictable

Our classifier is more likely to make a successful prediction on a given trial when it

is confident. A classifier is confident when it can easily discriminate successful from

unsuccessful fixations on an image. For instance, an image with all of the important

content in the center might not require the viewers to move their eyes very much

and this makes prediction particularly difficult because successful and unsuccessful

fixations may not be that different.

Our model construction allows us to easily estimate the expected confidence of

our classifier on an image. For a given image 𝐼, we compute the expected confidence

of classifier 𝐺𝑖 as the average confidence value over its positive training examples -

the successful fixation maps on image 𝐼. When we sort images by this measure (see

fig. 4-4), we obtain the results in fig. 4-3b. We can achieve a balanced accuracy above

4Successful fixations tend to be alike; every unsuccessful set of fixations is unsuccessful in its own
way : the fixations may be center-biased (the viewer does not move his eyes to look around), they
may be off-center or even off-the-image (the viewer is distracted), the fixations might be randomly
distributed over the image and have high coverage (the viewer is not paying attention to the task),
etc. Thus baseline models that try to separate successful from unsuccessful fixations using simple
principles, like coverage or center bias, will not have full predictive power.
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Figure 4-3: (a) When we prune images at the memorability extremes, memorability scores
fall to chance as a predictor of per-trial memory performance, while eye movements remain
important for making trial-by-trial predictions. (b) Our classifier makes more accurate
predictions when it has higher expected confidence. Standard error bars are included for
both plots.
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images sorted by expected classifier confidence

...

Figure 4-4: Images sorted by expected classifier confidence (from least to most). A classi-
fier with high confidence on its positive training examples will do better at differentiating
successful from unsuccessful fixations on an image. Overlaid on top of each image is the
average fixation map computed over all successful encodings of the image.

70% for the images where our classifier has the highest confidence. Thus, we can

automatically select images that our classifier will likely do well on. This becomes

an important feature for applications where we have a choice over the input images

that can be used, and need to have a system to robustly predict from eye fixations,

whether an image will be later remembered.
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Chapter 5

Contributions to Cognitive Science:

Pupils as Indicators of Memory

Processes

How quickly can an image fade from memory? Can physiological measurements like

pupillary responses and blink rates be used to track image memorability without the

need for overt responses? 1

5.1 Related work

Memory for objects and scenes is massive and image details can be stored for hours or

even days [11, 25, 39, 40]. Isola et al. have demonstrated that images in a collection

that are the most memorable at shorter intervals are still the most memorable even

after 40 minutes [30].

We confirm that memorability is an intrinsic property of images that is stable over

time, using a logarithmic set of time intervals (lags of 8, 16, 32, 64 images). Differences

in image memorability are already present briefly after encoding, at the shortest lag

(only 20 seconds). Moreover, differences in memorability produce different rates of

forgetting. The most memorable images degrade least in memorability across time.

1This chapter is closely related to publication [61]

51



The graded effect of memorability also shows up in the pupil and blink rates, as

differences in physiological responses during retrieval.

While it has been known since the early 60s that the overt pupillary response can

be linked to covert cognitive constituents like information processing and mental load

[10, 24, 35, 22], recent studies have started using pupil dilations more deliberately

to investigate recognition memory [21, 34, 44, 48, 49, 62]. For instance, Võ and

colleagues [62] have demonstrated that pupils dilate more to “old”, studied items than

to “new” ones, and termed this effect the Pupil Old/New Effect or PONE.

Usually, studies interested in pupil measurements disregard blinks as missing data.

However, in addition to pupil dilations, blinks provide mutually exclusive, but com-

plementary indices of information processing [55]. Blink rates have been shown to

decrease under conditions of high visual and/or cognitive load, since a reduced blink

rate supports a continuous input of visual information especially necessary when cog-

nitive demands are high [45].

With regards to image memorability, these finding suggest that since a correct

retrieval of less memorable images requires more cognitive effort, we should see an

increase in pupil dilations as well as a decrease in blink rate. Furthermore, memories

encoded longer ago should also require more cognitive effort to retrieve and should

be accompanied by similar physiological markers.

5.2 In-lab experiments

From the Isola et al. [31] database of 2222 images with accompanying memorability

scores, we chose 80 images each with the highest, lowest, and medium memorability

scores, while balancing the occurrence of indoor/outdoor scenes, people, and animals

in the 3 memorability categories. There was no difference in mean luminance between

low and high memorability categories for neither LAB, HSV, nor RGB values, all

𝑡(158) < 1. The images were resized to be 512 × 512 pixels. A sample from the 240

target images used in our present study can be found in Fig. 5-1.

The experimental design included two main manipulations: image memorability
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Figure 5-1: Sample of top, medium, and low memorability images used from the memora-
bility images of [31] as the targets for our experiments.

(low, medium, high) and lag (8, 16, 64, 256). Each participant was presented with a

sequence of 1216 images, 240 of which were target images presented twice. The other

736 images were fillers, which were sampled randomly from the remaining images in

the database. We randomly assigned target images to prespecified positions within

the image sequence repeating at one of 4 lags categories (8, 16, 64, 256). Pupil

dilations and blink rates were recorded with the EyeLink1000 set-up described in

Sec. 4.2. 15 subjects participated.

Stimulus-locked recording segments of 2000 ms were baseline-corrected by sub-

tracting the average pupil dilation over the 100 ms preceding stimulus onset. Peak

horizontal dilations in the 2000 ms after stimulus onset were submitted separately to

ANOVAs with memorability (low, medium, high) and lag (8, 16, 64, 256) as within-

subject factors. Blinks were recorded as events where the pupil size was very small,

missing in the camera image, and/or severely distorted by eyelid occlusion. We com-

puted the blink rate as the average percentage of blinks in each of the conditions.
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(a) (b)

Figure 5-2: (a) The most memorable images remain the most memorable for different lag
lengths, and decay at a slower rate even for longer lags. (b) Response times follow the
opposite pattern.

5.3 Differences in memorability show up early and change over

time

HR decreased with lower image memorability2, 𝐹 (13, 2) = 63.33, 𝑝 < 0.01, 𝜌𝜂2 = 0.70

and with increasing lag, 𝐹 (13, 3) = 97.76, 𝑝 < 0.01, 𝜌𝜂2 = 0.63. We also found an

interaction of memorability and lag, 𝐹 (13, 6) = 10.22, 𝑝 < 0.05, 𝜌𝜂2 = 0.18, as the

rate of forgetting increased from high-mem images (-3.58), over medium-mem images

(-6.94) to low-mem images (-8.30). Hit rates already differed significantly at the

shortest lag: high (97%) vs. low (71%), 𝑡(12) = 3.79, 𝑝 < 0.05. See Fig. 5-3a.

RTs (response times) were measured from scene onset to button press and are

only considered for successful recognition trials. Similar to HR, we see a main effect

of memorability, 𝐹 (12, 2) = 105.72, 𝑝 < 0.01, 𝜌𝜂2 = 0.59, a main effect of lag,

𝐹 (12, 3) = 53.18, 𝑝 < 0.01, 𝜌𝜂2 = 0.61, and an interaction of memorability and

lag, 𝐹 (12, 6) = 2.39, 𝑝 < 0.05, 𝜌𝜂2 = 0.09, with a difference in slopes across lags

as a function of memorability: high = 24.07, medium = 40.08, and low = 41.91.

RTs already differed significantly at the shortest lag: high (779ms) vs. low (897ms),

𝑡(12) = 9.48, 𝑝 < 0.01. See Fig. 5-3b.

2Note that memorability scores were fixed from the previous study of [31], whereas the HR
referred to here is the performance by the eye tracked participants in the current study.
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5.4 Pupil size and blink rates are predictive of differences in

memorability

The Pupil Old/New Effect (PONE) is measured as the difference in pupillary re-

sponses to old images correctly identified as “old” (Hits) versus new images correctly

identified as “new” (Correct Rejections, CRs). There was a significant PONE dur-

ing retrieval with pupils dilating more to Hits vs. CRs (𝑀 = 241, 𝑡(13) = 5.98,

𝑝 < 0.01). Differences in image memorability produced a graded PONE response,

𝐹 (13, 2) = 3.33, 𝑝 < 0.05, 𝜌𝜂2 = 0.20, with low-mem images eliciting a greater

PONE than high-mem images, 𝑡(13) = 2.23, 𝑝 < 0.05. The PONE was also modu-

lated by the lag between image encoding and its successful retrieval, 𝐹 (13, 3) = 3.98,

𝑝 < 0.05, 𝜌𝜂2 = 0.23, with an increased PONE at the longest lag compared to lag-16,

𝑡(13) = 2.57, 𝑝 < 0.05.

The Blink Old/New Effect (BONE) was calculated as the difference in mean blink-

ing rate for Hits versus CRs. There was a significant BONE, with reduced blinking

rates for Hits vs. CRs during retrieval (𝑀 = −16%, 𝑡(13) = 3.47, 𝑝 < 0.01). The

BONE was further modulated by image memorability, 𝐹 (13, 2) = 6.04, 𝑝 < 0.01,

𝜌𝜂2 = 0.32, with blink rate significantly reduced for low-mem compared to high-mem

images, 𝑡(13) = 2.83, 𝑝 < 0.05. The BONE was not significantly modulated by the

lag between image encoding and its successful retrieval, 𝐹 (13, 3) = 1.98, 𝑝 = 0.13,

𝜌𝜂2 = 0.13, but there was a marginally significant decrease of blink rate at lag-256

compared to lag-16, 𝑡(13) = 2.13, 𝑝 = 0.05. We therefore propose that this Blink

Old/New Effect could be used as a complementary measure of memory processes.

5.5 Discussion

Image memorability has strong and robust effects on both recognition memory per-

formance and eye activity measures. This study not only corroborated earlier findings

that memorability is an intrinsic property of an image that is shared across different

viewers and remains stable over time, but also clearly showed that low memorable

55



(a) (b)

Figure 5-3: (a) Pupils are larger at retrieval than encoding, with the greatest effects elicited
for the low-mem images (hardest to retrieve). (b) There are fewer blinks at retrieval than
encoding, with the fewest blinks for low-men images.

images compared to highly memorable images: 1) show a decline in recognition per-

formance of over 25% only 20 seconds after initial scene viewing, 2) produce steeper

rates of forgetting than more memorable images, and 3) are accompanied by increased

pupillary responses and decreased blink rates.

While it is not surprising that some images are less memorable than others, it does

seem striking how quickly differences in image memorability become evident. For the

advertising business it would be devastating to use images that will be forgotten

before a customer could even navigate to the webpage to make a purchase.

In addition to the almost instantaneous decline in memory performance, mental

representations of less memorable images also faded away at a faster rate. After only

10 minutes, recognition memory for these images dropped dramatically from 71%

to only 32%, while recognition memory for highly memorable images merely declined

from 97% to 78% in the same time interval. Moreover, the successful retrieval of scene

representations from low memorability images involved more effort, as seen through

prolonged RTs, greater pupil dilations, and decreased blink rates.

In sum, we have shown that the intrinsic memorability of an image has both

immediate and long-lasting effects on recognition performance and can be tracked

using two easily accessible and complementary physiological measures: the pupillary

response and endogenous blink rate. Image memorability is therefore indeed mirrored

in the eye of the beholder.
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Chapter 6

Application to Information

Visualizations

Does consistency of image memorability generalize to other domains like information

visualizations? What makes a visualization memorable?1

6.1 Motivation

In earlier parts of this thesis we have seen how natural scene images tend to be

consistently memorable or forgettable across individuals, demonstrating that there

are intrinsic factors that contribute to image memorability. Here we extend these

findings to the more applied area of visual imagery: information visualization. In the

age of Big Data, visualizing all this data becomes a key challenge. Information (or

data) visualizations become crucial for communicating ideas, analyses, and findings

to company employees at industry meetings, to scientists via academic publications,

to students in education settings, and to the general public via news and other media.

We aim to understand if memorability for visualizations is also consistent across

a population, and what key factors may contribute to making some visualizations

intrinsically more memorable than others. We set out to answer the basic question:

“What makes a visualization memorable?” Clearly, a more memorable visualization

1This chapter is closely related to publication [9]
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is not necessarily a more comprehensible one. However, knowing what makes a vi-

sualization memorable is a step towards answering higher level questions like “What

makes a visualization engaging?” or “What makes a visualization effective?”.

We studied the memorability of visualizations as images to better understand

their intrinsic memorability. While we did not specifically study the memorability or

comprehensibility of the underlying data presented in the visualization in the current

work, identifying which type of visual information is memorable or forgettable pro-

vides a basis for understanding a number of cognitive aspects of visualizations. This

is because given limited cognitive resources and time to process novel information,

capitalizing on memorable displays is an effective strategy. Research in cognitive

psychology has shown that conceptual knowledge is an organizing principle for the

storage and retrieval of information in memory. For instance, details of a story or a

picture that are consistent within an existing schema are more likely to be remem-

bered than those that are not [1, 39]. Recent large-scale visual memory work has

shown that existing categorical knowledge supports memorability for item-specific

details [39]. In other words, many additional visual details of the image come for free

when retrieving memorable items. Understanding the memorability of visualizations

provides a baseline for leveraging these cognitive capabilities.

6.2 Related work

Recently, there have been a number of studies aiming to evaluate the impact of embel-

lishments on visualization memorability and comprehension [5, 6, 7, 18, 26, 43, 60].

Bateman et al. conducted a study to test the comprehension and recall of graphs

using an embellished version and a plain version of each graph [5]. They showed that

the embellished graphs outperformed the plain graphs with respect to recall, and the

embellished versions were no less effective for comprehension than the plain versions.

There has been some support for the comprehension results from a neurobiological

standpoint, as it has been hypothesized that adding “visual difficulties” may enhance

comprehension by a viewer [7, 26]. Other studies have shown that the effects of stylis-
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tic choices and visual metaphors may not have such a significant effect on perception

and comprehension [6, 60]. While there have been studies evaluating memorability

and perception of graphical layouts for specific types of graphs, such as the work by

Marriott et al. for network diagrams [43], there has not yet been a memorability

study to target a wide variety of visualizations.

Moreover, a number of these studies were conducted with a limited number of

participants and target visualizations. In some studies the visualization targets were

designed by the experimenters, introducing inherent biases and over-simplifications [5,

7, 60]. We reduced our biases by compiling a large database of thousands of real-

world visualizations and enrolling a large and diverse set of participants on Amazon’s

Mechanical Turk. And while previous studies confound perception, recall, and com-

prehension, we focus purely on memorability of the visualizations as images to remove

any obfuscation by other variables.

In our study we apply the same methods of measuring memorability (as described

earlier in this thesis, and first developed in [31]) to visualizations. In contrast to

the prior work that focused on natural images and real-world objects, visualizations

are artificial representations of data. Our study contributes not only to the field of

visualization but also adds memorability results for artificial images to the cognitive

psychology literature.

6.3 MASSVIS (Massive Visualization) dataset

In order to have a large number of real world examples for our memorability experi-

ment we started by scraping the web to collect 5,693 data visualizations. To ensure

a breadth of visualization types, design aesthetics, and visualization domains, we fo-

cused on the visualization sources listed in Table 6.1. Of the 5,693 visualizations, only

2,070 single visualizations (i.e., stand-alone visualizations with one panel) were kept

for further analysis. Our dataset is called the MASSive VISualization (MASSVIS)

dataset, and will be made publicly available. A thorough discussion of the dataset,

as well as a novel taxonomy for visualizations, are provided in [9].
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Source Total Website(s) Per website
(single) (single)

Government 607 (528) US Treasury Dept. 141 (117)
or World Organizations World Health Organization 464 (411)
News Media 1187 (704) Wall Street Journal 609 (309)

Economist 519 (378)
National Post 55 (17)

Infographics 1721 (490) Visual.ly 1721 (490)
Scientific Publications 2,178 (348) Nature 2,178 (348)
TOTAL 5,693

(2,070)

Table 6.1: List of visualization sources, their websites, and the respective number of visual-
izations in the MASSVIS dataset.

Attribute Measure
Black & White [yes, no]
Number of Distinct Colors [1, 2-6, ≥7]
Data-Ink Ratio [good, medium, bad]
Visual Density [low, medium, high]
Human Recognizable Objects [yes, no]
Human Depiction [yes, no]

Table 6.2: Attributes used to label visualizations.

In order to determine which visualization elements affect memorability, we further

defined a series of visual attributes (Table 6.2). The first two attributes, “black

& white” and “number of distinct colors” are meant to give a general sense of the

amount of color in a visualization. A measure of chart junk and minimalism is

encapsulated in Edward Tufte’s “data-ink ratio” metric [58], which approximates the

ratio of data to non-data elements. The “visual density” rates the overall density

of visual elements in the image without distinguishing between data and non-data

elements. Finally, we have two binary attributes to identify pictograms, photos, or

logos: “human recognizable objects” and “human depiction”. We explicitly chose to

have a separate category for human depictions due to prior research indicating that

human representations have an effect on memorability [31].

For use in our memorability experiment (Sec. 6.4), we selected a subset of 410

images (∼20% of the single images in our database) to be “target” visualizations, for

which we collected memorability scores2. The target visualizations were also chosen

2Of these, 17 were subsequently filtered out because their aspect ratios were deemed too skewed
for the comparison to other visualizations to be fair. Visualizations with aspect ratio greater than
3:1 made the text hard to read, and pictographic elements hard to decipher.
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to match the distribution of original visualization sources as well as the distribution

of visualization categories of the total 2,070 single visualization population. Thus the

target population is representative of the observed diversity of real-world visualization

types. Fillers were sampled from the rest of the single visualizations. All images were

resized to lie within a maximum dimension of 512×512 pixels (while preserving aspect

ratios), so as to fit comfortably into a webpage containing the memorability game.

6.4 Online crowdsourcing experiments

The methodology was the same as for the AMT experiments described in Chap. 2,

Sec 2.3. On average, we collected 87 responses (SD: 4.3) per target image. Given the

responses collected, for performing a relative sorting of our data instances we used

the d-prime metric3, defined in Appendix A. This is a common metric used in signal

detection theory, which takes into account both signal (HR) and noise (FAR). We

use this as a memorability score for our visualizations. A high score will require 𝐻𝑅

to be high and 𝐹𝐴𝑅 to be low. This will ensure that visualizations that are easily

confused for others (high 𝐹𝐴𝑅) will have a lower memorability score.

6.5 Some visualizations are intrinsically more memorable

The scores obtained were HR: 𝑀 = 55.36%, 𝑆𝐷 = 16.51% and FAR: 𝑀 = 13.17%,

𝑆𝐷 = 10.73%. We also measured the consistency of our memorability scores (using

the procedure discussed in 2.6). Averaging over 25 such random half-splits, we obtain

Spearman’s rank correlations of 0.83 for HR, 0.78 for FAR, and 0.81 for d-prime. This

high correlation demonstrates that the memorability of a visualization is a consistent

measure across participants, and indicates real differences in memorability between

visualizations. Thus, despite possible differences in knowledge and experience levels

across participants, memorability is intrinsic to the visualizations.

3Also called the sensitivity index.
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Figure 6-1: Left: The top 12 overall most memorable visualizations (most to least memo-
rable from top left to bottom right). Middle: The top 12 most memorable visualizations
without pictograms. Right: The bottom 12 least memorable visualizations.

6.6 Visualization attributes are predictive of memorability

Of our 410 target visualizations, 145 contained either photographs, cartoons, or other

pictograms of human recognizable objects (here referred to as “pictograms”). Visual-

izations containing pictograms have on average a higher memorability score (𝑀=1.93)

than visualizations without pictograms (𝑀 = 1.14, 𝑡(297) = 13.67, 𝑝 < 0.001). Thus,

just as with scene images, a visualization containing a human recognizable object will

more likely be remembered.

Due to this strong main effect of pictograms, we include separate results for visu-

alizations with and without pictograms. As shown in the left-most panel of Fig. 6-1,

all but one of the most memorable images (ranked by their d-prime scores) contain

human recognizable pictograms. The one visualization without a human recognizable

image, the molecular diagram in the middle of the second row, is the most memo-

rable image of our non-pictogram visualizations (see Fig. 6-1, middle panel). The

least memorable visualizations are presented in the right-most panel of Fig. 6-1.

As shown in Fig. 6-2a visualizations with 7 or more colors have a higher memorabil-

ity score (𝑀 = 1.71) than visualizations with 2-6 colors (𝑀 = 1.48, 𝑡(285) = 3.97, 𝑝 <

0.001), and even more than visualizations with 1 color or black-and-white gradient

(𝑀 = 1.18, 𝑡(220) = 6.38, 𝑝 < 0.001). Across visualizations without pictograms, the
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(a) With Pic
Number of Distinct Colors

12-6!7

Without Pic
Number of Distinct Colors

12-6!7

Memorability plotted against color rating

(b)

Memorability plotted against visualization source category

With Pic Without Pic

(c) With Pic

LowMediumHigh

Without Pic

LowMediumHigh

Memorability plotted against visual density ranking

(d) With Pic

GoodMediumBad

Without Pic

GoodMediumBad

Memorability plotted against data-ink ratio

Figure 6-2: (a) Memorability scores for visualizations based on the number of colors con-
tained. (b) Memorability scores for visualizations based on original source category. (c)
Memorability scores for visualizations based on visual density. (d) Memorability scores for
visualizations based on the data-to-ink attribute ratings. Across all 4 plots: the left side
corresponds to all visualizations, and the right to visualizations without pictograms.
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Figure 6-3: Memorability scores for visualizations based on visualization type. The left side
corresponds to all visualizations, and the right to visualizations without pictograms.

difference between visualizations with 7 or more colors (𝑀 = 1.34) and those with 1

color (𝑀 = 1.00) remains statistically significant (𝑡(71) = 3.61, 𝑝 < 0.001). Across all

visualizations, a high visual density rating of “3” has higher memorability (𝑀 = 1.83)

than a low visual density rating of “1” (𝑀 = 1.28, 𝑡(115) = 6.08, 𝑝 < 0.001) - see

Fig. 6-2c. We also observed a significant effect of data-to-ink ratio on memorabil-

ity scores with a “bad” (𝑀 = 1.81), i.e., low data-to-ink ratio, being higher than a

“good” rating (𝑀 = 1.23, 𝑡(208) = 6.92, 𝑝 < 0.001) - see Fig. 6-2d. The 3 levels of

data-ink ratio are pairwise significantly different from each-other (according to cor-

rected t-tests). As shown in Fig. 6-3, diagrams were statistically more memorable

than points, bars, lines, and tables. These trends remain even across visualizations

without pictograms, other than some minor ranking differences (e.g. tables without

pictograms becomes least memorable).

The middle panel of Fig. 6-1 displays the most memorable visualizations that do

not contain pictograms. Why are these visualizations more memorable than the ones

in the right-most panel? Qualitatively they are higher contrast, have more color,

and are easier to see and discriminate as images. Another possible explanation is

that “distinct” types of visualizations, such as diagrams, are more memorable than
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Figure 6-4: The top ten most memorable visualizations for each of the four visualization
source categories: infographic (top left), scientific publications (top right), news media (bot-
tom left), and government / world organization (bottom right). In each quadrant, the
visualizations are ordered most to least memorable from top left to bottom right.

“common” types of visualizations, such as bar charts. This trend is also evident in

Fig. 6-3 in which grid/matrix, trees and networks, and diagrams have the highest

memorability scores and tend to all look different from one another, whereas bar

charts and line graphs have the lowest memorability and are uniform with limited

visual variability (e.g., all the bar charts look alike). Another contributing factor

is that target visualizations represented a distribution of types found “in the wild.”

Thus, of the 410 target visualizations, trees and networks totaled 11 targets and

grid/matrix totaled 6 targets. Their low frequency may have contributed to their

distinctiveness.

6.7 How visualization memorability differs by publication source

As shown in Fig. 6-2b, regardless of whether the visualizations did or did not include

pictograms, infographic visualizations were the most memorable (𝑀 = 1.99, 𝑡(147) =

5.96, 𝑝 < 0.001 when compared to the next highest category, scientific publications

with 𝑀 = 1.48), while the least memorable were the government and world organiza-

tions visualizations (𝑀 = 0.86, 𝑡(220) = 8.46, 𝑝 < 0.001 when compared to the next

lowest category, news media with 𝑀 = 1.46). These results were significant accord-
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ing to corrected t-tests, for visualizations with and without pictograms. In fact, with

pictograms removed, scientific publications (𝑀 = 1.95) become significantly more

memorable than news media (𝑀 = 1.17, 𝑡(23) = 6.92, 𝑝 < 0.001). The top ten most

memorable visualizations from each source category are shown in Fig. 6-4.

Note that the infographic visualizations from Visual.ly come from a more design-

focused venue, and are intentionally created to be flashy and to include stylized

elements. These visualizations are pre-judged by people before being published, and

thus compete for the viewer’s attention. These visualizations are more likely to be

bright, bold, and contain pictorial visual elements to grab a reader’s attention. Thus

this type of publication venue’s motivational bias may translate into design features

that lead to higher memorability.

Another possible influence of visualization source is venue-specific aesthetics. Many

visualizations, particularly those from the news media and government sources, tend

to publish with the same visual aesthetic style. This may be due to either the venue

maintaining a consistent look so viewers will automatically recognize that a visual-

ization was published by them, or because they have editorial standards to create

visualizations that appear similar. This may have a negative impact on memorability

scores because visualizations of similar aesthetics lack distinctiveness.

6.8 Discussion

The results of our memorability experiment show that like scenes and faces, visu-

alizations are consistently memorable across people, which may hint at generic, ab-

stract, features of human memory. In particular, the inclusion of human-recognizable

objects enhances memorability. And similar to previous studies we found that visu-

alizations with low data-to-ink ratios and high visual densities (i.e., more chart junk)

were more memorable than minimal, “clean” visualizations. We found that distinct

visualization types (pictoral, grid/matrix, trees and networks, and diagrams) had sig-

nificantly higher memorability scores than common graphs (circles, area, points, bars,

and lines). Overall, novel and distinct visualizations can be better remembered, and
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this finding is consistent with results for natural scenes and objects.

Understanding what makes a visualization memorable is only the first step to

understanding how to create effective data presentations. Making a visualization

more memorable means making some part of the visualization “stick” in the viewers

mind. We do not want just any part of the visualization to stick, but rather we

want the most important relevant aspects of the data or trend the author is trying

to convey to stick. If we can accomplish this, then we will have a method for making

data more memorable. This will have diverse applications in education, business, and

more generally, in how data is presented to wide audiences.
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Chapter 7

Conclusion

7.1 Contributions and discussion

In this thesis, the intrinsic and extrinsic effects on image memorability have been

thoroughly investigated and quantified. With regards to intrinsic effects, we have

been able to show high consistency in memorability scores. Specifically that:

∙ consistency exists at the within-category level, demonstrated for each of 21

different indoor and outdoor scene categories (Chap. 2)

∙ even whole scene categories (or image collections) can be consistently more

memorable that others (Chap. 2)

∙ consistency holds across experimental settings and different participant popu-

lations (Chap. 3)

∙ images most memorable after shorter time intervals are also most memorable

after longer time intervals (Chap. 5)

∙ there is also consistency for non-natural images - i.e. information visualizations

(Chap. 6)

All of these findings suggest that there is a component of image memory intrinsic to

the images themselves, making automatic prediction a very real possibility. Intrinsic
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effects are not, however, sufficient for predicting image memorability at a per-trial

level. Extrinsic effects like the context in which an image appears or the particular

observer, will influence whether or not an image will be remembered or forgotten on

a given trial. Thus, intrinsic image memorability is modulated by extrinsic effects.

In Chap. 3, we presented an information-theoretic framework for modeling the

context of an image collection using automatically-computed visual features. We have

applied this framework to a large collection of natural scenes (the 9K images in the

FIGRIM dataset, presented in Chap. 2). By systematically varying image context

between AMT 1 (Chap. 2) and AMT 2 (Chap. 3), we have been able to quantify

how and when context affects memorability. Although previous memory studies have

indicated that items that are distinct with respect to their context are better remem-

bered, we have been able to quantify this intuition in a fully-automatic manner using

our large scene dataset. Moreover, we have shown that more variable contexts are

more memorable overall. Thus as one increases the variety or distinctiveness of the

images in a collection, one can increase the number of images that can be remem-

bered. Does this mean that performance on image recognition tasks can increase

indefinitely as long as the images being presented together (in the same context) are

sufficiently different? This is probably not the case due to a possible saturation effect

- see figure 7-1.

To further consolidate these points, consider the comparison across a number of

image memorability experiments presented in table 7.1. Note that there is consistency

in the distribution of memorability scores (the average HR and FAR scores) across

experiments. For experiments composed of a single stimuli category - faces [3], visu-

alizations (MASSVIS), within-scene experiment (FIGRIM), the HR and FAR scores

are very similar. Likewise, the scores are also similar for experiments composed of

multiple different stimuli (scene) types - the many-scene experiments of [31] and the

across-scene experiment (FIGRIM). Thus, there seem to be some natural bounds to

the number of images that can be remembered for a given diversity of image context.

With further experiments, it would be interesting to determine the exact function of

memorability with changes in context variability.
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Figure 7-1: Average memorability scores for scene contexts composed of different numbers of
scene categories: 1 (AMT 1), 7 (in-lab), 21 (AMT 2), over 300 [31]. Thus, as the variability
of images in a given image context increases, the memorability scores go up (more images
can be remembered). However, memory performance is not likely to increase indefinitely,
eventually reaching a plateau.

Dataset targets fillers datapts mean mean HR FAR
per target HR (%) FAR (%) cons. (𝜌) cons. (𝜌)

FIGRIM (Chap. 2) 1754 7296 74 66.0 11.1 0.74 0.72
(SD: 13.9) (SD: 9.5)

Isola [31] 2222 8220 78 67.5 10.7 0.75 0.66
(SD: 13.6) (SD: 7.6)

Faces [3] 2222 6468 82 51.6 14.4 0.68 0.69
(SD: 12.6) (SD: 8.7)

MASSVIS (Chap. 6) 410 1660 87 55.4 13.2 0.83 0.78
(SD: 16.5) (SD: 10.7)

Table 7.1: A comparison of the memorability scores across different datasets, showing con-
sistency in results and stability of memory performance. Additionally note that for the FI-
GRIM dataset, when each category was separately tested, the average memorability scores
over 21 categories were: 56.0% (𝑆𝐷 : 4.2%) for HR and 14.6% (𝑆𝐷 : 2.0%) for FAR, showing
consistency with the instance-based databases of faces and visualizations.
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Another set of questions addressed in this thesis is how physiological markers such

as eye movements, pupil dilations, and blinks, can serve as indicators of memorability.

In Chapter 4, we developed a computational model to predict, given an individual’s

fixations on an image, whether the individual will remember the image at a later time

point. Thus, how people look at an image can be informative of how (and whether)

they encode it, and whether they can later successfully retrieve it. In Chapter 5 we

have shown that pupils dilate more, and blink rates decrease, during the retrieval of

a lower memorability image than during the retrieval of a more memorable image.

Both of these physiological markers have been found to be indicative of cognitive

effort, and this fits our observations that lower-memorability images take more effort

to retrieve.

Taken together, all of the findings presented in this thesis can contribute to a single

model of memorability, with both intrinsic and extrinsic effects taken into account.

Importantly, since high consistency can be found across experiments and participant

populations, automatic prediction becomes a possibility. A fully computational model

of memorability is then only a few steps away.

7.2 Future applications

Previous studies have shown that image memorability can be computationally pre-

dicted from image features [31], opening up applications such as automatically gen-

erating memorability maps for images [38], modifying image memorability [36, 37],

and designing better data visualizations [9].

Taking into account the extrinsic effects discussed in this paper will lead to more

complete models that are better able to approximate human performance on specific

memory tasks. Apart from the extrinsic effects we have discussed in this paper,

other ones can affect the memorability of individual images, including the observer’s

expertise, time spent studying each image, attention biases, etc. How memorable

something is may additionally be affected by its familiarity and utility. Note that

familiarity, which involves multiple repetitions of an item, has not been considered
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in our studies but is an important factor in natural environments. The effect of

familiarity on memory has a long history in psychology [64, 15, 32, 4]. Utility would

correspond to how important a given item is to the observer. For instance, faces

have high utility, and images with faces have been found to be more memorable. It

remains to be understood and computationally modeled how exactly all these factors

combine to make an image more or less memorable.

Building extrinsic effects into memorability models will open up new application

areas for the customization of visual material, including user interfaces and educa-

tional tools. Imagine an automatic system that monitors the eye movements of a

student on a set of lecture slides or data presentations and uses this information to

determine whether or not the student is properly encoding the content. If not, the

system may either alert the student to increase attentiveness at this point in time, or

else the system may continue to re-present the material again until it has acquired

some confidence that the student has finally mastered the content.

In the case of all of the physiological markers presented in this thesis, no overt

response from a human is required, and prediction can be made automatically. A finer-

grained understanding of how these physiological markers vary with memorability, as

well as the consideration of additional physiological markers (pulse, sweat, etc.), can

open doors to even more applications.
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Appendix A

Memorability Measurements

Here we include the definitions for different memorability measurements:

HR(I) =
hits(I)

hits(I) + misses(I)
× 100%

FAR(I) =
false alarms(I)

false alarms(I) + correct rejections(I)
× 100%

ACC(I) =
hits(I) + correct rejections(I)

total(I)
× 100%

DPRIME(I) = 𝑍(HR)− 𝑍(FAR)

where Z is the inverse of the cumulative Gaussian distribution and:

total = hits(I) + misses(I) + false alarms(I) + correct rejections(I)

Additionally, given the following 2× 2 matrix:

hits(I)
total(I)

misses(I)
total(I)

false alarms(I)
total(I)

correct rejections(I)
total(I)

Mutual information (between a response and whether an image was a repeat) is

calculated as:

MI(I) =
∑︁
𝑖

∑︁
𝑗

𝑝(𝑖, 𝑗) log
𝑝(𝑖, 𝑗)

𝑝(𝑖)𝑝(𝑗)
(where 𝑖 and 𝑗 index into the matrix above)
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