
Behavior description and control using behavior
module for personal robot

Yukiko Hoshino
Sony Corporation

Life Dynamics Laboratory
Preparatory Office

6-7-35 Kitashinagawa,
Shinagawa-ku, Tokyo,

141-0001 Japan
Email: yukiko@pdp.crl.sony.co.jp

Tsuyoshi Takagi
Sony Corporation

Entertainment Robot Company
6-7-35 Kitashinagawa,
Shinagawa-ku, Tokyo,

141-0001 Japan
Email: takagi@pdp.crl.sony.co.jp

Ugo Di Profio
and Masahiro Fujita

Sony Corporation
Network CE Laboratory
6-7-35 Kitashinagawa,
Shinagawa-ku,Tokyo,

141-0001 Japan
Telephone: (+81) 3-5448-5901,

Fax: (+81) 3-5448-6833

Abstract— This paper describes a module-based behavior selec-
tion architecture for a personal robot intended for a real world
environment. We adopt the Emotional GrOunded architecture
for a basis, and define and describe a behavior module and an
associated tree structure for controlling many behavior modules.
Also we discuss the requirements and approach for controlling
the behavior module tree. Through experimentation and imple-
mentation on QRIO SDR4X-II, we confirm the feasibility and
design of the behavior selection system.

I. INTRODUCTION

There are many new research efforts involving robots that
live with human users in daily life in recent years. [1][2][3]
To develop robots capable of sharing the life of a human for
extended periods, it is indispensable that the robot not only
perform useful tasks but also entertain people. To realize this
concept, which we call “Robot Entertainment”, the key issue
is how to make the robot’s behave like a living entity, and it is
our belief that the solution lies in the realization of complex
behavior.

We earlier proposed behavior modules and a preemption
process for behavior modules in [4][5]. In this paper, we
focus on integration of the behavior modules based on a tree
structure and also on the behavior selection process. This
behavior selection strategy, which goes beyond the earlier be-
havior selection architecture of AIBO, covers not only simple
behaviors but also complex activities such as interaction with
a human.

First we overview the basis of the behavior selection archi-
tecture and its requirements. Then we address the main issue,
the tree-structured integration of behaviors.

II. EGO ARCHITECTURE

We proposed EGO architecture (Emotionally GrOunded Ar-
chitecture) as a behavior control architecture for autonomous
robots. [6] The main strategy for behavior selection of EGO
architecture is based on ethological model[7]. The behavior
control is based on homeostasis which let the robot regulate
internal status within a certain range, and interpretation of
external stimuli with corresponding behaviors. Figure 1 shows

Visual
Auditory
Perception

LongTermMemory

ShortTermemory

External
Stimuli Motivation

InternalStateModel

EmotionEngine

Behavior
Behavior
Selection

Fig. 1. Overview of EGO architecture

the outline of EGO architecture. The robot integrates visual,
auditory and other sensing informations into the short term
memory(STM) and uses those informations as external stimuli.
On the other hand, it calculates motivation[7]from internal
status and emotion. Using external stimuli, motivation and in-
formation from long term memory, the robot selects behaviors.
In this paper, we focus on the bahavior selection part of the
EGO architecture and describe the framework of expression,
integration and control of complex behaviors, followed by
description of our implementation on real robot system, QRIO
SDR-4XII.

III. REQUIREMENTS AND APPROACH FOR THE CONTROL
OF VARIOUS BEHAVIOR

A robot should behave with sufficient complexity and in
meaningful ways if it is to share the life of a human for a
long period. The basic requirements for this kind of behavioral
control include: (1)effective structure of the behavior, and
(2)suitable coordination of the various behaviors. From an
engineering viewpoint, it is also important for the developers
of a robot’s behaviors, (a) to provide a simple description, (b)
employ a simple strategy for behavior design, and (c) make it
easy to reuse behaviors.

To achieve these requirements, we propose an approach
as follows: (1) Modularization of behavior, (2) Integration
of behavior modules based on a tree structure, (3) Parallel

Soccer

Search Approach Kick

Play Interaction

Conceptual level

Conceptual level

Fig. 2. Tree-structured behavior modules

evaluation and parallel execution of behavior modules, (4)
Interruption continuation of execution , and (5) Behavioral
selection based on behavior values (described later).

Modularization of behavior and integration of behavior
modules based on a tree structure makes the design of a robot’s
behavior easy and simple. Parallel execution and interrupt-
resume procedures permit an increase in the complexity of
a robot’s exhibited behavior. Moreover, the introduction of
behavior values lets the behavior selection method be straight-
forward, as behaviors can only be selected that possess a
suitable behavior value. Let us explain these points in detail.

1) Tree structure for integration of behavior modules
(a) Modules are defined as a unit of behavior: Each
behavior module has two functions; computing its suit-
ability and the execution of actions.
(b) Behavior modules are composed according to their
meaning, and form a tree structure which has layers
corresponding to conceptual levels.
Figure 2 shows the tree structure of behavior modules.
The figure’s rectangle illustrates the conceptual level.
The upper layer behavior module is termed the “parent”,
and its “children” are the lower layer modules.
Due to the independence of behavior modules, both ease
of their design and reuse can be achieved. Furthermore,
the tree structure using a layered conceptual level helps
in composing higher conceptual behavior with detailed
behavior modules.

2) Behavior value and behavior selection strategy
Within each behavior module, a behavior value that
represents the suitability of the behavior is calculated.
This value can be used to prioritize behavior, depending
on the strategy chosen for controlling child modules. The
high-level module in the tree structure only gathers the
behavior values of its direct children so that the subtree
size can be easily increased using the same behavior
selection policy based on behavior values.

3) Parallel execution
Each behavior module has certain keys for execution
such as a robotic resource, and behavioral coordination
using these keys enables the robot to exercise parallel
execution.

4) Interrupt-resume processing

In order to realize behavior interupt-resume, each be-
havior module maintains its own status, and performs
suitable processing to change its status from active to
waiting when a module which has higher priority than
itself causes it to stop executing. That module can also
resume execution and continue its behavior after being
deemed a suitable process for reactivation.

As mentioned in the introduction, the details of the behavior
module and interrupt-resume process were described in a
previous paper [4]. In this paper, we focus on the integration of
behavior modules based on a tree structure and on the means
of behavior selection.

IV. TREE STRUCTURE FOR THE INTEGRATION OF
BEHAVIOR MODULES

The rationale for using a tree structure is: 1) Easy reconfig-
uration of behavior modules into different organizations, 2) a
clear interface between the behavior modules and preservation
of their independence, and 3) the abstraction of an entire
subtree into a single behavior module.

In this section, we focus on the key issues surrounding
the integration of behavior modules. These are six-fold; (A)
Independence of each module, (B) Control at the conceptual
level, (C) Common values and keys for execution, (D) Parallel
evaluation and parallel execution, (E) Control strategy in each
conceptual level, and (F) Shared information.

A. Module Independence

Ensuring independence helps in providing reusability of be-
havior modules. However, it requires a mechanism of behavior
coordination to reside above the reused behavior modules. In
our case, a parent coordinates its children behavior.

B. Control at the conceptual level

Because of the inherent complexity associated with large
compositions of independent behavior modules, it is essential
to have a suitable control strategy. Also, to support easy
reconfiguration of the behavior module tree, it is important
to minimize the amount of information to be shared by every
behavior module.

Control of the whole behavioral tree is based on selection
information available at each conceptual layer. The values
considered are the priority for behavior selection, and an
execution key for parallel execution. Control policies of the
parent are based on only these two values.

The parent considers child modules as single behavior
modules. There is no assumption that a child is a parent of
another subtree. Moreover, each module can serve as both
an executable behavior module and a parent module for
coordination of other child modules.

C. Common values and keys for execution

To control behavior modules in each conceptual level, the
information about their priority value and execution key are
needed.

We adopt the term behavior value to represent an execution
priority. This value is calculated from the motivation (depend-
ing on the robot’s current internal status), and a merit value
(depending on the current external stimuli), as follows:

Bv = βMv + (1 − β)Rv (1)

Mv is the motivation value which is calculated as a desire
vector from the robot’s internal state.

Rv is the releasing value which represents an expected merit
value. It is calculated as follows:

Rv = α∆S + (1 − α)(S + ∆S) (2)

S is the satisfaction value derived from current internal
status, and ∆S is the expected change of the satisfaction value
as follows:

∆S = f(∆I) (3)

∆Iis the expected change of internal value which is based
on current external stimuli.

Also, a behavior’s required resources are referred to as an
execution key. For example, one part of the robot’s body can
be used by only one module at a time. The Head resource
cannot be used by two behavior modules simultaneously. The
interpretation of language can be treated similarly, where this
constitutes a cognitive resource. These keys form limitations
for each behavior module when considered in terms of parallel
execution.

D. Parallel evaluation and parallel execution

The behavior selection sequence starts from the lower level
of the behavior tree, gathering the necessary information for
selection towards the top. Execution is then assigned from the
top level down to the lower ones.

The sequence is propagated from parent to child down to the
leaf modules, which perform the evaluations of their behavior
values and execution keys, and then transmit them to their
parent, and so on.

After gathering all the information at the top layer, the
parent module assigns an execution key to child modules at
each conceptual layer, and propagates it sequentially from
the top of the tree to the bottom. Behavior modules are
then activated in parallel until a conflict of execution key is
detected.

A conflict is detected by the parent module at each concep-
tual layer. In the case of a conflict, the module with higher
priority is selected for execution. If the module with lower
priority is already executing, it will be stopped first and then
the higher priority module will be activated.

The execution status of each module is propagated from the
child module to its parent module.

Thus, dynamic and parallel activation control of the behav-
ior modules based on available execution keys is enforced at
each moment.

E. Control strategy within each conceptual level

The evaluation and execution at each conceptual layer
consists of:

• Gathering behavior information during an evaluation
phase

• Distribution of key in execution phase
• Integration of behavior status
1) Gathering behavior information in the evaluation phase:

Given a trigger for evaluation from its parent module, the child
module calculates its behavior value and its key for execution.
Gathering the information from all child modules along with
those of the parent itself is indispensable for each conceptual
level’s control, especially for the distribution of keys in the
execution phase.

The manner for gathering depends on the strategy for
controlling child modules. For example, if the parent module
wants to activate all child modules at the same time, all keys
required by the children and the parent itself are needed for
evaluation. On the other hand, if the parent module does not
need to activate all child modules at the same time, a candidate
list of execution keys is enough. Through this gathering and
calculation, a behavior module can propagate its execution
key to its parent module. The integration of priority value
information is also needed.

This information collection process enables complete evalu-
ation and execution in each concept level of the behavior tree,
while also enabling proper distribution of keys from the top
to the bottom layer.

2) Distribution of key in execution phase: Using informa-
tion which is gathered and integrated as explained previously,
a parent module distributes the execution key and manages the
activation of its child behavior modules.

The key is distributed from parent to child and all available
keys, except for the keys required by the parent itself, are
distributed to child modules. The computed behavior value is
used as the priority level for arbitrating key distribution.

After the distribution of keys, the parent module manages
the activation status of its children according to the assigned
execution keys. Child modules without a key should stop
execution and release any keys they currently hold. Child
modules not yet activated but possessing an execution key
should start execution, when the assigned keys are released
from the other modules which were previously holding those
keys.

3) Integration of behavior status: After execution, a parent
module must update its own behavior status and that of its
children. In [4], we proposed adding an intermediate behavior
status between run status and stop status . Figure 3 shows the
set and organization of these behavior statuses. Two different
stop statuses are used. The first stop has initialized informa-
tion, while the other has preserved information for preemption
and resumption of the module. To update the behavior status
of its modules properly, the parent module has to integrate the
information of its own behavior status based on the results of
its execution, (e.g., the execution succeeded, failed, paused,

 READY
 <STOP>

READY_TO_ACTIVE
 <GO TO RUN>

ACTIVE_TO_READY
 <GO TO STOP>

 ACTIVE
 <RUN>

Goal

Fail

Goal/FailGoal/Fail

Exec

 SLEEP
 <STOP>

ACTIVE_TO_SLEEP
 <GO TO STOP>

SLEEP_TO_ACTIVE
 <GO TO RUN>

Fig. 3. Behavior status

Assessment

Execution

Environment Internal

Behavior

Behavior Value
Execution Key

Fig. 4. Behavior Module

or continued), and the child modules’ behavior status. This
integration also depends on the strategy for controlling child
modules.

At the same time, a parent module checks whether the
entire subtree is able to continue execution or not. This also
depends on the execution strategy employed. For example, if
all child modules have to be activated at the same time, one
child module in stop status will cause all other modules in the
subtree to change from run to stop status.

F. Shared information

Previously, we discussed the information needed for the
basic control of child modules. High-level coordination of
behavior modules in the evaluation and execution phase also
requires additional information, e.g. information about the
target of a behavior.

For example, the target information of a soccer behavior is
a ball. To coordinate an approaching behavior and a kicking
behavior, information about the target ball should be shared,
and the robot should kick the ball to which it approached. In
a sense, information about the target of a behavior should be
shared at a conceptual level within the behavioral tree.

V. IMPLEMENTATION OF BEHAVIORAL CONTROL

In this section, we present an implementation of the module-
based behavior selection system as previously discussed in this
paper and in [4].

A. Behavior module

Each behavior module has an evaluation part and an execu-
tion part. (Figure 4)

In the evaluation part, a module calculates the execution key
that is needed for the execution phase, and also the behavior
value which is regarded as the behavior’s priority.

In the execution part, the actual behavior is described as
state machines. Using a state machine structure, the module

can select a suitable action for given internal values and
external stimuli, and transition to the next state as needed. The
state machine includes sending an action command, changing
internal status, deciding control policy of child modules, and
so on.

A behavioral module also maintains its behavior status.
Basically there are four status states: stop status, preparation
status for activation, activated status, and preparation status
for stop. Also for the preemeption function, the stop status
includes two different status states: an initialized status and
preserved status. With the preserved status, the behavior mod-
ule can be reactivated from its previous stop point after a brief
interruption.

B. Shared information

The information shared within a subtree of behavioral
modules is: (1) Environmental information of a target, (2)
Associated information of a target.

An example of environmental information is target infor-
mation that the robot actually senses, e.g. an object seen by
the robot. An example of associated information is a key for
associating one target with long-term memory data e.g. a face
index, voice index, or word index.

Several behavior modules in the subtree share this informa-
tion.

C. Control for tree structured behavior modules

As mentioned earlier, a required function for tree-structured
behavior modules is the propagation of the timing of eval-
uation, execution, and behavioral status update. For suitable
control, the integration of calculated values, distribution of
execution keys, and integration of status update are indispen-
sible. These important functions depend on the strategy of
child activation chosen as discussed in the previous section.

We propose a child execution policy that allows designers
to have a simple description of the behavior.

As examples of child execution policy, there are three
typical policies: (1) Simultaneous execution policy, (2) Parallel
execution policy, (3) Main child existence policy.

Using this method, calculations and operations which de-
pend on the child execution policy are hidden, and all the
designer has to do is declare which of the policies is used and
the associated child modules involved.

1) Simultaneous execution policy: Parent module activates
all child modules at the same time.

• Calculation of evaluated values
This policy requires all modules to be activated and stay
active simultaneously. Execution keys for the subtree are
the collection of all execution keys for all behavioral
modules. This subtree can be activated only when all of
the execution keys are available from the parent module.

• Distribution of execution keys
In the execution phase, the parent module checks whether
enough execution keys are distributed by its own parent
module, and then distributes the keys to itself and its child
modules.

• Integration of behavior status update
Even when there is only one stopped module, the parent
module stops every child and itself. Accordingly, behav-
ior statuses are changed to preparation status of stopping.
After execution, the parent module checks the result of
the execution of the child modules and itself, and decides
whether to change the behavior status or not.

2) Parallel execution policy: Parent module activates as
many child modules as possible until no conflict of execution
key occurs. This is the most common arbitration policy.

• Calculation of evaluated values
The execution key is the candidate list of child modules
and itself, because the parent module wants to activate
as many children as possible. Even though not all keys
are distributed in the execution phase, the parent module
distributes execution keys to the greatest extent possible.

• Distribution of execution keys
The parent module distributes available keys to child
modules, except the keys required by the parent itself,
according to the priority of child modules. Modules with
high priority value are assigned keys first. After key
distribution, behavioral modules are stopped or activated
according to execution keys.

• Integration of behavior status update
The parent module keeps the subtree active while there is
at least one behavior module active, including itself. Only
when all behavior modules are stopped then the subtree
itself stops.

3) Main child existence policy: The parent checks main
child (distinguished) modules in updating behavior status.

• Calculation of evaluated values
The calculation is the same as for the parallel execution
policy.

• Distribution of execution keys
The distribution is the same as for the parallel execution
policy.

• Integration of behavior status update
The result of the execution in the main child module
is most important. If the main child module finishes
execution, then the parent module stops all the other child
modules. The result of the behavior tree depends on the
result of the main child module.

VI. EXPERIMENT WITH QRIO SDR4X-II

Using the behavior selection implementation described in
section V, behavior experiments were performed using QRIO
SDR4X-II in a real environment.

A. System composition

Figure 5 shows an overview of QRIO SDR4X-II. Using
this robotic system, we performed experiments for behavior
selection and behavior execution. The right part of the figure
shows the software components. This robot has inputs from
visual, auditory, and tactile sensors. It has 38 DOF, LEDs
on its eyes and ears, and a speaker for talking. The software

LED
Controller

Motion
Controller

Sound
Controller

InternalStateModel LongTermMemory

Visual Sensor

Auditory Sensor

ResourceManager

Behavior Selector
Short
Term
Memory

Tactile Sensor

Fig. 5. Overview of robot system

Root

ChargeChat

Search Chat
To

User

Approach
To

User

Approach
SpeakWalk Search

Speak
Move
Head

Topi
Control
of Chat

Tracking
a face

Idling
Gesture

Sound
Attention Soccer

Approach
ballKick

Search
Speak

Move
Head

Approach
SpeakWalk

Search
ball

Fig. 6. Tree structure for behavior control experiment

components include a long-term memory and an internal state
model, which manages internal values and emotional status.
The short-term memory gathers all inputs and the resource
manager distributes output commands.

B. Behavior control experiment with tree-structured behavior
modules

Figure 6 shows an example of a tree of behavior modules.
The behavior tree includes “Soccer”, “Charge”, and “Chat”.
The main motivation of “Soccer” is vitality, the main motiva-
tion of “Charge” is hunger, and the main motivation of “Chat”
is social interaction. There are other behaviors such as “Sound
Attention”, where the robot turns towards the direction where
user calls are detected, and “Idling gesture” where the robot
performs idle gestures which has a constant behavior value.
Figure 7 shows the whole experiment layout.

1) Layering of behavior in conceptual level: From a top
level point of view, there are three kinds of behavior: “Soccer”,
“Charge” and “Chat”. At the next layer, each subtree is
defined: “Soccer” includes “searching a ball”, “approaching
the ball” and “kicking the ball”; the “Charge” subtree includes
asking to recharge its batteries; and the “Chat” subtree includes
“searching a user”, “approaching to a user” and “chatting to
the user”.

In addition, the “chatting to user” subtree includes the
“tracking” a user’s face module and the “controlling topic”
of chatting module. They are activated at the same time,
according to the simultaneous execution policy.

2) Behavior selection:
• Using motivation: The behavior value of “Soccer” is

increased according to the vitality internal state value.
The soccer behavior tree is selected when the value of
vitality is high enough. After searching, approaching,
and kicking a ball, the robot is satisfied and vitality
is decreased. The value of “Chat” changes based on

Behavior Selection Part Experiment Scene

Fig. 7. Overview of an experiment scene

the robot’s need for social interaction, and decreases
when the robot chats with a user. The behavior value of
“Charge” increases as the battery charge level decreases.
While the robot plays soccer and chats with a user, its
battery will discharge and the motivation of the charge
behavior will exceed those of both soccer and chat.

• Using motivation and external stimuli: First let’s consider
the behavioral changes inside one subtree, e.g. soccer.
The Searching for a ball module and the Approaching
module calculate their behavior values based on the
existence of a ball and the distance between the target
ball and the robot itself. When there is no ball in the
robot’s view, the value of the searching behavior is higher
than the approaching a ball behavior. But when the robot
finds a ball, the priority changes, that is, the value of
approaching a ball becomes higher than that of searching.
So the approaching behavior is selected. In the same way,
the approaching a ball module and kicking a ball module
compete based on the distance of the target ball. The
upper part of figure 8 shows the robot’s soccer behavior.
We can now describe changes in activation between mod-
ules in different behavior subtrees. Suppose that someone
calls the robot while the robot’s approaching a ball. The
robot stops and turns to the direction from where it was
called, and finds a face. The behavior value of Chat will
change based on the value of a user’s face (who that
person is) and its motivation for chatting. If the value of
chatting is higher than the value of approaching the ball,
the robot turns to the user and starts chatting. On the
other hand, if the face is not so attractive for the robot,
then the robot turns back to the ball, and continues its
approaching behavior. The lower part of figure 8 shows
the robot’s different behavior depending on a user.

3) Parallel execution:
• Simultaneous execution: The Chat module consists of

the simultaneous execution of tracking a user’s face
and controlling the topic of chatting. When the tracking
module fails to find the target user, the result of the
tracking module is “failure”, and the behavior status of
the tracking module changes to preparation for stopping.

SOCCER(Search-Approach-Do)

Call and ChatCall but Continue

Search Approach KickChange FinishKick

Fig. 8. Behavior selection experiment

Then, according to the execution policy, at the same time
the behavior status of chatting also changes to preparation
for stopping and the robot stops chatting naturally.

• Parallel execution: The Approaching behavior consists of
walking towards a ball, while speaking is an optional
extension of the behavior. They are not needed to be
activated simultaneously, so they are executed based on
each one’s timing.

• Main child existence policy: In the soccer behavior, the
kicking a ball module is the main behavior module. So
if the result of this main module is “success”, then the
result of the soccer subtree is also “success”. But if the
result of this main module is “failure”, then the result of
the soccer subtree is also “failure”. On the other hand, the
status of the other behavior modules in the subtree, e.g.
approaching a ball module, has no influence on the status
of the soccer subtree. If the result of the approaching
a ball module is “failure”, according to the change of
behavior values, the searching for a ball behavior will be
activated.

4) Shared information: In the soccer subtree, behavior
modules share information about the target ball. With this
information, the approaching module can know where the
target ball is after the execution of searching module, and
also the kicking module can kick the target ball which is
approached by the approaching module.

Behavior modules in the Chat subtree also share information
about the identified target user.

5) Preemption: Suppose that the robot is called by a user
while approaching a ball. After turning to the user, the robot
compares the behavior value of approaching with that of
chatting. If the value of approaching is higher, then it can
restart the approaching behavior towards the same target ball.
That is because the information about the target is stored in
the stop status of the approaching module.

Inside each behavior module, information about the state
machine is stored. The module can restart from its previous

interrupted state. For example, a typical behavior of chatting is
that the robot says “hello” to the user, does a self introduction
and then say good-bye to the user. If a user calls the robot
just after the robot has said “hello”, then the robot will restart
chatting from the self introduction.

VII. DISCUSSION

First we address the issue of scaling of the behavior tree.
Theoretically there is no limitation for the number of behavior
modules in a behavior tree. The limitation is based on the
computational power and the amount of calculation for each
behavior. Currently, the result is that several hundreds of
behavior modules are included in the behavior tree of QRIO
SDR4X-II.

Next we discuss design criteria. It is important for the
entertainment robot to facilitate the design of behavior, and
that behavior modules can be written based on the designer’s
intention.

To design the robot’s behavior easily, the modularity of
each behavior module plays an important role. If the modules
are independent relative to each other and can be connected
anywhere within the tree, the designer can generate a large
scale behavior tree using a high degree of reusablity while
exploiting the strategy that the behavior tree can be made up
of small subtrees which each represent independent functions.

That enables the designer to easily change the behavior tree
and permits easy addition of new behavior. The designer does
not have to create the entire tree from the beginning, but makes
it expandable in a step-by-step process.

In addition, we prepared a basic policy for controlling the
design of the tree, so that the designer can connect behavior
modules easily. On the other hand, the way to write behavior
modules is highly flexible, as it also enables the designer to
write detailed control for the behavior tree if desired.

As mentioned above, the designer considers the system
based on behavior modules and the way of connecting the
behavior modules.

The next issue regards suitable behavior selection. As this
behavior module architecture has high modularity, learning
their evaluation functions is important. The behavior value is
based on internal value and external stimuli. So it is required
to learn suitable mappings between internal state values and
the satisfaction value, between internal state values and the
driving value, and between external stimuli and the expected
change of satisfaction.

Another issue regarding learning of the behavior is learning
a behavior as a connection of the behavior modules. Each
behavior module has some actions, and the parent module
gathers child modules as a subroutine of that behavior.

We intend to describe and discuss these learning issues in
detail in another paper.

There is one more issue for behavior control. That is the
chattering problem. If the behavior values of behavior modules
are too close, a change of active behavior modules occurs too
often. To avoid this, we adopt a lateral inhibition mechanism
in our system. If one behavior module is active, then other

modules in the same layer are inhibited based on the behavior
value of the active module. This mechanism comes from our
research on the emotional model [8] It provides for stability of
the behavior, while also allowing for a change between active
behavior modules if another module has a very high behavior
value.

VIII. CONCLUSION

In this paper, we have described an architecture for the se-
lection and activation of behavior modules. We have discussed
requirements in a real world environment and presented our
approach and an implementation of those ideas in a complex
robotic system. We have also conducted experiments with
the entertainment robot QRIO SDR4X-II and confirmed the
suitability of the architecture. Finally, we showed examples of
behavior trees and discussed control policies between parent
and children modules as well as activation based on motivation
and external stimuli.

We intend to present other papers about the methods of cal-
culation of behavior value and the decomposition of behavior
control parts into reflexive, common, and deliberative layers.

ACKNOWLEDGMENT

We would like to thank the entertainment robot company
of Sony Coorporation and all of researchers and engineers of
QRIO SDR-4XII.

REFERENCES

[1] S. Ohnaka, T. Ando, and T. Iwasawa, “The introduction of the personal
robot papero,” IPSJ SIG Notes, vol. 2001, no. 68, pp. 37–42, 2001.

[2] H. Ishiguro, T. Ono, M. Imai, T. Kanda, and R. Nakatsu, “Robovie: an
interactive humanoid robot,” Industrial Robot, vol. 29, no. 6, pp. 498–503,
2001.

[3] C. Breazeal, Ed., Designing Social Robots. Cambridge: MIT Press.,
2002.

[4] M. Fujita, Y. Kuroki, T. Ishida, and T.Doi, “Autonomous behavior con-
trol architecture of entertainment humanoid robot sdr-4x,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS ’03),
Las Vegas, USA, Oct. 2003, pp. –.

[5] M. Fujita, K. Sabe, Y. Kuroki, T. Ishida, and T.Doi, “Sdr-4x ii: A small
humanoid as an entertainer in home environment,” in 11th International
Symposiu of Robotics Research, Siena, Italy, Oct. 2003, pp. –.

[6] M. Fujita and et al., “An autonomous robot that eats information via
interaction with human and environment,” in The 10th IEEE International
Workshop on Robot-Human Interactive Communication, Bordeaux and
Paris, France, Sept. 2001, pp. 383–389.

[7] R. Arkin, M. Fujita, T. Takagi, and R. Hasegawa, “Ethological and
emotional basis for human-robot interaction,” Robotics and Autonomous
System, vol. 42, pp. 191–201, 2003.

[8] R.Arkin, M.Fujita, T.Takagi, and R.Hasegawa, “Ethological modeling and
architecture for an entertainment robot,” in Proc. IEEE International
Conference on Robotics and Automation (ICRA2001), Soel,Korea, May
2001, pp. –.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

