
Dissecting Browser Privacy

yan
AppSec California 2017

● Open source browser based on Chromium
● Privacy
● Speed
● Ad-free funding model for websites

https://brave.com

https://github.com/brave

https://brave.com
https://brave.com
https://github.com/brave
https://github.com/brave

What are specific, achievable privacy goals
for a browser?

1. Prevent third parties from accessing and tampering with
browser communication to servers

HTTPS Everywhere
● A very large (~7.5 MB)

regular expression that
rewrites URLs to HTTPS
when available

● Browser extension for
Chrome, Firefox, Opera

● Built in to Tor Browser
and Brave

● Sometimes breaks things
(mixed content, redirect
loops, captive portals)

2. Prevent sites from seeing the user’s activity on
other origins.

Block 3rd party cookies +
blacklist tracking domains
Brave uses tracker and ad block
lists from Disconnect.me and
Adblock Plus

3p cookies/localStorage blocked by
default in Brave, Tor Browser, and
Safari

Disconnect’s Tracking Protection
list is also used in Firefox
Private Browsing mode

Blocking 3rd party refer(r)er
Default policy:

● HTTPS -> HTTP: no referrer
● Otherwise: referrer sent
● Applies to navigations &

subresource requests

Uses:

● ad tracking
● website analytics
● access control (do not do

this!!)

Blocking 3rd party refer(r)er

Brave’s policy:

● Same as default behavior for navigations & 1st-party
subresources

● For 3rd-party subresources, send the origin of the
3rd-party

No complaints so far except for font-loading domains (???)

3. Prevent unwanted leakage of details about a user’s
browser, OS, and device

Fingerprinting
● Too many methods
● Many are used legitimately (ex:

exposing internal IP address in
WebRTC signaling)

● Prioritize blocking
fingerprinting methods that have
easily-available PoC (ex:
fingerprintjs) or have been
found in the wild. See
https://webtap.princeton.edu/

https://jonathanmayer.org/papers_data/trackingsurvey12.pdf

https://webtap.princeton.edu/
https://webtap.princeton.edu/
https://jonathanmayer.org/papers_data/trackingsurvey12.pdf
https://jonathanmayer.org/papers_data/trackingsurvey12.pdf

Fingerprinting protection in Brave
Default enabled:

● Battery Status API (off by default)
● User-agent (mimic Chrome)
● Set navigator.plugins and navigator.mimeTypes to []

Default disabled:

● Canvas
● WebGL
● AudioContext
● WebRTC IP leakage

4. Prevent linkability across separate browser sessions

5. Forensic deniability

Tradeoffs

Privacy vs. Availability

https://www.theguardian.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages

https://www.theguardian.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://www.theguardian.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages

“...when a contact's key changes,
should WhatsApp require the user to
manually verify the new key before
continuing, or should WhatsApp display
an advisory notification and continue
without blocking the user. Given the
size and scope of WhatsApp's user
base, we feel that their choice to
display a non-blocking notification is
appropriate.”

https://whispersystems.org/blog/there-is-no-
whatsapp-backdoor/

https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/

Alice Bob

E(M0, k_bob)

E(M1, k_bob)

Bob drops his
phone in the ocean

Bob turns gets a
new phone

Hey Alice, this is Bob’s new key: k’_bob

E(M1, k’_bob)

Alice’s
WhatsApp client
automatically
re-encrypts M1
using k’_bob &
sends it

Bob sees M0

Bob sees M1

Alice is notified that
Bob’s key has changed

Availability++

● Alice doesn’t have to take any actions to
deliver M1 after hitting ‘send’

● Bob seamlessly receives M1 when he turns
on his new phone

Privacy--

● Any message sent may be re-encrypted for
NSA. Alice has no way to know in advance,
Can detect the attack after-the-fact.

Ad-blocker blockers

Ad-blocker blocker blockers

Privacy vs. Security

Example:
HSTS cross-origin history sniffing

summary

● Dynamic HSTS: Site sends an HTTP header
that says “Only access me over HTTPS for
the next N seconds.”

● Dynamic HSTS is by definition dependent on
browsing history.

● This can indirectly leak data about a
user’s browsing history.

1. sneaky.com wants to fingerprint users.

2. example.com is known to support HSTS.

3. sneaky.com/index.html embeds <img

src=‘http://example.com’>.

http://example.com

What happens then?

Case 1: Browser has never visited example.com

 -> makes a network round-trip, gets 301/302 to

https://example.com

Case 2: Browser visited example.com before.

 -> HSTS causes an “internal” redirect (307) to

https://example.com/ ~immediately

https://example.com
https://example.com
https://example.com/
https://example.com/

If we can measure the HTTP to
HTTPS redirect latency, we can
distinguish Case 1 from Case 2!

Q: How do we measure that?
A: Abuse one more browser
security feature.

Content-Security-Policy:

img-src: https://*;

script-src: ‘self’

*.scripts.com

cdn.example.com

Allow images to load
from HTTPS origins
only

Allow scripts to load
from the page’s origin,
*.scripts.com, and
cdn.example.com only.

The Missing Ingredient:
Set CSP to ‘img-src http://*’

HTTPS image requests are blocked and
fire an error event to JS listeners.

This is a “non-destructive” cache attack.

Why is this useful?

1. JS only lets us listen for img onerror and

onload events. Turns out CSP violation

triggers onerror consistently and early in

the fetch pipeline.

2. If browser ever completes a request for

https://example.com, it will get the HSTS

pin and future results are polluted. CSP

prevents this from happening!

https://example.com

After setting CSP:

Case 1: Browser has never visited example.com

 -> makes network request, gets 301/302 to

https://example.com, img onerror fires.

Case 2: Browser visited example.com before.

 -> HSTS rewrites src to https://example.com/

~immediately, img onerror fires.

https://example.com
https://example.com
https://example.com/

How long does the HTTP to HTTPS redirect take?

Case 1: Browser has never visited example.com

 -> Order of 100ms depending on network latency

and site response time.

Case 2: Browser visited example.com before.

 -> Order of 1ms, independent of the site and

network conditions.

CSS visited-selector bug

Slide from Michael
Coates, 2011 ->

New plan:

1. Scrape Alexa Top 1M for hosts that send HSTS

and aren’t preloaded.

2. Load all the HSTS hosts asynchronously on

one page.

3. Measure the onerror timing & separate hosts

into visited and unvisited.

http://www.youtube.com/watch?v=F1GxtVU_MVU

Mitigations

● Decrease JS timer resolution: can be

workedaround

● First-party storage isolation

(“double-keying”): reduces security

● HTTPS Everywhere / expanding HSTS preload:

get rid of dynamic HSTS

CVE-2016-1617 addressed in CSP Level 3

Other security vs privacy examples

● Sniff history using site-specific

settings (ex: NoScript)

● Fingerprint use of hardened browser

settings (Tor, adblocking, etc.)

Other ways to win

How is CVE formed?

Chrome 55

https://chromereleases.googleblog.com/2016/

12/stable-channel-update-for-desktop.html

8 out of 26 externally-reported CVEs are in

PDFium

https://chromereleases.googleblog.com/2016/12/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2016/12/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2016/12/stable-channel-update-for-desktop.html

PDF.js to the rescue

● Pure HTML5/CSS/JS PDF reader

● Maintained by Mozilla

● Default PDF reader in Firefox

https://github.com/mozilla/pdf.js/

https://github.com/mozilla/pdf.js/
https://github.com/mozilla/pdf.js/

Flash must die

How to deprecate Flash
without breaking the web?

1. Don’t bundle Flash with the browser or enable it
by default.

2. Pretend Flash isn’t installed in navigator.plugins
to trigger HTML5 fallback

3. After being enabled, user must express intent to
run Flash on an origin before it can be detected.

Click-to-play for visible elements

Handle Flash installer redirects for pages that don’t
load Flash objects until Flash is detected

4. Expire Flash approvals

5. Deal with 2948238294829 support complaints

tl;dr

Browsers are a good place to improve privacy on the web.

Most browser features that can be abused for tracking also
have legitimate uses. :(

Take away features until people complain too much.

Thanks
yan@brave.com
@bcrypt

