Addressing Alternative Explanations: Multiple Regression

17.871
Gore Likeability Example

- Did Clinton hurt Gore in the 2000 election?
- How would you test this?
- What alternative explanations would you need to address?

- Other examples of alternative explanations based on omitted variables?
Democratic picture

Gore thermometer

Clinton thermometer
Independent picture

Gore thermometer vs. Clinton thermometer
Republican picture

![Graph showing戈尔与克林顿的温度计比较](image.png)
Combined data picture

Gore thermometer vs. Clinton thermometer
Combined data picture with regression

Gore thermometer

Clinton thermometer
Combined data picture with “true” regression lines overlaid

Gore thermometer

Clinton thermometer
Tempting yet wrong normalizations

Subtract the Gore therm. from the avg. Gore therm. score

Subtract the Clinton therm. from the avg. Clinton therm. score
Summary: Why we control

- Address alternative explanations by removing confounding effects
- Improve efficiency
Gore vs. Clinton

Graphs by Party (3 point scale)
The Linear Relationship between Three Variables

\[Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \epsilon_i \]
3D Relationship
3D Linear Relationship
The Slope Coefficients

\[
\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{X}_1 - X_{1,i})}{\sum_{i=1}^{n} (\bar{X}_1 - X_{1,i})^2} - \hat{\beta}_2 \quad \frac{\sum_{i=1}^{n} (\bar{X}_1 - X_{1,i})(\bar{X}_2 - X_{2,i})}{\sum_{i=1}^{n} (\bar{X}_1 - X_{1,i})^2} \quad \text{and} \\
\hat{\beta}_2 = \frac{\sum_{i=1}^{n} (\bar{Y} - Y_i)(\bar{X}_2 - X_{1,i})}{\sum_{i=1}^{n} (\bar{X}_2 - X_{2,i})^2} - \hat{\beta}_1 \quad \frac{\sum_{i=1}^{n} (\bar{X}_1 - X_{1,i})(\bar{X}_2 - X_{2,i})}{\sum_{i=1}^{n} (\bar{X}_2 - X_{2,i})^2}
\]
The Slope Coefficients More Simply

\[\hat{\beta}_1 = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} \quad \text{and} \]

\[\hat{\beta}_2 = \frac{\text{cov}(X_2, Y)}{\text{var}(X_2)} - \hat{\beta}_1 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_2)} \]
The Matrix form

\[
\begin{array}{cccc}
 y_1 & 1 & x_{1,1} & x_{2,1} & \ldots & x_{k,1} \\
 y_2 & 1 & x_{1,2} & x_{2,2} & \ldots & x_{k,2} \\
 \vdots & 1 & \vdots & \vdots & \ldots & \vdots \\
 y_n & 1 & x_{1,n} & x_{2,n} & \ldots & x_{k,n} \\
\end{array}
\]

\[
\beta = (X'X)^{-1} X'y
\]
Consider two regression coefficients

\[
\hat{\beta}_1^B = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} \text{ vs. } \\
\hat{\beta}_1^M = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)}
\]

When does \(\hat{\beta}_1^B = \hat{\beta}_1^M \) ? Obviously, when \(\hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} = 0 \).
Separate regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>23.1</td>
<td>55.9</td>
<td>28.6</td>
</tr>
<tr>
<td>Clinton</td>
<td>0.62</td>
<td>--</td>
<td>0.51</td>
</tr>
<tr>
<td>Party</td>
<td>--</td>
<td>15.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Why did the Clinton Coefficient change from 0.62 to 0.51

```
corr gore clinton party, cov
(obs=1745)

<table>
<thead>
<tr>
<th></th>
<th>gore</th>
<th>clinton</th>
<th>party3</th>
</tr>
</thead>
<tbody>
<tr>
<td>gore</td>
<td>660.681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinton</td>
<td>549.993</td>
<td>883.182</td>
<td></td>
</tr>
<tr>
<td>party3</td>
<td>13.7008</td>
<td>16.905</td>
<td>.8735</td>
</tr>
</tbody>
</table>
```
The Calculations

\[\hat{\beta}_1^B = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} = \frac{549.993}{883.182} = 0.6227 \]

\[\hat{\beta}_1^M = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} - \hat{\beta}_2^M \frac{\text{cov}(clinton, party)}{\text{var}(clinton)} \]

\[= \frac{549.993}{883.182} - 5.7705 \frac{16.905}{883.182} \]

\[= 0.6227 - 0.1105 \]

\[= 0.5122 \]

<table>
<thead>
<tr>
<th></th>
<th>gore</th>
<th>clinton</th>
<th>party3</th>
</tr>
</thead>
<tbody>
<tr>
<td>gore</td>
<td>660.681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinton</td>
<td>549.993 883.182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>party3</td>
<td>13.7008 16.905 .8735</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Output

```
. reg gore clinton party3

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 1745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>629261.91</td>
<td>2</td>
<td>314630.955</td>
<td>F( 2, 1742) = 1048.04</td>
</tr>
<tr>
<td>Residual</td>
<td>522964.934</td>
<td>1742</td>
<td>300.209492</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1152226.84</td>
<td>1744</td>
<td>660.68053</td>
<td>R-squared = 0.5461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.5456</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 17.327</td>
</tr>
</tbody>
</table>

| gore      | Coef.    | Std. Err. | t     | P>|t|    | [95% Conf. Interval] |
|-----------|----------|-----------|-------|--------|----------------------|
| clinton   | .5122875 | .0175952  | 29.12 | 0.000  | .4777776 .5467975   |
| party3    | 5.770523 | .5594846  | 10.31 | 0.000  | 4.673191 6.867856   |
| _cons     | 28.6299  | 1.025472  | 27.92 | 0.000  | 26.61862 30.64119   |
```
Accounting for total effects

\[\hat{\beta}_1^M = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2 \left(\frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} \right) \]

\[\hat{\beta}_1^M = \hat{\beta}_1^B - \hat{\beta}_2^M \gamma_{21}^M \]

\[\hat{\beta}_1^B = \hat{\beta}_1^M + \hat{\beta}_2^M \gamma_{21}^M \]

(i.e., regression coefficient when we regress \(X_2 \) (as dep. var.) on \(X_1 \) (as ind. var.).)
Accounting for the total effect

\[\hat{\beta}_1^B = \hat{\beta}_1^M + \hat{\beta}_2^M \gamma_{21} \]

Total effect = Direct effect + indirect effect

Diagram:

- \(X_1 \) to \(Y \) with \(\gamma_{21} \)
- \(X_2 \) to \(Y \) with \(\hat{\beta}_2^M \)
- \(X_1 \) to \(Y \) with \(\hat{\beta}_1^M \)
Accounting for the total effects in the Gore thermometer example

<table>
<thead>
<tr>
<th>Effect</th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinton</td>
<td>0.62</td>
<td>0.51</td>
<td>0.11</td>
</tr>
<tr>
<td>Party</td>
<td>15.7</td>
<td>5.8</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Other approaches to addressing confounding effects?

- Experiments
- Difference-in-differences designs
- Others?

- Is regression the best approach to addressing confounding effects?
 - Problems
Drinking and Greek Life Example

Why is there a correlation between living in a fraternity/sorority house and drinking?

- Greek organizations often emphasize social gatherings that have alcohol. The effect is being in the Greek organization itself, not the house.
- There’s something about the House environment itself.
Dependent variable: Times Drinking in Past 30 Days

C8. When did you last have a drink (that is more than just a few sips)?
- I have never had a drink → Skip to C22 (page 10)
- Not in the past year → Skip to C22 (page 10)
- More than 30 days ago, but in the past year → Skip to C17 (page 8)
- More than a week ago, but in the past 30 days → Go to C9
- Within the last week → Go to C9

C9. On how many occasions have you had a drink of alcohol in the past 30 days? (Choose one answer.)
- Did not drink in the last 30 days
- 1 to 2 occasions
- 3 to 5 occasions
- 6 to 9 occasions
- 10 to 19 occasions
- 20 to 39 occasions
- 40 or more occasions
. infix age 10-11 residence 16 greek 24 screen 102
timespast30 103 howmuchpast30 104 gpa 278-279 studying 281
timeshs 325 howmuchhs 326 socializing 283 stwgt_99 475-493
weight99 494-512 using da3818.dat,clear
(14138 observations read)

. recode timespast30 timeshs (1=0) (2=1.5) (3=4) (4=7.5)
(5=14.5) (6=29.5) (7=45)
(timespast30: 6571 changes made)
(timesshs: 10272 changes made)

. replace timespast30=0 if screen<=3
(4631 real changes made)
. tab timespast30

<table>
<thead>
<tr>
<th>timespast30</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4,652</td>
<td>33.37</td>
<td>33.37</td>
</tr>
<tr>
<td>1.5</td>
<td>2,737</td>
<td>19.64</td>
<td>53.01</td>
</tr>
<tr>
<td>4</td>
<td>2,653</td>
<td>19.03</td>
<td>72.04</td>
</tr>
<tr>
<td>7.5</td>
<td>1,854</td>
<td>13.30</td>
<td>85.34</td>
</tr>
<tr>
<td>14.5</td>
<td>1,648</td>
<td>11.82</td>
<td>97.17</td>
</tr>
<tr>
<td>29.5</td>
<td>350</td>
<td>2.51</td>
<td>99.68</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>0.32</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>13,939</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Three Regressions

<table>
<thead>
<tr>
<th>Dependent variable: number of times drinking in past 30 days</th>
<th>Live in frat/sor house</th>
<th>Member of frat/sor</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.44 (0.35)</td>
<td>--- (2.88 (0.16)</td>
<td>2.26 (0.38)</td>
</tr>
<tr>
<td></td>
<td>2.26 (0.38)</td>
<td>--- (2.88 (0.16)</td>
<td>2.44 (0.18)</td>
</tr>
<tr>
<td></td>
<td>4.54 (0.56)</td>
<td>4.27 (0.059)</td>
<td>4.27 (0.059)</td>
</tr>
<tr>
<td></td>
<td>.011</td>
<td>.023</td>
<td>.025</td>
</tr>
<tr>
<td>N</td>
<td>13,876</td>
<td>13,876</td>
<td>13,876</td>
</tr>
</tbody>
</table>

Note: Corr. Between living in frat/sor house and being a member of a Greek organization is .42
The Picture

Living in frat house

Drinks per 30 day period

Member of fraternity

2.26

0.19

2.44
Accounting for the effects of frat house living and Greek membership on drinking

<table>
<thead>
<tr>
<th>Effect</th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member of Greek org.</td>
<td>2.88</td>
<td>2.44 (85%)</td>
<td>0.44 (15%)</td>
</tr>
<tr>
<td>Live in frat/sor. house</td>
<td>4.44</td>
<td>2.26 (51%)</td>
<td>2.18 (49%)</td>
</tr>
</tbody>
</table>