Addressing Alternative Explanations: Multiple Regression

17.871
Spring 2012
Did Clinton hurt Gore example

- Did Clinton hurt Gore in the 2000 election?
 - Treatment is not liking Bill Clinton
- How would you test this?
Bivariate regression of Gore thermometer on Clinton thermometer
Did Clinton hurt Gore example

- What alternative explanations would you need to address?
- Nonrandom selection into the treatment group (disliking Clinton) from many sources
- Let’s address one source: party identification
- How could we do this?
 - Matching: compare Democrats who like or don’t like Clinton; do the same for Republicans and independents
 - Multivariate regression: control for partisanship statistically
 - Also called multiple regression, Ordinary Least Squares (OLS)
 - Presentation below is intuitive
Democratic picture

Gore thermometer

Clinton thermometer
Independent picture

![Graph showing the relationship between Gore thermometer and Clinton thermometer. The graph features a line and an ellipse, indicating a correlation between the two variables.](image-url)
Republican picture

Gore thermometer vs. Clinton thermometer
Combined data picture
Combined data picture with regression: bias!
Combined data picture with “true” regression lines overlaid.
Tempting yet wrong normalizations

Subtract the Gore therm. from the avg. Gore therm. score

Subtract the Clinton therm. from the avg. Clinton therm. score
3D Relationship
3D Linear Relationship
3D Relationship: Clinton
3D Relationship: party
The Linear Relationship between Three Variables

\[Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \epsilon_i \]

STATA:

```matlab
reg y x1 x2
reg gore clinton party3
```
Multivariate slope coefficients

Clinton effect (on Gore) in bivariate (B) regression

Bivariate estimate:
\[
\hat{\beta}_1^B = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)}
\]

Are Gore and Party ID related?

Multivariate estimate:
\[
\hat{\beta}_1^M = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)}
\]

Are Clinton and Party ID related?

When does \(\hat{\beta}_1^B = \hat{\beta}_1^M \) ? Obviously, when \(\hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} = 0 \)

\(X_1 \) is Clinton thermometer, \(X_2 \) is PID, and \(Y \) is Gore thermometer
The Slope Coefficients

\[\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (Y - Y_i)(X_1 - X_{1,i})}{\sum_{i=1}^{n} (X_1 - X_{1,i})^2} \] \[- \hat{\beta}_2 \frac{\sum_{i=1}^{n} (X_1 - X_{1,i})(X_2 - X_{2,i})}{\sum_{i=1}^{n} (X_1 - X_{1,i})^2} \] and

\[\hat{\beta}_2 = \frac{\sum_{i=1}^{n} (Y - Y_i)(X_2 - X_{1,i})}{\sum_{i=1}^{n} (X_2 - X_{2,i})^2} \] \[- \hat{\beta}_1 \frac{\sum_{i=1}^{n} (X_1 - X_{1,i})(X_2 - X_{2,i})}{\sum_{i=1}^{n} (X_2 - X_{2,i})^2} \]

X_1 is Clinton thermometer, X_2 is PID, and Y is Gore thermometer
The Slope Coefficients More Simply

\[\hat{\beta}_1 = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} \text{ and } \]

\[\hat{\beta}_2 = -\hat{\beta}_1 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_2)} \]

\[\hat{\beta}_1 = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} - \hat{\beta}_2 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} \text{ and } \]

\[\hat{\beta}_2 = -\hat{\beta}_1 \frac{\text{cov}(X_1, X_2)}{\text{var}(X_2)} \]

X₁ is Clinton thermometer, X₂ is PID, and Y is Gore thermometer
The Matrix form

\[
\begin{array}{ccc}
y_1 & 1 & x_{1,1} & x_{2,1} & \ldots & x_{k,1} \\
y_2 & 1 & x_{1,2} & x_{2,2} & \ldots & x_{k,2} \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
y_n & 1 & x_{1,n} & x_{2,n} & \ldots & x_{k,n} \\
\end{array}
\]

\[
\beta = (X'X)^{-1} X'y
\]
The Output

```
. reg gore clinton party3

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 1745</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>629261.91</td>
<td>2</td>
<td>314630.955</td>
<td>F(  2, 1742) = 1048.04</td>
</tr>
<tr>
<td>Residual</td>
<td>522964.934</td>
<td>1742</td>
<td>300.209492</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1152226.84</td>
<td>1744</td>
<td>660.68053</td>
<td>R-squared = 0.5461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.5465</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 17.327</td>
</tr>
</tbody>
</table>

| gore | Coef.   | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|------|---------|-----------|-------|-------|---------------------|
| clinton | .5122875 | .0175952  | 29.12 | 0.000 | .4777776   .5467975 |
| party3 | 5.770523  | .5594846  | 10.31 | 0.000 | 4.673191  6.867856 |
| _cons  | 28.6299  | 1.025472  | 27.92 | 0.000 | 26.61862  30.64119 |
```

Interpretation of `clinton` effect: *Holding constant party identification*, a one-point increase in the Clinton feeling thermometer is associated with a .51 increase in the Gore thermometer.
Separate regressions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>23.1</td>
<td>55.9</td>
<td>28.6</td>
</tr>
<tr>
<td>Clinton</td>
<td>0.62</td>
<td>--</td>
<td>0.51</td>
</tr>
<tr>
<td>Party</td>
<td>--</td>
<td>15.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Is the Clinton effect causal?

- That is, should we be convinced that negative feelings about Clinton really hurt Gore?
- No!
 - The regression analysis has only ruled out linear nonrandom selection on party ID.
 - Nonrandom selection into the treatment could occur from
 - Variables other than party ID, or
 - Reverse causation, that is, feelings about Gore influencing feelings about Clinton.
 - Additionally, the regression analysis may not have entirely ruled out nonrandom selection even on party ID because it may have assumed the wrong functional form.
 - E.g., what if nonrandom selection on strong Republican/strong Democrat, but not on weak partisans
Other approaches to addressing confounding effects?

- Experiments
- Difference-in-differences designs
- Others?
Summary: Why we control

- Address alternative explanations by removing confounding effects
- Improve efficiency
Why did the Clinton Coefficient change from 0.62 to 0.51

. corr gore clinton party, cov
(obs=1745)

<table>
<thead>
<tr>
<th></th>
<th>gore</th>
<th>clinton</th>
<th>party3</th>
</tr>
</thead>
<tbody>
<tr>
<td>gore</td>
<td>660.681</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinton</td>
<td>549.993</td>
<td>883.182</td>
<td></td>
</tr>
<tr>
<td>party3</td>
<td>13.7008</td>
<td>16.905</td>
<td>.8735</td>
</tr>
</tbody>
</table>
The Calculations

\[
\hat{\beta}_1^B = \frac{\text{cov}(\text{gore}, \text{clinton})}{\text{var}(\text{clinton})} = \frac{549.993}{883.182} = 0.6227
\]

\[
\hat{\beta}_1^M = \frac{\text{cov}(\text{gore}, \text{clinton})}{\text{var}(\text{clinton})} - \hat{\beta}_2^M \frac{\text{cov}(\text{clinton}, \text{party})}{\text{var}(\text{clinton})}
\]

\[
= \frac{549.993}{883.182} - 5.7705 \frac{16.905}{883.182}
\]

\[
= 0.6227 - 0.1105
\]

\[
= 0.5122
\]

```
.g corr gore clinton party, cov
(obs=1745)

gore | 660.681
clinton | 549.993  883.182
party3 | 13.7008  16.905  .8735
```
Drinking and Greek Life Example

- Why is there a correlation between living in a fraternity/sorority house and drinking?
 - Greek organizations often emphasize social gatherings that have alcohol. The effect is being in the Greek organization itself, not the house.
 - There’s something about the House environment itself.
Dependent variable: Times Drinking in Past 30 Days

C8. When did you last have a drink (that is more than just a few sips)?

- I have never had a drink → Skip to C22 (page 10)
- Not in the past year → Skip to C22 (page 10)
- More than 30 days ago, but in the past year → Skip to C17 (page 8)
- More than a week ago, but in the past 30 days → Go to C9
- Within the last week → Go to C9

C9. On how many occasions have you had a drink of alcohol in the past 30 days? (Choose one answer.)

- Did not drink in the last 30 days
- 1 to 2 occasions
- 3 to 5 occasions
- 6 to 9 occasions
- 10 to 19 occasions
- 20 to 39 occasions
- 40 or more occasions
. infix age 10-11 residence 16 greek 24 screen 102 timespast30 103 howmuchpast30 104 gpa 278-279 studying 281 timeshs 325 howmuchhs 326 socializing 283 stwgt 99 475-493 weight99 494-512 using da3818.dat, clear (14138 observations read)

. recode timespast30 timeshs (1=0) (2=1.5) (3=4) (4=7.5) (5=14.5) (6=29.5) (7=45) (timespast30: 6571 changes made) (timeshs: 10272 changes made)

. replace timespast30=0 if screen<=3 (4631 real changes made)
. tab timespast30

<table>
<thead>
<tr>
<th>timespast30</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4,652</td>
<td>33.37</td>
<td>33.37</td>
</tr>
<tr>
<td>1.5</td>
<td>2,737</td>
<td>19.64</td>
<td>53.01</td>
</tr>
<tr>
<td>4</td>
<td>2,653</td>
<td>19.03</td>
<td>72.04</td>
</tr>
<tr>
<td>7.5</td>
<td>1,854</td>
<td>13.30</td>
<td>85.34</td>
</tr>
<tr>
<td>14.5</td>
<td>1,648</td>
<td>11.82</td>
<td>97.17</td>
</tr>
<tr>
<td>29.5</td>
<td>350</td>
<td>2.51</td>
<td>99.68</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>0.32</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>13,939</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>
Key explanatory variables

- Live in fraternity/sorority house
 - Indicator variable (dummy variable)
 - Coded 1 if live in, 0 otherwise

- Member of fraternity/sorority
 - Indicator variable (dummy variable)
 - Coded 1 if member, 0 otherwise
Three Regressions

<table>
<thead>
<tr>
<th>Dependent variable: number of times drinking in past 30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live in frat/sor house (indicator variable)</td>
</tr>
<tr>
<td>4.44 (0.35)</td>
</tr>
<tr>
<td>Member of frat/sor (indicator variable)</td>
</tr>
<tr>
<td>--- 2.88 (0.16)</td>
</tr>
<tr>
<td>Interception</td>
</tr>
<tr>
<td>4.54 (0.56)</td>
</tr>
<tr>
<td>4.27 (0.059)</td>
</tr>
<tr>
<td>R2 .011 .023 .025</td>
</tr>
<tr>
<td>N 13,876 13,876 13,876</td>
</tr>
</tbody>
</table>

What is the substantive interpretation of the coefficients?

Note: Standard errors in parentheses. Corr. Between living in frat/sor house and being a member of a Greek organization is .42
The Picture

Living in frat house x_2

$\gamma_{21} = 0.19$

Member of fraternity x_1

Drinks per 30 days Y

$\hat{\beta}_2^M = 2.26$

$\hat{\beta}_1^M = 2.44$
Accounting for the total effect

\[\hat{\beta}_1^B = \hat{\beta}_1^M + \hat{\beta}_2^M \gamma_{21} \]

Total effect = Direct effect + indirect effect

\[\hat{\beta}_2^M = 2.26 \]

\[\gamma_{21} = 0.19 \]

\[\hat{\beta}_1^M = 2.44 \]

Living in frat house \(X_2 \)

Member of fraternity \(X_1 \)

Drinks per 30 days \(Y \)
Accounting for the effects of frat house living and Greek membership on drinking

<table>
<thead>
<tr>
<th>Effect</th>
<th>Total</th>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member of Greek org.</td>
<td>2.88</td>
<td>2.44 (85%)</td>
<td>0.44 (15%)</td>
</tr>
<tr>
<td>Live in frat/sor. house</td>
<td>4.44</td>
<td>2.26 (51%)</td>
<td>2.18 (49%)</td>
</tr>
</tbody>
</table>