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Abstract

This tutorial describes fundamentals of multicarrier modulation, and how it is analyzed, for channels
with intersymbol interference and additive Gaussian noise. This document was prepared specifically
for Bellcore personnel to facilitate their analysis of multicarrier modulation methods for Asymmetric
Digital Subscriber Line (ADSL) services.

The presented analysis permits the determination of the best data rate using multicarrier on a given
channel with a specified margin. We also show how to compute the margin for a given fixed data rate.
The multicarrier analysis uses single-carrier concepts extensively so that someone already familiar with
single carrier can more quickly analyze multicarrier.
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This section describes multicarrier and introduces notation to be used in the analysis of later sections.
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Figure 1: Transmit power spectrum of a multicarrier signal.

1.1 Frequency-Division Fundamentals of Multicarrier

Fundamentally, multicarrier modulation superimposes several carrier-modulated waveforms to represent
an input bit stream. The transmitted power spectrum of a multicarrier waveform is illustrated in
Figure 1. The multicarrier transmit signal is the sum of N independent sub-signals, each of equal
bandwidth and with center frequency f;, ¢ = 1,..., N. Each of these sub-signals, or subchannels
as they are often called, can be considered to be a Quadrature Amplitude Modulated (QAM) signal.
In multicarrier modulation, as opposed to conventional frequency-division multiplexing, the number of
bits of input data that are allocated to different subchannels can be different. The parsing of bits
to subchannels is coordinated by the multicarrier modulator to maximize performance. In maximizing
performance, subchannels that will encounter less channel attenuation and/or more noise will carry more
bits of information.

Bandlimited communication channels, in particular subscriber loops, exhibit variation in gain and
phase with frequency. On such channels, multicarrier modulation has been long known to be optimum
when N is large [1]. Nevertheless, most early attempts at the implementation of multicarrier modulation
failed because of the difficulty in maintaining the equal spacing of the subchannels shown in Figure 1.
More recent attempts at multicarrier modulation have been successful for two reasons: {1) the advent
of digital signal processors that can accurately synthesize the sum of modulated waveforms and (2) the
introduction of the Fast Fourier Transform (FFT) that can be used to efficiently compute this sum
for large N. With the use of digital signal processing and the FFT, multicarrier modulation schemes
have recently been used very successfully in high-speed modems (Telebit, IMC, NEC) and in all digital
audio broadcast systems, proposed (North America) and standardized (Europe’s Eureka 147). It also
appears that the upcoming direct broadcast (satellite and/or terestrial) digital television services may
now also use multicarrier modulation to eliminate transmission problems with muitipath fading. In
all these systems, the exceptionally high performance of multicarrier is achieved because of the digital
implementation with FFT’s. In all cases, N is a power of two so that efficient versions of the FFT can
be used and the size of this FFT is N = 2N.

The size of N required to approximate optimum performance depends roughly on how rapidly the
transfer function of a bandlimited channel varies with frequency. In the analysis of this short report,
we will always assume that N is chosen sufficiently large to approximate optimum performance. In the
appendix, we show a preferred method for the subscriber-loop application that ensures that N = 256 is
sufficient to achieve optimum performance levels. To analyze the performance of a multicarrier modu-
lation scheme on a particular channel, one need only know the value of N- chosen (and not necessarily
how that N was chosen), which is why we defer further discussion of the choice of N to the appendix.
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Figure 2: Illustration of DMT transmitter for large V.

1.2 Discrete Multitone Modulation

Discrete Multitone (DMT) is a common form of multicarrier modulation. It was introduced by Peled
and Ruiz of IBM in 1980 [2] to take advantage of digital signal processors and the FFT. It was later
refined to a very high-performance form by Ruiz, Cioffi, and Kasturia [3], [4]. That latter form is used in
the most recent multicarrier voiceband modems, and also in one of the digital audio broadcast proposals
[5]. DMT has also been investigated for HDSL and ADSL in [6] and (7], respectively.

The basic DMT system is illustrated for large N in Figure 2 }. An input bit stream of data rate
R bits/second (bps) is buffered into blocks of b = RT bits, where T is called the symbol period (in
seconds) and 1/T is called the symbol rate. The transmitted signal over the symbol pericd is called
the symbol. Of these b bits, b; (i = 1, ...N) are intended for use in the i** subchannel and

N
b=>"k . (1)

These b; bits for each of the N subchannels are translated in the DMT encoder into a complex
subsymbol, X;, with amplitude | X;| and phase /X;. The quantity X; can be viewed as the amplitude
of the i**» QAM signal in multicarrier modulation. There are 2* possible values for this subsymbol.
Successive blocks of b bits are processed in an identical manner. We use a second subscript of k on X
to denote the i subsymbol in the k% transmitted symbol. .

The mean-square value of X; is called the subsymbol energy, &. The subsymbol power is given
by P, = &/T. The N = 2N-point IFFT (see appendix) combines the N subsymbols into a set of
N real-valued time-domain samples, z,%, n = 0,...,N — 1, as is also shown in Figure 2. The set of
N successive time-domain samples is the k** symbol. These N samples in a symbol are successively
applied (after conversion to serial format) to a digital-to-analog converter {DAC), which samples at rate
1/T" = N/T, the sampling rate of the DMT modulator. The output of the DAC is the continuous-time
modulated signal z(t). Any lowpass filtering at the DAC output is presumed to be absorbed into the
channel response in this tutorial. Note, T = NT".

The IFFT is an example of an orthogonal transformation and preserves the energy of the input

1In practice, the implementation is slightly more involved than shown in Figure 2 (see the appendix) but the more iﬁmlved
implementation just strictly ensures that the analysis that we will present is sccurate for any N,



X(f) transmit signal magnitude

1 1
f= 7 = = -
T 1
|
[ 3 BN
1 "1 2 N 1
7 heT =T =T Ity
transmit frequency
Figure 3: DMT transmit power spectrum.
frequency-domain symbol. That is,
N N
PR{ET LD Pt - @
i=1 n=1
and thus the transmit power is
£ I & N . ,
P=gp=S7==LFR. - ®

In DMT, Figure 1 is slightly altered to Figure 3. The f; in DMT are fixed at f; =¢/T, i=1,..,N.
No transmit energy can occur above the frequency 1/(2T') = fm in DMT. Instead, what happens is
that the frequency band from fy to fgy + 1/(2T) is replaced by the vacant frequency band from 0
to 1/(2T), as shown in Figure 3. This can be viewed as transmitting the real part of the N** symbol
baseband (0, 1/27) and the imaginary part as the lower side band part of a waveform modulated at 1/2T".
Nevertheless, we think of these two one-dimensicnal signals as inphase and quadrature components of a
single two-dimensional QAM signal at fg = 1/(27").

1.3 The Channel and Its Effect

Figure 4 illustrates a channel with impulse response h(t) and additive (Gaussian)} noise u(t). We call
the channel output y(t). We investigate the use of multicarrier modulation on such an intersymbol-
inteference (ISI) channel.

When N is large, the continuous transfer function of the channel response H(f) can be approximated
by the discrete curve illustrated by rectangles in Figure 4. Each of the rectangles is a band of frequencies
1/T Hz wide. The value of the transfer function at each center frequency, H{f;), is abbreviated as H;.
The f; in Figure 4 are the DMT center frequencies, f;, i = 1,..., N. H; has a magnitude |H;| and a
phase ZH;. On a single subscriber loop, the magnitude of H; often spans several orders of magnitude as
the index varies. The variance per dimension of the sampled noise is denoted o>.

When N is sufficiently large, then the rectangles are very narrow in Figure 4, and it is mathematically
correct to write J : :

Yie = HiXip + Ui . : (4)

where Y;; i = 1,..., N are the complex outputs of the N-point FFT in Figure 5 (and Uiy, i=1,...,. N
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Figure 6: Set of parallel independent channels that is equivalent to the original channel when multicarrier
modulation is used.

are similarly defined for the noise). That is, the N output samples of the receiver FFT correspond to
N independent subchannels, i.e., with no interference between them, as is illustrated in Figure 6. When
N is large, the noise components U; ; can be shown to be independent when u(t) is Gaussian even if the
noise is not white (that is, not flat in power spectrum). We assume symbol (frame) synchronization, as
well as sample-clock synchronization, between the transmitter and receiver.

We note that then, because the subchannels are independent, they can be individually decoded using
a memoryless detector for each. This set of memoryless detectors is the optimum maximum-likelihood
detector for the transmitted signal.? Maximum-likelihood detection is then achieved in DMT with no
equalization nor any use of sequence detection. (The price paid for DMT’s optimum detection is then
the IFFT/FFT, which, however, is often implemented at a small fraction of the cost of digital filtering
or sequence detection for comparable situations.)

1.4 Example

As an example, consider the magnitude of the transfer function of the loop channel shown in Figure 7.
This loop corresponds to the channel polynomial

n_ 1(1=D)1+D) 1(1 - D%
H(D)= E""D - (1-.9D)(1-~ 6D) T 1-15D+.54D% ° 5)

at a sampling rate of 1/7"=1.0 MHz. While N = 8 (N = 4) is too small of an FFT size for the
independent-subchannels assumption to hold, we will assume that the subchannels are independent
anyway for the illustrative purposes of this example (an example with a larger number of subchannels

2In\‘.hemsewhel'etrelliaoodingiamed,t.hemnximumlihalihooddatectort.hl:)etmmu.t.hecla:f.ect.orfcn'theappl.iet:lI‘.re].l.is
code.
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would proceed identically, but would requs.red computer assistance for performance evaluation, see the
appendix).

We have also illustrated the four oorrespondmg subchannel frequency bands in Figure 7. The symbol
rate is 1 MHz/8 = 125 kHz, so the center frequencies are

h = 125kHz
fo = 250 kHz
fi = 375 kHz
fi = 500kHz .

One of the channels, i = 4, cannot be used because H(0) = H(500 kHz) = 0. The other three subchannels
have squared gains

[H2 = .073
\Haf? = 016
{H3* = .0029 .

We, thus, have a parallel independent set of subchannels with the above gains, each of which can be
independently modulated and demodulated. We will return to this example again in Section 3 and
analyze it in terms of achievabie data rate at a given signal-to-noise ratio, or in terms of performance
margin at an error rate of 10~7 and a given fixed data rate.

In this example, the portion of the channel characteristic with the greatest transfer magmtude (from
0 to 62.5 kHz in Figure 7) is ignored by this simple DMT system. However, by increasing N, the
N -1 subchannel bands in Figure 7 become more narrow and cover an increasing fraction of the total
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Figure 8: Square QAM constellations.

bandwidth. In the appendix, we cite results for this channel when DMT with N = 512 is used on this
channel. The method for analysis will be the same in both the N = 8 and the N = 512 cases, it is just
that the latter case will require the assistance of a computer to asses performance.

2 Single Carrier Analysis

Since multicarrier systems are equivalent to a set of independent (and also ISI-free) QAM subchannels,
we can use single-carrier QAM analysis for a large part of the analysis of the multicarrier system. In this
section, we describe a simple method for analyzing QAM, which is also described in a tutorial fashion
in the upcoming overview by Forney and Eyuboglu of Codex in the December 1991 Communications
Magazine [8]. A more complete paper by those two authors, and by the author of this report, on the
analysis of single-carrier QAM systems appears in [9], which is available from this author on request.

2.1 The Square QAM approximation

Quadrature Amplitude Modulation (QAM) constellations may take a variety of forms, with perhaps the
most well known constellations containing‘some power-of-4 points in two dimensions. When these points
are arranged regularly within a square boundary, the constellation is said to be a QAM square. Square
4 QAM and 16 QAM constellations are illustrated in Figure 8, and 4 QAM, 64 QAM, 256 QAM, and
even 1024 QAM are often encountered in data transmission applications. The distance between points
in the contellation is denoted by d, and all points are assumed to be equally likely. The constellation is
centered at the origin and has zero mean value. The energy of such a constellation is

M~1
£=— (6)

per two-dimensional symbol, where M = 2° is some power of 4 (b is an even integer) representing
the number of points in the constellation, and b is the number of bits represented by a single QAM
symbol. In practice, when b > 2 and odd or non-integer, then (6) is not exact, but still an accurate
approximation to the transmit average energy. When b < 2, (6) is not a good approximation in general.
However, with trellis coding, and in particular with the popular four-dimensional 16-state trellis code of
Wei [10], it is possible for b to be as small as b = 1/4 and to use the relation in (6) without significant
error. In so doing, M = 2* and is not necessarily the number of points in the two-dimensional QAM
constellation when coded. Constellations with granularity to .5 bit (for example, b = 3.5) are readily

8



accomodated in the code case also. We thus will assume the relation in (6) is correct for any QAM
constellation in the following method of analysis, but acknowledge that some cleverness® is required
to make it strictly accurate for QAM channels with b < 2, as often arise in digital subscriber loop
applications of multicarrier.

2.2 SNR Gap Analysis

We assume that the channel is ISI-free and has gain |H|. The probability of (two-dnnensnonal) symbal
error in QAM is closely approximated by

P <4Q [%'2] , ™

where ds is the minimum distance between QAM constellation points at the channel output and is

given by
‘fm = dzIHF 1 (8)

where |H| is the channel gain and d is the distance between points in an uncoded input constellation.
The well-known Q-function in (7) is defined by

o

Qlz) = e¥d (9)
z u .

\/_
The probability of sjrmbol error per dimension (P,/2) should be 10~7 for DSL applications like HDSL
and ADSL; to obtain this symbol error probability we require

d’"‘"2—145d1-3+ dB dB 10
20 ) Tm €27 % ' (19

The quantity . is the coding gain of any applied code, including shaping gain/loss, nearest-neighbor
penalties, and correlated-noise adjustments. The quahtity “m is called the margin, an amount of
extra performance that is required to ensure adequate performance in the presence of unforseen channel
impairments. When 7., and 7 are zero, then the QAM system is uncoded and has no margin, and then
“we need 14.5 dB as an argument to the Q-function in (6) to get P./2 =107, a well-known result. When
the system is coded, we reduce 14.5 dB by the amount of the coding gain, which is the amount by which
dmin Will appear to have been increased through the action of the code. When we desire a margin, we
increase the 14.5 dB by the value of the margin. Typically, y=6 dB for subscriber loop applications.*
When we have both a margin and a code, we increase the 14.5 dB by the value of the margin less the
gain of the code.

One can rewrite (6) in the form

6E|H?
M=1+—5— . (11)

We define a convenient quantity called the SNR gap, T, (or sometimes the “normalized SNR") by

3.T'= f;-;' . (12)

3More information of fractional bit constellations can be made available to Bellcore in the future, but a more detailed discussion
is not necessary or appropriate in this document.

4Sometimes a margin of m == 12 dB is requested for “theoretical™ studies, implying that theory is likely to be incorrect by as
much as an additional 6 dB with respect to lab measurements. This author’s experience in using the theory in this document and
comparing to actual measured system performance s that this theory is accurate to within 1 dB (and usually pessimistic), so we
consistently maintain the use of a § dB margin in theoretical or lab analyses.



For our chosen target of P,/2 = 107, then we write that
(3-T) (dB) = 14.5 4+ m — 7 dB . (13)

By taking the log, base 2, of (11) and substituting (12) into (11) for d2,,,, one computes the number of
bits that can be carried at P,/2 = 107 (with , margin) by QAM:

b = logy(M) = log, (1 + %) - (14)
where SN R is the channel output SNR given by
EHP

The quantity I" is called the “SNR gap” because we see in (14) that the number of bits that can be
reliably transmitted is less than theoretical capacity (C' = log;[! + SNR])for this channel and is the
capacity of a channel with a factor of " less SNR. As I approaches 1 (0 dB), then the achievable data rate
of the QAM system approaches capacity. The gap is then a measure of loss with respect to theoretically
optimum performance. ‘The gap is computed for any coded QAM system according to (13) as

=98+ -7 (dB) , (16)

where one need only know the margin desired in the system and the gain of any applied trellis code
(when uncoded 4,=0 dB). The SNR is also easily computed for any (ISI-free) QAM channel, so (14)
gives a quick and easy method by which to compute accurately the number of bits per symbol, b, that
can be achieved at P,/2 = 107 using QAM.® The data rate R can be computed from R = b/T', where
T is the symbol period for the QAM system.

Often in practice, b is rounded to some integer value corresponding to some desired data rate R. In
this case, we’d like to know the margin, vm that can be achieved at this fixed data rate with P,/2 = 10~".
To do this, we rewrite (14) as (using (16))

SNR
Then SNR
Ym = 1010g10 (m) + Y — 9.8dB . (18)

yields the margin for this data rate. The margin in (18) is often the quantity of interest in subscriber
loop analysis. ‘

2.3 Example

As an example of QAM analysis, let us examine a channel with £ = 1, |H|? = 8, and ¢? = .025 with a
symbol rate of 1/T = 400 kHz. The SNR for this channel is computed to be SNR = (1-8)/(2-.025)=
22 dB. :

Let us first consider a case where there is no margin required (s = 0 dB) and no code used (7, =0
dB), then the gap is ' = 9.8 dB. The data rate that can be achieved with F,/2 = 107 is computed
according to (14) as

Re2 =L og (1+ 322 ~ 4-400,000 = 1.6 Mb (19)
STTT RN T w U= 2.5 MODps -

5When using equalization with QAM on channels with intersymbol interference, SNR um be replaced with the SNR at the
input to the decision element after the equalizer in (14) to compute the achievable data rate in the equalized case also.

10



The constellation used would be 16 QAM in this example.
Now, let us suppose we are forced to use a 6 dB margin so that v, = 6 dB; then, the gap increases
to 15.8 dB. Recomputing the data rate with this margin produces

i (2.2
=21 g (1+-11~0°1-2_m)==2.400,000=800kbps . (20)

The constellation used would now be 4 QAM.
Let us now assume that we desire 1.8 Mbps on this channel and use a powerful trellis code with v, =
5.0 dB. Then b = 4.5 bits/symbol. Then the margin is computed according to (18) as

2
Ym = 10 - logyo (241—?2_—1) +50-98dB~39dB . (21)

For channels with intersymbol inteference and equalization, one can replace the SNR in the above
examples by the SNR at the detection element input in the receiver and the analysis will remain very
accurate.

3 Analysis of Discrete Multitone

Having established the QAM single-carrier analysis in Section 2, we now use it to analyze multicarrier
as an aggregate of 1SI-free QAM subchannels.

3.1 Designing for the Weak-link

The probability of error for a multicarrier system is the average of the probabilities of error for each of the
subchannels. In such an average, those subchannels with largest probabilities of error would dominate.
Then, in well-designed multicarrier systems, we choose the same probability of error for all subchannels
so that no one subchannel is any better than the others.®

We choose our probability of subsymbol error to be equal on all subchannels and, again, at the level
of P,/2 = 10-". Then the analysis of Section 2 directly applies to each subchannel. We have a constant
gap, T, on all subchannels, again computed according to (16). We now write for the i** subchannel that

Qi |H PR

where the subscript of { is added to all quantities that can vary from subchannel to subchannel. Again
for any subchannel, the a.na.lysis of Section 2 directly applies, and so we may write

SNR,-)

as the maximum number of bits per symbol that can be carried on that subchannel with margin v, and
coding gain .. The quantity SN R; is computed by

2L
SNR; = %,5 (24)
H .

%It has been noted that multicarrier provides an easy way to have mare critical information assigned to those subchanneis for
which the design ensures a lower probability of error than on other subchannels. Such channeis might carry control information
or critical components of a compressed video ligna.l.' While Amati intends to take advantage of this strong point of multicarrier in
products, we leave further study of this option to future discussions of applications of ADSL where this unequal error protection
may be desirable. ’

11



where we always choose £ = £ constant on those subchannels that are used and zero on subchannels
not used. (There is actually a better energy distribution called the “water-pouring” distribution, see
[1), but we have found that the on/off energy distribution is very close to this optimum on all channels
we have analyzed and the on/off is easier to compute.) We assume constant gain and margin on all
subchannels because we desire the same probability of error on each subchannel, which is what forces T’
to be constant (independent of i) above.

3.2 Computing Rate or Margin

The total number of bits that is transported in one symbol is then the sum of the number of bits on
each of the subchannels, so

b= Zb. 21og2(1+SNR‘) . . ' (25)

=1 3=1
Then the data rate is R = b/T.
An alternative relationship to (25) is

= log, [ﬁ (1 + m)] . (26)

By defining an “average SNR”, SNR, by
P /N
NR SNE;
“T'[H("’ T )} . (27
or . i
(1+S—Nﬁ) -1 , (28)
=1
we can rewrite (25) more simply as
b= -log, (1+§’-"—R) (29)

From the form of (29) we see that SNR can be directly compared against the detection SNR for a
single-carrier QAM system at the same number of bits per symbol (bgan = bpar/N). The form of the
relation in (29) also permits direct computation of a margin for a multicarrier system with fixed data
rate and probability of error. To do 30, we note that the “1+” and “-1” terms in (27) are often negligible
and may be ignored to a first order approximation so that our average SNR becomes the geometric
average

8 /R .

SNR=~ [1‘[ (SNR.-)J , (30)
=1

which does not involve the gap {which is unknown if we are trying to compute the margin). One must

take care in dropping the “1+” and “1” terms to alter N to the number of used subchannels (that is,

do not count channels with zero input energy) in computing the margin. Then, we may compute the
margin by rewriting (29) as

( 3NE '
Ym = 10logyg (m) +v.—~98dB . (31)

12



In (31), N is again the number of used subchannels. At a fixed data rate R, b = RT, and (31) can be
used to compare against a single-carrier system with the same target F,.

3.3 Example

Returning to the example of Section 1, let us use £ = lfori=1,2,3. Further let us assume a crosstalk-
ing noise that increases in power with frequency as f1* appears on this channel. The corresponding
subchannel noise variances are of = 1075/2, 02 = 2.82 x 107%/2, and 0% = 5.2 x 107/2. Then the
subchannel signal to noise ratios, computed according to (24) are

1..073

1-.016
SNR; = st =567 (21.5 dB)
1-.0029
SNRy = 59x10°% = 56 (17.4 dB)

With no margin and no code, the achievable data rate is

7300 567 56
= 125kHz- {logg (1 + 10_-95) + log, (1 + 1093) + log, (1 + _10.93)}

= 18.2-125 kHz = 2.3 Mbps . (32)

R=

Ml o

With a powerful trellis code of gain 5 dB, we would like to know the margin at 1.75 Mbps. First, we
comptute the geometric average SNR for the three channels as

SNR = [7300- 567 - 56]'° = 614 . (33)

(Note, we have used the number of used subchannels, N = 3.) The number of bits per symbol required
to achieve 1.75 Mbps is 14. Then, we compute the margin from (31) to get

614
= 10- 1ogm(2w3 )+50-98 (dB)=9.2dB . : . (34)

With this small of an FFT size, the subchannels are not really independent, so only the method of
analysis is illustrated with this example. Nevertheless, if NV is increased to 512, the reader will find that
this analysis will accurately project the achievable data rate or margin for DMT on subscriber loops.
The methods in the appendix simply ensure that the analysis for block-length N = 512 is accurate by
forcing the 256 derived subchannels to be independent, and thus altering the H; slightly from H{f;).

3.4 Review_ of Performance Calculation

The procedure to analyze the multicarrier system can by summarized in the following four steps:

1. From the power budget, compute & prehmmary subsymbol energy allocation according to £ = & =
(PT)/N.

2. Compute the subchanne]l SNR’s accordmg to
..?....

SNR; = (35)

13



3. Compute the number of bits that can be transmitted on each subchannel with a given margin and
given trellis code (thus determining I' = 9.8 + vy — 7. dB) as

b; = logy (1 + %—Iﬁ) . (36)

4. For those subchannels with b; < .5, reset £ = 0 and reallocate their energy to the other subchannels
equally. Then, recompute . '

5. Compute b by summing the 4, and then compute the maximum data rate R = b/T.

* A margin can be computed using any number of used subchannels. For data rates considerably below
theoretical optimums, the number of used subchannels often decreases with respect to the bandwidth
used for the maximum data rate. The geometric average SN K in (30) can be computed recursively by
ordering the |H;|?/¢? and incorporating the largest SN R; first, then the next largest, etc. Each of these
SNR; can in turn be used in (31) to compute a margin. The bandwidth with the best margin is then
used for this target (lower than maximum) data rate.

A DMT with finite block length

Strictly speaking, the subchannels discussed in Sections 1 and 3 are not independent for finite N.
Nevertheless, it is possible to make them exactly independent (white Gaussian noise case) by using what
is known as a cyclic prefix [2). The Discrete Fourier Transform (DFT) of a time-domain sequence is
defined by (dropping the block symbol index & from all subscripts)

p N .
= e —1%in
X; m;::,.e . (37)

where 3 2 +/—1. The Fast Fourier Transform (FFT) is a computationally efficient method for computing
the DFT when N is some convenient number, usually a power of 2. We use the term “FFT” synonymously
with “DFT,” even though it is somewhat of a misnomer. The inverse FFT (or IFFT) is given by

N-1
1 . :
Tp= = Y Xi?¥ (38)
77 %
where, given X;, i = 1,..., N as in the body of this document, X; in (38) is found as
X; i=1,.,N-1
R(Xg) i=0
Xi= _ . 39
¢ I(Xq) i=N (39)

Xy, i=N+1,.,N-1

The conjugate symmetry conditions on X; are imposed to force z, to be a real sequence. Likewise, when
T, is real, these conditions will hold. _

In continuous time, a well-known result is that convolution in the time domain corresponds to mul-
tiplication of Fourier Transforms. In discrete time this result oniy holds if one of two conditions is met:
(1) the block length NV is infinite or (2) at least one of the input sequences convolved is periodic with
period N. That is, we may write ' '

In*hy &= X;-H; , (40)
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if either of the above conditions is met. Otherwise, multiplication in the frequency domain does not
correspond to time-domain convolution.

In practice, N is never infinite, so we would like to make it appear as if z, were periodic. We assume
that hy, is limited to being nonzero only over the time index range 0 < n < v, where v is sometimes
called the constraint length of the channel. For any practical channel, we can always approximate this
finite-length condition by just picking i sufficiently large. We note that if we prefix a time-domain block
of samples z,, n=0,..., N — 1 by the last 1 samples of that block, we get a new block of length N + v,
indexed from n = —, ...,0, ..., N — 1. For the N samples of the convolution g, = Ry *Ty, n =0,...,N ~1,
we note that y

Yn = ArTn-k (41)
k=0
depends only on z, within our prefixed block. Furthermore, for these values of y, only, it appears as if
T, were indeed periodic over all time. Thus, by using the cyclic prefix, we ensure that the relation

Y,=HX; i=1,...N (42)

(where Hy is understood to be Hy = Hp + 73(Hyz)) holds exactly. Of course, v samples are wasted
with the prefix, thus decreasing the data rate R by a factor of N/(N +v). If N >> v, then this loss is
. negligible.

Cyclic prefix is used in most good multicarrier designs, see [11] and [5] for those in commercial
products. Unfortunately, in subscriber loops, © can be very large, perhaps hundreds of sample periods
at practical sampling rates, Then N would need to be enormous for the rate loss, N/(N + v), to be
negligible. Fortunately, J.S. Chow has derived a novel method by which to reduce the value of N required
substantially without reducing performance [6). We model the channel polynomial, defined as

H(D)= > hD" (43)
as a rational polynomial
H(D) = %% : (44)

where B(D) is a zero polynomial, B(D) = "% b, D" of order v and A(D) is a monic (ag = 1), causal
{aa = 0,n < 0) pole polynomial of order x, A(D) = 1+ Y ki anD™. For subscriber loops, we rarely
need v or u greater than 10 to model the channel acéura.te]y, even at very high sampling rates. A
first method to reduce the channel would be to filter the channel with A(D), which would leave an
“equalized” channel of B(D). Then, a much shorter FFT size could be used on this equalized channel,
because v < 10. However, the SN R; are severely degraded when such an approach is taken.

We prefer to find an equalizer A(D), used as shown in Figure 9, of 4 taps (or less) and a target
polynomial B(D) such that the SNR

_ElIBD)|?
SNR= — = 45)
| " TADW(D) - BOX (D) (
is maximized, where ||B(D)||* = :'“", B2 and likewise for the norm of the denominator in (45). We also

note that B(D) need not be causal, and indeed is usually not. A good (but perhaps not absolute best)
solution to this problem can be derived from what is known as an ARMA (autoregressive moving average)
mode! for the channel {12]. This problem is more general than decision feedback equalization (which
imposes an additional restriction that B(D) be causal so that trailing ISI can be cancelled), and the SNR
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Figure 9: Chow’s DMT receiver with short equalizer A(?). The equalzer is used to decrease the
apparent channel response length while simultaneously preserving good SNR. in the resultant controlled
intersymbol-interference channel. The S/P is also presumed to ignore all v samples per symbol that are
influenced by the previous block with cyclic prefixing.

in {45) is greater than that of a decision feedback equalizer applied to the same channel. With u greater
than or equal to the maximum number of poles in channel models, we have found this ARMA equalizer
method to achieve near infinite-length multicarrier performance as long as N >> ». For subscriber
loops with v < 20, N = 512 (N = 256) achieves near optimum performance. The noise variances at
each frequency, o2, are computed by forming the power spectral density of A(D)Y (D) — B(D)X(D) and
sampling at the proper frequencies. The channel gains H; are replaced by the gains B, £ BTy,
The i* subchannel SNR is then SN R; = £3F,

The ARMA model for & channel can be found with a number of software packages for analysis,
or the author can provide a method to compute the ARMA model easily upon request. In actual
implementation, the ARMA model can be found by using an adaptive (i.e.,, LMS gradient) algorithm on
the adaptive filter shown in Figure 10 when the input sequence (training) is known to the receiver.

Al Example

‘We now return to the example of Sections 1 and 3 one last time. We assume an additive white Gaussian
noise with variance per dimension 0% = 4 x 10~%, Using an ARMA 3-tap equalization filter of A(D) =
1~ 1.459D + .517D?, then B(D) = .1 + .0043D — .0961.0? and the noise at the equalizer output is
correlated according to the shaping of A(D), but nevertheless independent from frequency to frequency
when we use N = 512. This equalized system with the resulting N = 256 (maximum) subchannels will
achieve a data rate of 2.3 Mbps with no margin and no code. Using the same block length and ignoring
the equalization and cyclic prefix {and just using the H; for the original channel characteristic directly),
we would have computed 2.5 Mbps. That latter analysis is slightly optimistic because the channels are
not quite independent unless the equalization method of this appendix is used, which reduces the actual
performance slightly. With yn= 6 dB, the ARMA-equalizer method yields 1.6 Mbps (while ignoring
equalization produces 1.7 Mbps). Various bias-removal methods can be used to increase 2.3 Mbps to
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Figure 10: Nllustration of adaptive filter necessary to obtain ARMA channel model. The filter A is used
for “equalizing” the sampled channel output prior to the FFT in the DMT receiver after training with
this configuration. The reader is cautioned not to assume that this configuration is a decision feedback
equalizer; it is not. The polynomial B(D) is not necessarily minimum-phase nor causal and A(D) and
B(D) are much shorter than the feedforward and feedback sections of a DFE for the same channel.

2.5 Mbps and 1.6 Mbps to 1.7 Mbps so that the straightforward analysis results can be achieved in an
implementable system.

Finally, with 7. = 5 dB and a target data rate of 1.8 Mbps, the margin is 9.7 dB. The reader will
need a computer to verify the numbers in this last section, but analysis proceeds exactly as illustrated
earlier, just with a larger number of subchannels.
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