Manifold Regularization
9.520 Class 06, 27 February 2006
Andrea Caponnetto
About this class

Goal To analyze the limits of learning from examples in high dimensional spaces. To introduce the semi-supervised setting and the use of unlabeled data to learn the intrinsic geometry of a problem. To define Riemannian Manifolds, Manifold Laplacians, Graph Laplacians. To introduce a new class of algorithms based on Manifold Regularization (LapRLS, LapSVM).
Unlabeled data

Why using unlabeled data?

• labeling is often an “expensive” process

• semi-supervised learning is the natural setting for human learning
Semi-supervised setting

u i.i.d. samples drawn on X from the marginal distribution $p(x)$

$$\{x_1, x_2, \ldots, x_u\},$$

only n of which endowed with labels drawn from the conditional distributions $p(y|x)$

$$\{y_1, y_2, \ldots, y_n\}.$$

The extra $u - n$ unlabeled samples give additional information about the marginal distribution $p(x)$.
The importance of unlabeled data
Curse of dimensionality and $p(x)$

Assume X is the D-dimensional hypercube $[0,1]^D$. The worst case scenario corresponds to uniform marginal distribution $p(x)$.

Two perspectives on curse of dimensionality:

- As d increases, local techniques (e.g., nearest neighbors) become rapidly ineffective.

- Minimax results show that rates of convergence of empirical estimators to optimal solutions of known smoothness, depend critically on D.
Curse of dimensionality and k-NN

- It would seem that with a reasonably large set of training data, we could always approximate the conditional expectation by k-nearest-neighbor averaging.

- We should be able to find a fairly large set of observations close to any $x \in [0,1]^D$ and average them.

- This approach and our intuition breaks down in high dimensions.
Sparse sampling in high dimension

Suppose we send out a cubical neighborhood about one vertex to capture a fraction r of the observations. Since this corresponds to a fraction r of the unit volume, the expected edge length will be

$$e_D(r) = r^{1/D}.$$

Already in ten dimensions $e_{10}(0.01) = 0.63$, that is to capture 1% of the data, we must cover 63% of the range of each input variable!

No more "local" neighborhoods!
Distance vs volume in high dimensions
Curse of dimensionality and smoothness

Assuming that the target function \(f^* \) (in the squared loss case) belongs to the Sobolev space

\[
W_s^2([0,1]^D) = \{ f \in L_2([0,1]^D) | \sum_{\omega \in \mathbb{Z}^d} \| \omega \|^{2s} | \hat{f}(\omega) |^2 < +\infty \}
\]

it is possible to show that *

\[
\sup_{\mu, f^* \in W_s^2} \mathbb{E}_S(I[f_S] - I[f^*]) > Cn^{-\frac{s}{D}}
\]

More smoothness \(s \) ⇒ faster rate of convergence

Higher dimension \(D \) ⇒ slower rate of convergence

A Distribution-Free Theory of Nonparametric Regression, Gyorfi
Intrinsic dimensionality

Raw format of natural data is often high dimensional, but in many cases it is the outcome of some process involving only few degrees of freedom.

Examples:

- Acoustic Phonetics \Rightarrow vocal tract can be modelled as a sequence of few tubes.
- Facial Expressions \Rightarrow tonus of several facial muscles control facial expression.
- Pose Variations \Rightarrow several joint angles control the combined pose of the elbow-wrist-finger system.

Smoothness assumption: y’s are “smooth” relative to natural degrees of freedom, **not** relative to the raw format.
Manifold embedding
Riemannian Manifolds

A d-dimensional manifold

$$\mathcal{M} = \bigcup_{\alpha} U_{\alpha}$$

is a mathematical object that generalized domains in \mathbb{R}^d.

Each one of the “patches” U_{α} which cover \mathcal{M} is endowed with a system of coordinates

$$\alpha : U_{\alpha} \to \mathbb{R}^d.$$

If two patches U_{α} and U_{β}, overlap, the transition functions

$$\beta \circ \alpha^{-1} : \alpha(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^d$$

must be smooth (eg. infinitely differentiable).

- The Riemannian Manifold inherits from its local system of coordinates, most geometrical notions available on \mathbb{R}^d: metrics, angles, volumes, etc.
Manifold’s charts
Differentiation over manifolds

Since each point x over \mathcal{M} is equipped with a local system of coordinates in \mathbb{R}^d (its tangent space), all differential operators defined on functions over \mathbb{R}^d, can be extended to analogous operators on functions over \mathcal{M}.

Gradient: $\nabla f(x) = \left(\frac{\partial}{\partial x_1} f(x), \ldots, \frac{\partial}{\partial x_d} f(x) \right) \Rightarrow \nabla \mathcal{M} f(x)$

Laplacian: $\triangle f(x) = -\frac{\partial^2}{\partial x_1^2} f(x) - \cdots - \frac{\partial^2}{\partial x_d^2} f(x) \Rightarrow \triangle \mathcal{M} f(x)$
Measuring smoothness over \mathcal{M}

Given $f : \mathcal{M} \to \mathbb{R}$

- $\nabla_{\mathcal{M}} f(x)$ represents amplitude and direction of variation around x

- $S(f) = \int_{\mathcal{M}} \| \nabla_{\mathcal{M}} f \|^2$ is a global measure of smoothness for f

- Stokes’ theorem (generalization of integration by parts) links gradient and Laplacian

$$S(f) = \int_{\mathcal{M}} \| \nabla_{\mathcal{M}} f(x) \|^2 = \int_{\mathcal{M}} f(x) \Delta_{\mathcal{M}} f(x)$$
Example: the circle S^1

\mathcal{M}: circle with angular coordinate $\theta \in [0, 2\pi)$

$$\nabla_{\mathcal{M}} f = \frac{\partial}{\partial \theta} f, \quad \Delta_{\mathcal{M}} f = -\frac{\partial^2}{\partial \theta^2} f$$

integration by parts: $\int_0^{2\pi} \left(\frac{\partial}{\partial \theta} f(\theta) \right)^2 d\theta = -\int_0^{2\pi} f(\theta) \frac{\partial^2}{\partial \theta^2} f(\theta) d\theta$

eigensystem of $\Delta_{\mathcal{M}}$:

$$\Delta_{\mathcal{M}} \phi_k = \lambda_k \phi_k$$

$$\phi_k(\theta) = \sin k\theta, \ \cos k\theta, \ \lambda_k = k^2 \ \kappa \in \mathbb{N}$$
Manifold regularization *

A new class of techniques which extend standard Tikhonov regularization over RKHS, introducing the additional regularizer \(\|f\|_I^2 = \int_M f(x) \Delta_M f(x) \) to enforce smoothness of solutions relative to the underlying manifold

\[
f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda_A \|f\|_K^2 + \lambda_I \int_M f \Delta_M f
\]

- \(\lambda_I \) controls the complexity of the solution in the \textit{intrinsic} geometry of \(\mathcal{M} \).
- \(\lambda_A \) controls the complexity of the solution in the \textit{ambient} space.

*Belkin, Niyogi, Sindhwani, 04
Manifold regularization (cont.)

Other natural choices of $\| \cdot \|_f^2$ exist

- Iterated Laplacians $\int_{\mathcal{M}} f \triangle^s_{\mathcal{M}} f$ and their linear combinations. These smoothness penalties are related to Sobolev spaces

$$\int f(x) \triangle^s_{\mathcal{M}} f(x) \approx \sum_{\omega \in \mathbb{Z}^d} \| \omega \|^{2s} |\hat{f}(\omega)|^2$$

- Frobenius norm of the Hessian (the matrix of second derivatives of f)

- Diffusion regularizers $\int_{\mathcal{M}} f e^{t \Delta}(f)$. The semigroup of smoothing operators $G = \{ e^{-t \Delta_{\mathcal{M}}} \mid t > 0 \}$ corresponds to the process of diffusion (Brownian motion) on the manifold.

*Hessian Eigenmaps; Donoho, Grimes 03
Laplacian and diffusion

• If M is compact, the operator ∇_M has a countable sequence of eigenvectors ϕ_k (with non-negative eigenvalues λ_k), which is a complete system of $L_2(M)$. If M is connected, the constant function is the only eigenvector corresponding to null eigenvalue.

• The function of operator $e^{-t\nabla_M}$, is defined by the eigensystem $(e^{-t\lambda_k}, \phi_k)$, $k \in \mathbb{N}$.

• the diffusion stabilizer $\|f\|_I^2 = \int_M f e^{t\nabla_M}(f)$ is the squared norm of RKHS with kernel equal to Green’s function of heat equation

$$\frac{\partial T}{\partial t} = -\nabla_M T$$
Laplacian and diffusion (cont.)

1. By Taylor expansion of $T(x, t)$ around $t = 0$

$$T(x, t) = T(x, 0) + t \frac{\partial}{\partial t} T(x, 0) + \cdots + \frac{1}{k!} t^k \frac{\partial^k}{\partial t^k} T(x, 0) + \cdots$$

$$= e^{-t\Delta} T(x, 0) = \int K_t(x, x') T(x', 0) dx' = L_K T(x', 0)$$

2. For small $t > 0$, the Green’s function is a sharp gaussian

$$K_t(x, x') \approx e^{-\frac{||x-x'||^2}{t}}$$

3. Recalling relation of integral operator L_K and RKHS norm, we get

$$\|f\|_I^2 = \int f \ e^{t\Delta} (f) = \int f \ L_K^{-1}(f) = \|f\|_K^2$$
An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

$$\|f\|_I^2 = \int_M f(x) \Delta_M f(x)$$

because we don’t know the manifold M and the embedding

$$\Phi : M \rightarrow \mathbb{R}^D.$$

But we assume that the unlabeled samples are drawn i.i.d. from the uniform probability distribution over M and then mapped into \mathbb{R}^D by Φ.
Neighborhood graph

Our proxy of the manifold is a \textit{weighted neighborhood graph} $G = (V, E, W)$, with \textbf{vertices} V given by the points $\{x_1, x_2, \ldots, x_u\}$, \textbf{edges} E defined by one of the two following adjacency rules

\begin{itemize}
 \item connect x_i to its k nearest neighborhoods
 \item connect x_i to ϵ-close points
\end{itemize}

and \textbf{weights} W_{ij} associated to two connected vertices

$$W_{ij} = e^{-\frac{\|x_i-x_j\|^2}{\epsilon}}$$

\textbf{Note:} computational complexity $O(u^2)$
Neighborhood graph (cont.)
The **graph Laplacian**

The graph Laplacian over the weighted neighborhood graph \((G, E, W)\) is the matrix

\[
L_{ij} = D_{ii} - W_{ij}, \quad D_{ii} = \sum_j W_{ij}.
\]

\(L\) is the discrete counterpart of the manifold Laplacian \(\triangle_M\)

\[
f^T L f = \sum_{i,j=1}^n W_{ij} (f_i - f_j)^2 \approx \int_M \|\nabla f\|^2 dp.
\]

Analogous properties of the eigensystem: nonnegative spectrum, null space

Looking for rigorous convergence results
A convergence theorem *

Operator \mathcal{L}: “out-of-sample extension” of the graph Laplacian \mathcal{L}

$$\mathcal{L}(f)(x) = \sum_i (f(x) - f(x_i)) e^{-\frac{\|x - x_i\|^2}{\epsilon}} \quad x \in X, \ f : X \to \mathbb{R}$$

Theorem: Let the u data points $\{x_1, \ldots, x_u\}$ be sampled from the uniform distribution over the embedded d-dimensional manifold \mathcal{M}. Put $\epsilon = u^{-\alpha}$, with $0 < \alpha < \frac{1}{2+d}$. Then for all $f \in C^\infty$ and $x \in X$, there is a constant C, s.t. in probability,

$$\lim_{u \to \infty} C^\epsilon \frac{d+2}{u} \mathcal{L}(f)(x) = \Delta_\mathcal{M} f(x).$$

Note: also stronger forms of convergence have been proved.

Belkin, Niyogi, 05
Laplacian-based regularization algorithms *

Replacing the unknown manifold Laplacian with the graph Laplacian $\|f\|_I^2 = \frac{1}{u^2} f^T L f$, where f is the vector $[f(x_1), \ldots, f(x_u)]$, we get the minimization problem

$$f^* = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda_A \|f\|_K^2 + \frac{\lambda_I}{u^2} f^T L f$$

- $\lambda_I = 0$: standard regularization (RLS and SVM)
- $\lambda_A \to 0$: out-of-sample extension for Graph Regularization
- $n = 0$: unsupervised learning, Spectral Clustering

*Belkin, Niyogi, Sindhwani, 04
The Representer Theorem

Using the same type of reasoning used in Class 3, a Representer Theorem can be easily proved for the solutions of Manifold Regularization algorithms.

The expansion range over all the supervised and unsupervised data points

\[f(x) = \sum_{j=1}^{u} c_j K(x, x_j). \]
LapRLS

Generalizes the usual RLS algorithm to the semi-supervised setting.

Set $V(w, y) = (w - y)^2$ in the general functional.

By the representer theorem, the minimization problem can be restated as follows

$$c^* = \arg \min_{c \in \mathbb{R}^u} \frac{1}{n} \sum_{i=1}^{n} (y_i - J K c)^T (y_i - J K c) + \lambda_A c^T K c + \frac{\lambda_I}{u^2} c^T K L K c,$$

where y is the u-dimensional vector $(y_1, \ldots, y_n, 0, \ldots, 0)$, and J is the $u \times u$ matrix $\text{diag}(1, \ldots, 1, 0, \ldots, 0)$.
LapRLS (cont.)

The functional is differentiable, strictly convex and coercive. The derivative of the object function vanishes at the minimizer c^*

$$\frac{1}{n}KJ(y - JKc^*) + (\lambda_A K + \frac{\lambda_I n}{u^2}KLK)c^* = 0.$$

From the relation above and noticing that due to the positivity of λ_A, the matrix M defined below, is invertible, we get

$$c^* = M^{-1}y,$$

where

$$M = JK + \lambda_A nI + \frac{\lambda_I n^2}{u^2}LK.$$
LapSVM

Generalizes the usual SVM algorithm to the semi-supervised setting.

Set $V(w, y) = (1 - yw)_+$ in the general functional above.

Applying the representer theorem, introducing slack variables and adding the unpenalized bias term b, we easily get the primal problem

$$c^* = \arg \min_{c \in \mathbb{R}^u, \xi \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^{n} \xi_i + \lambda A c^T K c + \frac{\lambda I}{u^2} c^T KLK c$$

subject to:

$$y_i \left(\sum_{j=1}^{u} c_j K(x_i, x_j) + b \right) \geq 1 - \xi_i \quad i = 1, \ldots, n$$

$$\xi_i \geq 0 \quad i = 1, \ldots, n$$
LapSVM: forming the Lagrangian

As in the analysis of SVM, we derive the Wolfe dual quadratic program using Lagrange multiplier techniques:

\[
L(c, \xi, b, \alpha, \zeta) = \frac{1}{n} \sum_{i=1}^{n} \xi_i + \frac{1}{2} c^T \left(2 \lambda_A K + 2 \frac{\lambda_I}{u^2} KLK \right) c \\
- \sum_{i=1}^{n} \alpha_i \left(y_i \left\{ \sum_{j=1}^{u} c_j K(x_i, x_j) + b \right\} - 1 + \xi_i \right) \\
- \sum_{i=1}^{n} \xi_i \xi_i
\]

We want to minimize \(L \) with respect to \(c, b, \) and \(\xi, \) and maximize \(L \) with respect to \(\alpha \) and \(\zeta, \) subject to the constraints of the primal problem and nonnegativity constraints on \(\alpha \) and \(\zeta. \)
LapSVM: eliminating \(b \) and \(\xi \)

\[
\frac{\partial L}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0
\]

\[
\frac{\partial L}{\partial \xi_i} = 0 \implies \frac{1}{n} - \alpha_i - \zeta_i = 0
\]

\[
\implies 0 \leq \alpha_i \leq \frac{1}{n}
\]

We write a reduced Lagrangian in terms of the remaining variables:

\[
L^R(c, \alpha) = \frac{1}{2} c^T \left(2\lambda_A K + 2\frac{\lambda_I}{u^2} KLK \right) c - c^T K J^T Y \alpha + \sum_{i=1}^{n} \alpha_i,
\]

where \(J \) is the \(n \times u \) matrix \((I \ 0)\) with \(I \) the \(n \times n \) identity matrix and \(Y = \text{diag}(y) \).
LapSVM: eliminating c

Assuming the K matrix is invertible,

\[
\frac{\partial L^R}{\partial c} = 0 \implies \left(2\lambda_A K + 2\frac{\lambda I}{u^2} K L K\right)c - K J^T Y \alpha = 0
\]

\[
\implies c = \left(2\lambda_A I + 2\frac{\lambda I}{u^2} L K\right)^{-1} J^T Y \alpha
\]

Note that the relationship between c and α is no longer as simple as in the SVM algorithm.
LapSVM: the dual program

Substituting in our expression for c, we are left with the following “dual” program:

$$\alpha^* = \arg \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \alpha^T Q \alpha$$

subject to:

$$\sum_{i=1}^{n} y_i \alpha_i = 0$$

$$0 \leq \alpha_i \leq \frac{1}{n} \quad i = 1, \ldots, n$$

Here, Q is the matrix defined by

$$Q = YJ K \left(2\lambda_A I + 2\frac{\lambda_I}{\alpha^2} L K\right)^{-1} J^T Y.$$

One can use a standard SVM solver with the matrix Q above, hence compute c solving a linear system.
Numerical experiments

- Two Moons Dataset
- Handwritten Digit Recognition
- Spoken Letter Recognition

http://manifold.cs.uchicago.edu/manifold_regularization