Unsupervised Learning Techniques
9.520 Class 07, 1 March 2006
Andrea Caponnetto
About this class

Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian Eigenmaps.
Unsupervised learning

Only \(u \) i.i.d. samples drawn on \(X \) from the unknown marginal distribution \(p(x) \)

\[
\{x_1, x_2, \ldots, x_u\}.
\]

The goal is to infer properties of this probability density.

In low-dimension many nonparametric methods allow direct estimation of \(p(x) \) itself. Owing to the curse of dimensionality, this methods fail in high dimension.

One must settle for estimation of crude global models.
Unsupervised learning (cont.)

Different types of simple descriptive statistics that characterize aspects of $p(x)$

- **mixture modelling**
 representation of $p(x)$ by a mixture of simple densities representing different types or classes of observations [eg. Gaussian mixtures]

- **combinatorial clustering**
 attempt to find multiple regions of X that contain modes of X [eg. K-Means]

- **dimensionality reduction**
 attempt to identify low-dimensional manifolds in X that represent high data density [eg. ISOMAP, HLLLE, Laplacian Eigenmaps]

- **manifold learning**
 attempt to determine very specific geometrical or topological invariants of $p(x)$ [eg. Homology learning]
Limited formalization

With *supervised* and *semi-supervised* learning there is a clear measure of effectiveness of different methods. The *expected loss* of various estimators $I[f_S]$ can be estimated on *validation set*.

In the context of unsupervised learning, it is *difficult to find such a direct measure of success*.

This situation has led to *proliferation of proposed methods*.
Mixture Modelling

Assumption that data is i.i.d. sampled from some probability distribution $p(x)$.

$p(x)$ is modelled as a mixture of component density functions, each component corresponding to a *cluster or mode*.

The free parameters of the model are fit to the data by *maximum likelihood*.
Gaussian Mixtures

We first choose a parametric model P_{θ} for the unknown density $p(x)$, hence maximize the likelihood of our data relative to the parameters θ.

Example: two-component gaussian mixture model with parameters

$$\theta = (\pi, \mu_1, \Sigma_1, \mu_2, \Sigma_2).$$

The model:

$$P_{\theta}(x) = (1 - \pi)G_{\Sigma_1}(x - \mu_1) + \pi G_{\Sigma_2}(x - \mu_2)$$

Maximize the log-likelihood

$$\ell(\theta|\{x_1, \ldots, x_u\}) = \sum_{i=1}^{u} \log P_{\theta}(x_i)$$
The EM algorithm

Maximization of $\ell(\theta|\{x_1, \ldots, x_u\})$ is a difficult problem. Iterative maximization strategies, as the EM algorithm, can be used in practice to get local maxima.

1. **Expectation:** compute the responsibilities
 \[
 \gamma_i = \frac{\pi G_{\Sigma_2}(x_i - \mu_2)}{(1 - \pi)G_{\Sigma_1}(x_i - \mu_1) + \pi G_{\Sigma_2}(x_i - \mu_2)}
 \]

2. **Maximization:** compute means and variances
 \[
 \mu_2 = \frac{\sum_i \gamma_i x_i}{\sum_i \gamma_i}, \quad \Sigma_2 = \frac{\sum_i \gamma_i (x_i - \mu_2)(x_i - \mu_2)^T}{\sum_i \gamma_i}, \quad \text{etc}
 \]
 and the mixing probability $\pi = \frac{1}{u} \sum_i \gamma_i$.

3. Iterate until convergence
Combinatorial Clustering

Algorithms in this class work on the data without any reference to an underlying probability model.

The goal is assigning each data point x_i to a cluster k belonging a predefined set $\{1, 2, \ldots, K\}$

$$C(i) = k, \quad i = 1, 2, \ldots, u$$

The optimal encoder $C^*(i)$ minimizes the overall dissimilarities $d(x_i, x_j)$ between points x_i, x_j assigned to the same cluster

$$W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} d(x_i, x_j)$$

The simplest choice for the dissimilarity $d(\cdot, \cdot)$ is the squared Euclidean distance in X
Combinatorial Clustering (cont.)

The minimization of the \textit{within-cluster point scatter} $W(C)$ is straightforward in principle, but...

the number of distinct assignments \textit{grows exponentially} with the number of data points u

$$S(u, K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \binom{K}{k} k^u$$

already $S(19, 4) \simeq 10^{10}!$

In practice, clustering algorithms look for good suboptimal solutions.

Most popular algorithms are based on \textit{iterative descent strategies}. Convergence to \textit{local} optima.
K-Means

If \(d(x_i, x_j) = \|x_i - x_j\|^2 \), introducing the mean vectors \(\bar{x}_k \) associated to the \(k \)-th cluster, the within-cluster point scatter \(W(C) \) can be rewritten as

\[
W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} \|x_i - x_j\|^2 = \sum_{k=1}^{K} \sum_{C(i)=k} \|x_i - \bar{x}_k\|^2.
\]

Exploiting this representation one can easily verify that the optimal encoder \(C^\ast \) is the solution of the enlarged minimization problem

\[
\min_{C,(m_1,\ldots,m_K)} \sum_{k=1}^{K} \sum_{C(i)=k} \|x_i - m_k\|^2.
\]
K-Means (cont.)

K-Means attempts the minimization of the enlarged problem by an iterative alternating procedure. Each step 1 and 2 reduces the objective function, so convergence is assured.

1. minimization with respect to \((m_1, \ldots, m_K)\), getting

\[
m_k = \bar{x}_k
\]

2. minimization with respect to \(C\), getting

\[
C(i) = \arg \min_{1 \leq k \leq K} \| x_i - m_k \|
\]

3. do until \(C\) does not change

One should compare solutions derived from different initial random means, and choose best local minimum.
Voronoi tessellation
Dimensionality reduction

Often reducing the dimensionality of a problem is an effective preliminary step toward the actual solution of a regression or classification problem.

We look for a mapping Φ from the high dimensional space \mathbb{R}^D to the low dimensional space \mathbb{R}^d which preserves some relevant geometrical structure of our problem.
Dimensionality reduction

\[D=3 \]

\[d=2 \]
Principal Component Analysis (PCA)

Trying to approximate data \(\{x_1, \ldots, x_u\} \) in \(\mathbb{R}^D \) by a \(d \)-dimensional hyperplane

\[
H = \{ c + V\theta | \theta \in \mathbb{R}^d \}
\]

c vector in \(\mathbb{R}^D \), \(\theta \) coordinates vector in \(\mathbb{R}^d \) and \(V = (v_1, \ldots, v_d) \), \(D \times d \) matrix with \(\{v_i\} \) orthonormal system of vectors in \(\mathbb{R}^D \).

Problem: find \(H \) which minimizes sum of squared distances of data points \(x_i \) from \(H \)

\[
H^* = \arg \min_H \sum_{i=1}^{u} \| x_i - P_H(x_i) \|^2
\]
Linear approximation

\[P_H(x_i) \]

\[d=1 \quad D=2 \quad u=8 \]
PCA: the algorithm

1. center data points: \(\sum_{i=1}^{u} x_i = 0 \)

2. define \(u \times D \) matrix \(X = (x_1, \ldots, x_u)^T \)

3. construct singular value decomposition \(X = U \Sigma W^T \)
 - \(D \times D \) matrix \(W = (w_1, \ldots, w_D) \), with \(\{w_i\} \) right eigenvectors of \(X \)
 - \(u \times D \) matrix \(U = (u_1, \ldots, u_D) \), with \(\{u_i\} \) left eigenvectors of \(X \)
 - \(D \times D \) matrix \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_D) \), with \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_D \geq 0 \) singular eigenvectors of \(X \)

4. answer: \(V = (w_1, \ldots, w_d) \)
Sketch of proof

• Rewrite the minimization problem

\[
\min_{c, V, \{\theta_i\}} \sum_{i=1}^{u} \|x_i - c - V\theta_i\|^2
\]

• Centering and minimizing with respect to \(c\) and \(\theta_i\) gives

\[
c = 0, \quad \theta_i = V^T x_i
\]

• Plugging into the minimization problem

\[
\arg \min_V \sum_{i=1}^{u} \|x_i - VV^T x_i\|^2 = \arg \max_V \sum_{i=1}^{u} x_i^T VV^T x_i
\]

\[
= \arg \max_V \sum_{j=1}^{d} v_j^T X^T X v_j
\]

hence \((v_1, \ldots, v_d)\) are the first \(d\) eigenvectors of \(X^T X\): \((w_1, \ldots, w_d)\)
Mercer’s Theorem

Consider the pd kernel $K(x, x')$ on $X \times X$, and the probability distribution $p(x)$ on X.

Define the integral operator L_K

$$(L_K f)(x) = \int_X K(x, x') f(x') dp(x').$$

Mercer’s Theorem states that

$$K(x, x') = \sum_i \lambda_i \phi_i(x) \phi_i(x')$$

where $(\lambda_i, \phi_i)_i$ is the eigensystem of L_K.
Feature Map

From Mercer’s Theorem, the mapping Φ defined over X

$$\Phi(x) = (\sqrt{\lambda_1} \phi_1(x), \sqrt{\lambda_2} \phi_2(x), \ldots)$$

is such that

$$K(x, x') = \Phi(x)^T \Phi(x).$$

- $K(x, x')$ can be interpreted as the dot product in the “feature space”.

- given a mapping of X into an Euclidean space, we can construct a pd kernel $X \times X$.
Kernelization

Algorithms that depend on the data, only through the dot products \(x_i^T x_j \), can be easily kernelized:

1. Choose pd kernel \(K(\cdot, \cdot) \)

2. Replace \(x_i^T x_j \) with \(K(x_i, x_j) \)

Example: PCA can be kernelized computing the eigenvectors of the matrix

\[
M_{ij} = K(x_i, x_j)
\]

instead of those of the matrix \(X^T X \).
• **Assumption:** the support of the marginal distribution $p(x)$ is a *convex region of* \mathbb{R}^d (our manifold \mathcal{M}) isometrically embedded in \mathbb{R}^D.

• **Goal:** constructing a map $\Phi : \mathbb{R}^D \to \mathbb{R}^d$ which “transforms” geodesic distances in \mathcal{M} into Euclidean distances in \mathbb{R}^d.

• **Construction 1:** approximate the matrix $d_{\mathcal{M}}$ of pairwise geodesic distances between data points, estimating the *shortest distances* d_{ij} over the *neighborhood graph*.

Tenenbaum, et al, 00
• **Construction 2:** compute the $u \times u$ “kernel matrix”

\[
K = -\frac{1}{2} HDH, \quad H = I - \frac{1}{u} \mathbf{1} \mathbf{1}^T,
\]

with $\mathbf{1}$ the u-dimensional column vector $(1, 1, \ldots, 1)$, and D the matrix of squared distances, that is: $D_{ij} = d_{ij}^2$.

• **Result:** let $(\lambda_a, u_a)_{a=1}^u$ be the eigensystem of K. The embedding Φ, of $\{x_i\}_{i=1}^u$

\[
\Phi(x_i) = (\sqrt{\lambda_1}(u_1)_i, \sqrt{\lambda_2}(u_2)_i, \ldots, \sqrt{\lambda_d}(u_d)_i),
\]

is the isometry we were looking for.
ISOMAP global isometry

\[D=3 \quad \Phi \quad d=2 \]

\[K(x,y) = \Phi(x)^T \Phi(y) \]
Explaining ISOMAP

Firstly, we have to verify that the matrix K is a genuine pd kernel on the data points.

1. **Symmetry:** since both H and D are symmetric, $K = -\frac{1}{2}H^T DH$, hence $K^T = K$.

2. **Positivity:** Note that, by assumption, there exist vectors $\{\phi_i\}_{i=1}^u$, such that $d_{ij} = \|\phi_i - \phi_j\|$. For all $c = (c_1, \ldots, c_u)$, defining $c' = c - \frac{1}{u}\sum_{i=1}^u c_i 1$, we get

$$c^T K c = -\frac{1}{2}(Hc)^T D (Hc) = -\frac{1}{2} c'^T D c'$$

$$[D_{ij} = \|\phi_i - \phi_j\|^2] = -\frac{1}{2} \sum_{ij} c'_i (\phi_i^T \phi_i + \phi_j^T \phi_j - 2 \phi_i^T \phi_j) c'_j$$

$$[\sum_i c'_i = 0] = (\sum_i c'_i \phi_i)^T (\sum_i c'_i \phi_i) \geq 0.$$
Explaining ISOMAP (cont.)

- We must prove that the pd kernel K_{ij} induces the correct pairwise distances d_{ij} between data points

\[d_{ij}^2 = K_{ii} + K_{jj} - 2K_{ij}. \]

This can be verified by direct computation.

- By Mercer’s Theorem, the feature map

\[\Phi_0(x_i) = (\sqrt{\lambda_1(u_1)_i}, \sqrt{\lambda_2(u_2)_i}, \ldots, \sqrt{\lambda_u(u_u)_i}), \]

is an isometry. If the manifold M is d-dimensional, $\lambda_a = 0$ for $a > d$, and we can use the truncated mapping Φ.
Hessian Locally Linear Embedding (HLLE)

ISOMAP outputs an embedding of the data points \(\{x_i\}_{i=1}^{u} \) into \(\mathbb{R}^d \), attempting to preserve pairwise distances on the underlying manifold \(\mathcal{M} \). The method gives guarantees of convergence if \(\mathcal{M} \) is isometric to a convex region in \(\mathbb{R}^d \).

Convexity is a very strong hypothesis. Typically, linear combinations of images are not reasonable images!

HLLE gives guarantees of convergence while relaxing the convexity hypothesis.

Hessian Eigenmaps; Donoho, Grimes 03
HLLE local isometry

D=3

\[\Phi \]

\[\Phi(x) \]

\[\Phi(y) \]

d=2
Core idea of HLLE

For every point $x \in \mathcal{M}$ and system of coordinates (ξ_1, \ldots, ξ_d) on its tangent space, the Hessian at x of a function $f : \mathcal{M} \to \mathbb{R}$, is the matrix of second derivatives

$$(H_f(x))_{ij} = \frac{\partial}{\partial \xi_i} \frac{\partial}{\partial \xi_j} f(x), \quad i, j = 1, \ldots, d$$

The core idea of HLLE is that the null space of the quadratic form

$$\mathcal{H}(f) = \int_{\mathcal{M}} \sum_{i,j} (H_f(x))_{ij}^2$$

is independent of the choice of local coordinates ξ_i.

The null space of \mathcal{H} is the d-dimensional linear space spanned by the global cartesian coordinates
Computing the Hessian

In order to implement this idea, HLLE has to evaluate the quadratic form \mathcal{H} using the data points x_i.

1. construct proxies for the tangent spaces using the k-nearest neighborhood graph

2. implement a finite differences scheme to evaluate second derivatives

3. compute eigensystem of approximation of \mathcal{H}. Use d eigenvectors with smallest eigenvalues as embedding coordinates.
Local Linear Neighborhood
Laplacian based methods *

Unsupervised methods based on the eigensystem of the Laplacian on the neighborhood graph with weights W_{ij}.

- **Dimensionality Reduction**: consider the solutions of the eigenvector problem ($0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{u-1}$)

 $$Lf_a = \lambda_a Df_a$$

 where $D = \text{diag}(D_{11}, \ldots, D_{uu})$. The considered embedding into the d-dimensional Euclidean space is

 $$\Phi(x_i) = ((f_1)_i, \ldots, (f_d)_i).$$

- **Spectral Clustering**: use sign of components $(f_1)_j$ to define two clusters: *connection to min cut problem*.

Belkin, Niyogi, 02