Plan

• Bagging and sub-sampling methods
• Bias-Variance and stability for bagging
• Boosting and correlations of machines
• Gradient descent view of boosting
Bagging (Bootstrap AGGregatING)

Given a training set $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$,

- sample T sets of n elements from D (with replacement) $D_1, D_2, \ldots, D_T \rightarrow T$ quasi replica training sets;

- train a machine on each $D_i, \ i = 1, \ldots, T$ and obtain a sequence of T outputs $f_1(x), \ldots, f_T(x)$.
The final aggregate classifier can be

- for regression

\[\bar{f}(x) = \sum_{i=1}^{T} f_i(x), \]

the average of \(f_i \) for \(i = 1, ..., T \);

- for classification

\[\bar{f}(x) = \text{sign}(\sum_{i=1}^{T} f_i(x)) \]

or the majority vote

\[\bar{f}(x) = \text{sign}(\sum_{i=1}^{T} \text{sign}(f_i(x))) \]
Variation I: Sub-sampling methods

- “Standard” bagging: each of the T subsamples has size n and created with replacement.

- “Sub-bagging”: create T subsamples of size α only ($\alpha < n$).

- No replacement: same as bagging or sub-bagging, but using sampling without replacement

- Overlap vs non-overlap: Should the T subsamples overlap? i.e. create T subsamples each with $\frac{n}{T}$ training data.
Bias - Variance for Regression (Breiman 1996)

Let

$$I[f] = \int (f(x) - y)^2 p(x, y) dx dy$$

be the expected risk and f_0 the regression function. With

$$\bar{f}(x) = E_{S} f_{S}(x),$$

if we define the bias as

$$\int (f_0(x) - \bar{f}(x))^2 p(x) dx$$

and the variance as

$$E_{S} \left\{ \int (f_{S}(x) - \bar{f}(x))^2 p(x) dx \right\},$$

we have the decomposition

$$E_{S}\{I[f_S]\} = I[f_0] + bias + variance.$$
Bagging reduces variance (Intuition)

If each single classifier is unstable – that is, it has high variance, the aggregated classifier \(\bar{f} \) has a smaller variance than a single original classifier.

The aggregated classifier \(\bar{f} \) can be thought of as an approximation to the true average \(f \) obtained by replacing the probability distribution \(p \) with the bootstrap approximation to \(p \) obtained concentrating mass \(1/n \) at each point \((x_i, y_i)\).
Variation II: weighting and combining alternatives

- No subsampling, but instead each machine uses different weights on the training data.

- Instead of equal voting, use weighted voting.

- Instead of voting, combine using other schemes.
Weak and strong learners

Kearns and Valiant in 1988/1989 asked if there exist two types of hypothesis spaces of classifiers.

- **Strong learners:** Given a large enough dataset the classifier can arbitrarily accurately learn the target function $1 - \tau$

- **Weak learners:** Given a large enough dataset the classifier can barely learn the target function $\frac{1}{2} + \tau$

The hypothesis boosting problem: are the above equivalent?
The original Boosting (Schapire, 1990):
For Classification Only

1. Train a first classifier \(f_1 \) on a training set drawn from a probability \(p(x, y) \). Let \(\epsilon_1 \) be the obtained training performance;

2. Train a second classifier \(f_2 \) on a training set drawn from a probability \(p_2(x, y) \) such that it has half its measure on the event that \(h_1 \) makes a mistake and half on the rest. Let \(\epsilon_2 \) be the obtained performance;

3. Train a third classifier \(f_3 \) on disagreements of the first two – that is, drawn from a probability \(p_3(x, y) \) which has its support on the event that \(h_1 \) and \(h_2 \) disagree. Let \(\epsilon_3 \) be the obtained performance.
Boosting (cont.)

Main result: If $\epsilon_i < p$ for all i, the boosted hypothesis

$$g = \text{MajorityVote} \ (f_1, f_2, f_3)$$

has training performance no worse than $\epsilon = 3p^2 - 2p^3$
Adaboost (Freund and Schapire, 1996)

The idea is of adaptively resampling the data

- Maintain a probability distribution over training set;
- Generate a sequence of classifiers in which the “next” classifier focuses on sample where the “previous” classifier failed;
- Weigh machines according to their performance.
Adaboost

Given: a class $\mathcal{F} = \{f : \mathcal{X} \mapsto \{-1, 1\}\}$ of weak learners and the data $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, $y_i \in \{-1, 1\}$. Initialize the weights as $w_1(i) = 1/n$.

For $t = 1, \ldots, T$:

1. Find a weak learner f_t based on weights $w_t(i)$;

2. Compute the weighted error $\epsilon_t = \sum_{i=1}^{n} w_t(i) I(y_i \neq f_t(x_i))$;

3. Compute the importance of f_t as $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$;

4. Update the distribution $w_{t+1}(i) = \frac{w_t(i) e^{-\alpha_t y_i f_t(x_i)}}{Z_t}$,

 $Z_t = \sum_{i=1}^{n} w_t(i) e^{-\alpha_t y_i f_t(x_i)}$.
Adaboost (cont.)

Adopt as final hypothesis

\[g(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t f_t(x) \right) \]
Theory of Boosting

We define the margin of \((x_i, y_i)\) according to *the real valued* function \(g\) to be

\[
\text{margin}(x_i, y_i) = y_i g(x_i).
\]

Note that this notion of margin is **different** from the SVM margin. This defines a margin for each training point!
Performance of Adaboost

Theorem: Let $\gamma_t = 1/2 - \epsilon_t$ (how much better f_t is on the weighted sample than tossing a coin). Then

$$\frac{1}{n} \sum_{i=1}^{n} I(y_ig(x_i) < 0) \leq \prod_{t=1}^{T} \sqrt{1 - 4\gamma_t^2}$$
Gradient descent view of boosting

We would like to minimize

\[\frac{1}{n} \sum_{i=1}^{n} I(y_i g(x_i) < 0) \]

over the linear span of some base class \(\mathcal{F} \). Think of \(\mathcal{F} \) as the weak learners.

Two problems: a) linear span of \(\mathcal{F} \) can be huge and searching for the minimizer directly is intractable. b) the indicator is non-convex and the problem can be shown to be NP-hard even for simple \(\mathcal{F} \).

Solution to b): replace the indicator \(I(yg(x) < 0) \) with a convex upper bound \(\phi(yg(x)) \).

Solution to a)?
Gradient descent view of boosting

Let’s search over the linear span of \mathcal{F} step-by-step. At each step t, we add a new function $f_t \in \mathcal{F}$ to the existing $g = \sum_{i=1}^{t-1} \alpha_i f_i$.

Let $C_\phi(g) = \frac{1}{n} \sum_{i=1}^{n} \phi(y_i g(x_i))$. We wish to find $f_t \in \mathcal{F}$ to add to g such that $C_\phi(g + \epsilon f_t)$ decreases. The desired direction is $-\nabla C_\phi(g)$. We choose the new function f_t such that it has the greatest inner product with $-\nabla C_\phi$, i.e.

$$-\langle \nabla C_\phi(g), f_t \rangle.$$
Gradient descent view of boosting

One can verify that

$$- < \nabla C_{\phi}(g), f_t >= -\frac{1}{n^2} \sum_{i=1}^{n} y_i f_t(x_i) \phi'(y_i g(x_i)).$$

Hence, finding f_t maximizing $- < \nabla C_{\phi}(g), f_t >$ is equivalent to minimizing the weighted error

$$\sum_{i=1}^{n} w_t(i) I(f_t(x_i) \neq y_i)$$

where

$$w_t(i) := \frac{\phi'(y_i g(x_i))}{\sum_{j=1}^{n} \phi'(y_j g(x_j))}$$

For $\phi(yg(x)) = e^{-yg(x)}$ this becomes Adaboost.