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Polynomial Lyapunov Function 

? 



Lyapunov analysis 

Consider a polynomial vector field: 

Goal: prove global asymptotic stability (GAS) 

GAS 

Radially unbounded Lyapunov function 

with derivative 
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Lyapunov analysis and computation 
Classical converse Lyapunov theorem: 

GAS  C1 Lyapunov function 

But how to find one? 

Most common (and quite natural) to search for 
 polynomial Lyapunov functions 

Has become further prevalent over the last decade because of 
SOS Lyapunov functions 

Fully algorithmic search for polynomial Lyapunov functions 
using semidefinite programming 

 GAS  
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An example 

No polynomial Lyapunov 
function of degree 2, 4, 6. 

But SOS-programming finds one 
of degree 8. 

Output of SDP solver: 
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Converse questions 

  GAS  

 
? 

 
? 

 (                 polynomial) Talked about 
this morning Focus of this talk 
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Relation to decidability 

Conjecture of Arnold: testing stability is undecidable  

For what n,d? 

Linear systems (d=1): decidable and polynomial time 

Quadratic Lyapunov functions always exist 

What about d=2? 
 

Fact: If for a class of polynomial vector fields one proves 

existence of polynomial Lyapunov functions, together with a 
computable upper bound on the degree, 
then stability becomes decidable for that class 
(quantifier elimination) 
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Agenda for the talk 

A counterexample: GAS but no polynomial Lyapunov function 

Focus of our 2-page CDC paper 

More misery (even for homogeneous cubic vector fields) 

NP-hardness of testing stability 

Lack of bounds on degree of Lyapunov functions 

Non-monotonicity in degree of Lyapunov functions 

Some open problems 

 



Proof: 
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Nonexistence of polynomial Lyapunov functions 

System is GAS. Claim 1: 

Claim 2: No polynomial Lyapunov 
function (of any degree) exists! 
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Nonexistence of polynomial Lyapunov functions 

Claim 2: No polynomial Lyapunov 
function (of any degree) exists! 

Proof: 

Impossible.   
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Another counterexample 

An earlier independent counterexample appears in a book by 
Bacciotti and Rosier 

n=2, d=5 

Relies crucially on use of irrational coefficients 

Complementary to our example: 

Problem occurs arbitrarily close to the origin 
(as opposed to arbitrarily far as in our example) 

No polynomial Lyapunov function even locally 
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Homogeneous systems 

All monomials in      have the same degree 

Local Asymptotic Stability = Global Asymptotic Stability 

Can take Lyapunov function to be homogeneous 

  GAS  

  

Conjecture     
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Stability of homogeneous systems: complexity 

Linear systems (d=1): polynomial time 

Quadratic Lyapunov functions always exist 

d=2 and homogeneous: never asymptotically stable 

d=3 and homogeneous: we show strongly NP-hard 

 



NP-hardness of deciding asymptotic stability for cubics 

ONE-IN-THREE 
3SAT 

Thm: Deciding asymptotic stability of cubic homogeneous 
vector fields is strongly NP-hard. 
 

Implication: Unless P=NP, there cannot be any polynomial 
time (or even pseudo-polynomial time) algorithm. 
(In particular suggests SOS Lyapunov functions of “small” 
degree shouldn’t always exist.) 
 

Reduction from:  
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NP-hardness of deciding asymptotic stability for cubics 

ONE-IN-THREE 
3SAT 

Positivity of  
quartic forms 

Asymptotic stability of 
cubic homogeneous 

vector fields (suggests a method for proving positivity) 
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Lyapunov degree can be arbitrarily large 

Thm: Given any degree    , there exists an integer    , 
such that the system above with 

is GAS but has no polynomial 
Lyapunov function of degree 
         .  
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Lack of monotonicity in Lyapunov function degree 

Thm: There exists a range of values for       
such that the system is GAS, has no homog. polynomial Lyapunov 
fn. of degree 6,  
but admits one of degree 4.  
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Messages to take home… 

  GAS 

 

? No. Even when n=2, d=2! 

Homogeneous cubic vector fields: 

NP-hard to test asymptotic stability 

Lack of bounds on degree of Lyapunov functions 
 (even for fixed dimension, n=2) 

Non-monotonicity in degree of Lyapunov functions 

Linear to nonlinear: very sharp transition in complexity! 
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Open questions 

1. Is asymptotic stability decidable? 

2. Local asymptotic stability with rational 
coefficients  
?? Polynomial Lyapunov function 

3. Global exponential stability  
?? Polynomial Lyapunov function 
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Thank you for your attention! 

Questions? 

 

 

Want to know more? 

http://aaa.lids.mit.edu/ 


