Convexity and SOS-Convexity

Amir Ali Ahmadi Pablo A. Parrilo

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

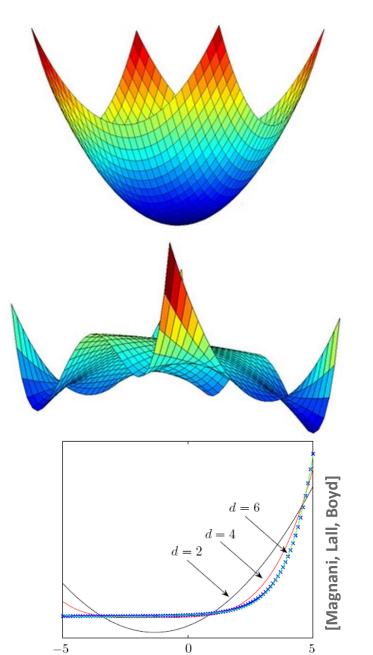
SIAM Conference on Applied Algebraic Geometry NCSU, October 2011

Deciding Convexity

- ■Given a multivariate polynomial, how to *decide* if it is **convex**?
- ■How to **search and optimize** over a family of convex polynomials?

Applications:

- Global optimization
- Convex data fitting, convex envelopes,Lyapunov analysis, defining norms



Application in Lyapunov analysis

Suppose we are given *m* discrete dynamical systems:

$$x_{k+1} = f_1(x)$$

$$\vdots$$

$$x_{k+1} = f_m(x)$$

Suppose we can find a **convex** common Lyapunov function:

$$V(x) > 0$$
, $V(f_i(x)) < V(x)$ for $i = 1, ..., m$

Then, any other dynamical system

$$x_{k+1} = \tilde{f}(x)$$
, with $\tilde{f}(x) \in \text{conv}\{f_1(x), \dots, f_m(x)\}$

is also globally asymptotically stable.

Proof:
$$V(\tilde{f}(x)) = V(\sum_{i=1}^m \alpha_i f_i(x)) \leq \sum_{i=1}^m \alpha_i V(f_i(x)) < V(x)$$

Outline

- (A word on) complexity of deciding convexity
- SOS-Convexity: an algebraic SDP based relaxation for convexity
 - Equivalent characterizations
 - Convex but not sos-convex polynomials
 - Complete characterization of the gap between convexity and sos-convexity
- An open problem!

Complexity of deciding convexity

- •Input to the problem: an ordered list of the coefficients (all rational)
- Degree d odd: trivial
- ■d=2, i.e., $p(x)=x^TQx+q^Tx+c$: check if Q is PSD
- ■d=4, first interesting case
 - •Question of N. Z. Shor:

"What is the complexity of deciding convexity of a multivariate polynomial of degree four?"

(appeared on a list of seven open problems in complexity of numerical optimization in 1992, [Pardalos, Vavasis])

- Our recent result: problem is strongly NP-hard
- ■Same result for (strong, strict, quasi, pseudo)-convexity



Nonnegativity and Sum of Squares

- Deciding if a polynomial is nonnegative (psd): NP-hard when d ≥ 4
- Deciding if a polynomial is a sum of squares (sos): an SDP
- \blacksquare sos \Rightarrow psd (obvious), but what about the converse?

Hilbert's 1888 Paper

psd=sos?

Polynomials

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	no
3	yes	no	no
≥4	yes	no	no

Forms

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	yes
3	yes	yes	no
≥4	yes	no	no

Motzkin (1967):

$$M(x_1, x_2, x_3) = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 x_3^2 + x_3^6$$

Robinson (1973):

$$R(x_1, x_2, x_3, x_4) =$$

$$R(x_1, x_2, x_3, x_4) = x_1^2(x_1 - x_4)^2 + x_2^2(x_2 - x_4)^2 + x_3^2(x_3 - x_4)^2 + 2x_1x_2x_3(x_1 + x_2 + x_3 - 2x_4)$$

SOS-Convexity

Defn. ([Helton, Nie]): A polynomial $p(x) := p(x_1, \ldots, x_n)$ is sos-convex if its Hessian factors as

$$H(x) = M^{T}(x)M(x)$$

for a possibly nonsquare polynomial matrix M(x).

(We call such matrices an "sos-matrix".)

Equivalent Defn.
$$y^T H(x) y = sos$$

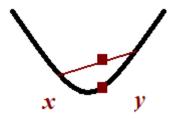
- p(x) sos-convex $\Rightarrow p(x)$ convex (obvious)
- Deciding sos-convexity: an SDP!

Equivalent characterizations of convexity

Basic definition:

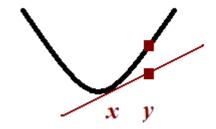
$$\lambda p(x) + (1 - \lambda) p(y) \ge p(\lambda x + (1 - \lambda) y)$$

$$\forall x, y \, \forall \lambda \in [0,1] \quad (\lambda = \frac{1}{2} enough)$$



■First order condition:

$$p(y) \ge p(x) + \nabla^T p(x)(y-x) \ \forall x, y$$



Second order condition:

$$y^T H(x) y \ge 0 \ \forall x, y$$

■Algebraic sos-based relaxations: "simply replace ≥ with sos"

Each condition can be SOS-ified

Basic definition:

(A)
$$g_{\lambda}(x,y) = \lambda p(x) + (1-\lambda) p(y) - p(\lambda x + (1-\lambda)y)$$
 SOS $\forall \lambda \in [0,1]$

(A)
$$g_{\frac{1}{2}}(x, y) = \frac{1}{2}p(x) + \frac{1}{2}p(y) - p(\frac{1}{2}x + \frac{1}{2}y)$$
 SOS

First order condition:

(B)
$$g_{\nabla}(x, y) = p(y) - p(x) - \nabla^{T} p(x)(y - x)$$
 SOS

Second order condition:

(equivalent to SOS-Convexity: H(x) an SOS-matrix $H(x) = M^{T}(x)M(x)$)



Convex polynomials that are not sos-convex?

A convex but not sos-convex poly would be a poly p(x) such that:

$$g_{\lambda}(x,y) = \lambda p(x) + (1-\lambda) p(y) - p(\lambda x + (1-\lambda)y) \quad \forall \lambda \in [0,1]$$

(B)
$$g_{\nabla}(x, y) = p(y) - p(x) - \nabla^T p(x)(y - x)$$

$$c) g_{\nabla^2}(x,y) = y^T H(x) y$$

are psd but not sos.

The first counterexample

$$p(x) = 32x_1^8 + 118x_1^6x_2^2 + 40x_1^6x_3^2 + 25x_1^4x_2^4 - 43x_1^4x_2^2x_3^2$$

$$-35x_1^4x_3^4 + 3x_1^2x_2^4x_3^2 - 16x_1^2x_2^2x_3^4 + 24x_1^2x_3^6 + 16x_2^8$$

$$+44x_2^6x_3^2 + 70x_2^4x_3^4 + 60x_2^2x_3^6 + 30x_3^8 \text{[Ahmadi, Parrilo, '09]}$$

A homogeneous polynomial in 3 variables, of degree 8.

Claim:

- p(x) is convex: H(x) is PSD
- **p**(x) is **not** sos-convex: $H(x) \neq M^T(x)M(x)$

Convex but not SOS-Convex, lower degree?

$$p(\mathbf{x}) = \mathbf{x_1}^4 + \mathbf{x_2}^4 + \mathbf{x_3}^4 + \mathbf{x_4}^4 + \mathbf{x_5}^4 + \mathbf{x_6}^4 \\ + 2(\mathbf{x_1}^2 \mathbf{x_2}^2 + \mathbf{x_1}^2 \mathbf{x_3}^2 + \mathbf{x_2}^2 \mathbf{x_3}^2 + \mathbf{x_4}^2 \mathbf{x_5}^2 + \mathbf{x_4}^2 \mathbf{x_6}^2 + \mathbf{x_5}^2 \mathbf{x_6}^2) \\ + \frac{1}{2}(\mathbf{x_1}^2 \mathbf{x_4}^2 + \mathbf{x_2}^2 \mathbf{x_5}^2 + \mathbf{x_3}^2 \mathbf{x_6}^2) \\ + \mathbf{x_1}^2 \mathbf{x_6}^2 + \mathbf{x_2}^2 \mathbf{x_4}^2 + \mathbf{x_3}^2 \mathbf{x_5}^2 \\ - (\mathbf{x_1} \mathbf{x_2} \mathbf{x_4} \mathbf{x_5} + \mathbf{x_1} \mathbf{x_3} \mathbf{x_4} \mathbf{x_6} + \mathbf{x_2} \mathbf{x_3} \mathbf{x_5} \mathbf{x_6})$$
 [Ahmadi, Parrilo, '10]

To explain where this comes from, need to talk first about

"biquadratic forms"

Biquadratic forms and biquadratic Hessian forms

•Biquadratic form: $y^T A(x) y$,

where A(x) is a matrix whose entries are quadratic forms

Example: the celebrated **Choi biquadratic form** $y^TC(x)y$ with

$$C(x) = \begin{bmatrix} x_1^2 + 2x_2^2 & -x_1x_2 & -x_1x_3 \\ -x_1x_2 & x_2^2 + 2x_3^2 & -x_2x_3 \\ -x_1x_3 & -x_2x_3 & x_3^2 + 2x_1^2 \end{bmatrix}$$

 $y^T C(x) y$ psd but not sos

Biquadratic Hessian form:

Special biquadratic form where A(x) is a valid Hessian

■Choi matrix is *not* a valid Hessian: $\frac{\partial C_{1,1}(x)}{\partial x_3} = 0 \neq -x_3 = \frac{\partial C_{1,3}(x)}{\partial x_1}$.

From biquadratic forms to biquadratic Hessian forms

•We give a constructive procedure to go from any biquadratic form $y^T A(x) y$

to a biquadratic Hessian form $z^T H(x,y)z$

by doubling the number of variables, such that:

$$y^T A(x) y$$
 psd $\Leftrightarrow z^T H(x, y) z$ psd $y^T A(x) y$ sos $\Leftrightarrow z^T H(x, y) z$ sos

- Proves NP-hardness of checking convexity of quartic forms! (nonnegativity of biquadratic forms known to be NP-hard; [Gurvits, '03], [Ling et al., '09], reduction from CLIQUE via Motzkin-Straus)
- Gives an explicit method to construct
- quartic convex but not sos-convex polynomials!

Reduction on an instance

$$A(x) = \begin{bmatrix} x_1^2 + 2x_2^2 & -x_1x_2 & -x_1x_3 \\ -x_1x_2 & x_2^2 + 2x_3^2 & -x_2x_3 \\ -x_1x_3 & -x_2x_3 & x_3^2 + 2x_1^2 \end{bmatrix}$$

$$\begin{bmatrix} y_1^2 + 2y_3^2 + 24x_1^2 + 4x_2^2 + 4x_3^2 & -y_1y_2 + 8x_1x_2 & -y_1y_3 + 8x_1x_3 & 2x_1y_1 - x_2y_2 - x_3y_3 & -x_2y_1 & 4x_1y_3 - x_3y_1 \\ -y_1y_2 + 8x_1x_2 & 2y_1^2 + y_2^2 + 24x_2^2 + 4x_1^2 + 4x_3^2 & -y_2y_3 + 8x_2x_3 & -x_1y_2 + 4x_2y_1 & -x_1y_1 + 2x_2y_2 - x_3y_3 & -x_3y_2 \\ -y_1y_3 + 8x_1x_3 & -y_2y_3 + 8x_2x_3 & 2y_2^2 + y_3^2 + 24x_3^2 + 4x_1^2 + 4x_2^2 & -x_1y_3 & -x_2y_3 + 4x_3y_2 & -x_1y_1 - x_2y_2 + 2x_3y_3 \\ 2x_1y_1 - x_2y_2 - x_3y_3 & -x_1y_2 + 4x_2y_1 & -x_1y_3 & x_1^2 + 2x_2^2 + 24y_1^2 + 4y_2^2 + 4y_3^2 & -x_1x_2 + 8y_1y_2 & -x_1x_3 + 8y_1y_3 \\ -x_2y_1 & -x_1y_1 + 2x_2y_2 - x_3y_3 & -x_2y_3 + 4x_3y_2 & -x_1x_2 + 8y_1y_2 & x_2^2 + 2x_3^2 + 24y_2^2 + 4y_1^2 + 4y_3^2 & -x_2x_3 + 8y_2y_3 \\ 4x_1y_3 - x_3y_1 & -x_3y_2 & -x_1y_1 - x_2y_2 + 2x_3y_3 & -x_1x_2 + 8y_1y_3 & -x_2x_3 + 8y_2y_3 & 2x_1^2 + x_3^2 + 24y_3^2 + 4y_1^2 + 4y_2^2 \end{bmatrix}$$

A 6x6 **Hessian** with quadratic form entries

Convex but not SOS-Convex Quartic

$$\begin{split} p(\mathbf{x}) &= \mathbf{x_1}^4 + \mathbf{x_2}^4 + \mathbf{x_3}^4 + \mathbf{x_4}^4 + \mathbf{x_5}^4 + \mathbf{x_6}^4 \\ &\quad + 2(\mathbf{x_1}^2 \mathbf{x_2}^2 + \mathbf{x_1}^2 \mathbf{x_3}^2 + \mathbf{x_2}^2 \mathbf{x_3}^2 + \mathbf{x_4}^2 \mathbf{x_5}^2 + \mathbf{x_4}^2 \mathbf{x_6}^2 + \mathbf{x_5}^2 \mathbf{x_6}^2) \\ &\quad + \frac{1}{2}(\mathbf{x_1}^2 \mathbf{x_4}^2 + \mathbf{x_2}^2 \mathbf{x_5}^2 + \mathbf{x_3}^2 \mathbf{x_6}^2) \\ &\quad + \mathbf{x_1}^2 \mathbf{x_6}^2 + \mathbf{x_2}^2 \mathbf{x_4}^2 + \mathbf{x_3}^2 \mathbf{x_5}^2 \\ &\quad - (\mathbf{x_1} \mathbf{x_2} \mathbf{x_4} \mathbf{x_5} + \mathbf{x_1} \mathbf{x_3} \mathbf{x_4} \mathbf{x_6} + \mathbf{x_2} \mathbf{x_3} \mathbf{x_5} \mathbf{x_6}) \end{split}$$
 [Ahmadi, Parrilo, '10]

Has the Hessian we just presented

Convexity = SOS-Convexity?

Polynomials

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	no
3	yes	no	no
≥4	yes	no	no

[Ahmadi, Parrilo, '10]

Forms

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	yes
3	yes	yes	no
≥4	yes	no	no

Thm: Every convex ternary quartic is SOS-convex.

[Ahmadi, Blekherman, Parrilo, '10]

Convex=SOS-convex for bivariate quartics

Thm ("the biform theorem"):

Let
$$f := f(u_1, u_2, v_1, \dots, v_m)$$

be a form that is quadratic in v for fixed u and a form (of however large degree) in u for fixed v.

Then, f is psd iff it is sos.

$$y^T H(x_1, x_2) y$$

Convex=SOS-convex for ternary quartic forms

- $p(x) = p(x_1, x_2, x_3)$ form of degree 4
- Let y'H(x)y be its Hessian (biquadratic) form
- ■Biquadratic from in 6 variables can be psd but not sos (e.g., Choi)
- ■But y'H(x)y has a special symmetry: y'H(x)y=x'H(y)x
- ■Even with this symmetry, can have a psd but not sos biquadratic form:

$$\begin{aligned} y'A(x)y &= 4y_1y_2x_1^2 + 5x_1x_2y_3^2 - 10x_1x_3y_1y_3 + 5x_3^2y_1y_2 + 9x_1x_3y_1^2 \\ &+ 13x_1x_3y_2^2 + 3x_1x_3y_3^2 + 9y_1y_3x_1^2 - 10y_2y_3x_1^2 - 11x_1x_3y_2y_3 + 23x_2^2y_1y_2 \\ &+ 5y_2x_1x_2y_3 - 10x_2x_3y_1^2 + 13x_2^2y_1y_3 + 5x_2x_3y_1y_2 - 11x_2x_3y_1y_3 \\ &+ 13x_2^2y_2y_3 + 6x_3^2y_1^2 + 3x_1x_3y_1y_2 - 5x_2x_3y_2y_3 + 13x_2x_3y_2^2 + 12x_2^2y_2^2 \\ &+ 12x_2^2y_1^2 + 12x_3^2y_2^2 + 12x_3^2y_3^2 + 7x_2x_3y_3^2 + 3x_3^2y_1y_3 + 7x_3^2y_2y_3 \\ &+ 12x_2^2y_3^2 + 12y_1^2x_1^2 + 12y_2^2x_1^2 + 6y_3^2x_1^2 + 31y_1y_2x_1x_2 \\ &+ 3y_1y_3x_1x_2 + 4y_1^2x_1x_2 + 23y_2^2x_1x_2 \end{aligned} \qquad \text{[Ahmadi, Blekherman, Parrilo, '10]}$$

■But y'H(x)y has yet a little more structure...

Minimal counterexample: n=3, d=6

$$f(x_1, x_2, x_3) = 77x_1^6 - 155x_1^5x_2 + 445x_1^4x_2^2 + 76x_1^3x_2^3 + 556x_1^2x_2^4 + 68x_1x_2^5$$

$$+240x_2^6 - 9x_1^5x_3 - 1129x_1^3x_2^2x_3 + 62x_1^2x_2^3x_3 + 1206x_1x_2^4x_3$$

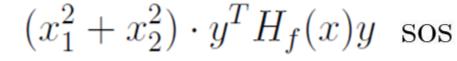
$$-343x_2^5x_3 + 363x_1^4x_3^2 + 773x_1^3x_2x_3^2 + 891x_1^2x_2^2x_3^2 - 869x_1x_2^3x_3^2$$

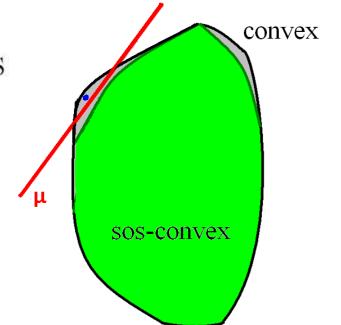
$$+1043x_2^4x_3^2 - 14x_1^3x_3^3 - 1108x_1^2x_2x_3^3 - 216x_1x_2^2x_3^3 - 839x_2^3x_3^3$$

$$+721x_1^2x_3^4 + 436x_1x_2x_3^4 + 378x_2^2x_3^4 + 48x_1x_3^5 - 97x_2x_3^5 + 89x_3^6$$

Not sos-convex: $y^T H(x) y$ not sos

Convex: $y^T H(x) y$ psd





 $v_1x_3^2y_3, x_1x_3^2y_2, x_1x_3^2y_1, x_1x_2x_3y_3, x_1x_2x_3y_2, x_1x_2x_3y_1, x_1x_2^2y_3, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_1, x_1x_2^2y_2, x_1x_2^2y_2,$

 $x_1^2x_3y_3, x_1^2x_3y_2, x_1^2x_3y_1, x_1^2x_2y_3, x_1^2x_2y_2, x_1^2x_2y_1, x_1^3y_3, x_1^3y_2, x_1^3y_1]^T$

224280 -4074020160 -81480139692 93576 -50540-27804-483840 -29400-3217263504 -211428-8316-6770416632 -4074036624 114324 15372-4737629400 0 121128 -27972-93072-42252-77196-1663220160 36624 52920 -58380321720 114324 52920482104 -53877636 20 4 -211428362880 -7064419068 13524-588-81480-211428-27972-5387761020600 338016 -288120188748 -46368-46620-113638139692 -94416-33684-9441693576-8316-9307236 20 4 266 448 -75348216468 52083360 -33432-31080-221606-50540-67704-42252-211428338016 -75348175224-144060101304 -206927826 -4298-77280-77196362880 -288120216468 -144060604800 -132804-278041537228560 -35350-840-35434-48384-47376-58380-70644188748 5208 101304 28560 93408 -210982786 -11088-10449629400 3217219068 -463683360 -20692-35350-21098224280 -4074020160 -29400-1663213524 -33684-3343278262786-4074063504 36624 -840-3217216632 -588-46620-31080-4298-35434-1108820160 36624 1211128 21252 75936 214284 179564 -113638-221606-77280-132804-10449635028 5182829148 -57960-119112254534 -108192-22680-9408-463344103404 15540 20258 134736 89964 -196476267456 -4813227552 -4974278470 124236-10046461404 -9038455524 -50064-145908-25690-14247822848 -113820259980 -72996237972 20412 -95580-47964-27780-4387326087237730 -99036-10150-83160473088 34188 167244 57120159264 10752-93048-183540- 119210 9170 81648 244356 -41664-194124-9996214368 19152 -891842940 -48480-11650881564 26124 155832-308280-78180-7408814616-4964440320 87108 225456 30660 -1495211844 -2142062604 14364 13608 1176 512459388 -18144-99624-707889396 1226435700 11340 52836 86184 -108024-11256259056 -86520-3528102156 285664536 22176 -420077532 -7089654348 -4961672744-78876-144998-861004714871820230916 -223692-131628-7215659640 -31416-75096-39396-4452095364 -504-8412-2310028140 81648 -26768-25200-13944-51002-392287123211256 5208 32158 -3326445444 31226888 -34440-562861320-191528988 0 -1344-3696-3469233768 5964 9492-202445208 -30072-991258884 -5142249056 32592 160370 -229068-36792-6879657708 -3956455944 -800831164267456 6087237730 -119210-11650830660 35700 102156 -8610095364 11256-25690-99036-14952-48132917081564 11340 2856 47148 -5045208 27552-142478-1015081648 26124 11844 52836 64536 71820-841232158 -4974222848 -83160244356 155832 -21420-7078822176230916 -23100-33264

21252

75936

214284

179564

35028

51828

29148

41016

230832

204708

135744

-19334

31332

29316

158508

130298

-50883

141876

18060

782976

103 4048

15540

-57960

-119112

254534

134736

-22680

-196476

-463344

1167624

-15456

514 500

-49980

-85344

-178248

142128

23856

308196

298956

-19467

151956

-126483

8568

89964

-9408

-108192

20258

 $(x_1^2 + x_2^2) \cdot y^T H_f(x) y = \frac{1}{84} z^T Q z$

0 -5142249056 -1344-369632592 -34692160370 78470 -113820473088 -41664-30828062604 86184 -4200-2236922814045444 33768 -229068124236 259980 34188 -194124-78180143649396 77532-13162881648 31225964 -36792-100464-72996167244-9996-740881.360812264-70896-72156-267686888 9492-6879661404 237972 57120214368 146161176-10802454348 59640 -25200-34440-2024457708 2041215926419152 -496445124-11256-49616-31416-13944-56285208 -39564-90384-95580-300725552410752-8918440320 59388 259056 72744-75096-5100261320 55944 -47964-930482940 87108 -18144-86520-39228-19152-991231164 -50064-78876-39396-9962458884 -145908-27780-183540-48480225456 -3528-144998-44520712328988 -8008-438732230832 204708 135744 31332-19334130298 -508834101629316 158508 18060 141876-49980-85344-178248142128 151956 -126483 $Q_2 =$ -15456514500 8568 23856308196 298956-19467127932 610584 21840 -65184-323834195636 90972 339794 -100716-9601224864 -114219368 76 -110628-106820-54012-90636-111790-14952-67788-8828421.840466704 63672107856 61404 -42756127932-1106281045968 142632-41059217102486268 1768209651619975213524-70784-65184-106820142632 569856 21518-30156-159264-23016410004 -71484-62076-1386074032- 323834 -54012-41059221518604128 -229992-75516-297276182385 75684-352894500 138432 -90636171024-30156-229992169512 104748 187341 -136332-14571935364 -9483624612195636 -75516104748 -3687690972 -11179086268 -159264381920 147168 -182595105504 -24612-7560-14952-23016-297276187341 147168 346248 -59304-13792864932 -9088828392 339794 176820 100716 6367296516 41,0004 182385 -136332-182595-59304776776 48972-9878419152 180852 107856 -145719-36876-137928494536 -28392118188 -130200-96012199752-714847568448972 -6778813524 35364 105504 -98784-2839260984 -378024864-62076-352864932 0 -11421961404 -70784-1386094500 -94836-24612-9088819152 118188 74760 -6510036876 -88284-4275674032138432 24612-7560-130200-3780-65100194040 28392180852

23

Long story short...

psd=sos?

convex=sos-convex?

Polynomials

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	no
3	yes	no	no
≥4	yes	no	no

Forms

n,d	2	4	≥6
1	yes	yes	yes
2	yes	yes	yes
3	yes	yes	no
≥4	yes	no	no

–A mere coincidence?

Nonnegativity and convexity: some similarities

- ■Both never hold for odd degree polynomials
- Nonnegativity=convexity for quadratic forms
- ■Both NP-hard for degree 4 or larger
- ■Nonnegativity = SOS if and only if convexity=SOS-convexity
- Perhaps there are more (and deeper) connections?

Open problem

Find a *convex* form that is not SOS.

- ■Blekherman (2009) has shown that they exist!
- Has implications for algebraic methods in polynomial optimization
- Convex forms are nonnegative
- - So, such a polynomial must necessarily be convex but not sos-convex
- Our counterexamples pass this necessary condition but the polynomials themselves are sos

Thank you for your attention! Questions?

Want to know more?

http://aaa.lids.mit.edu

