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Convexity
Rockafellar, "93:

“In fact the great watershed in
optimization isn't between
linearity and nonlinearity, but
convexity and nonconvexity.”

But how easy is it to distinguish between
convexity and nonconvexity?

This talk:

-- Given a multivariate polynomial,
can we efficiently decide if it is convex?

-- Given a basic semialgebraic set,
can we efficiently decide if it is a convex set?



Convexity in optimization

"Global optimization S
-- Minimizing polynomials is NP-hard
for degree 2 4 of

1

-- But if polynomial is known to be convex,
even simple gradient descent methods
can find a global min

(often we check convexity based on “simple
rules” from calculus of convex functions)

Applications: convex envelopes, convex
data fitting, defining norms
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Complexity of deciding convexity

"|Input to the problem: an ordered list of the coefficients (all rational)
"Degree d odd: trivial
=d=2, i.e., p(x)=x"Qx+q’x+c : check if Q is PSD
=d=4, first interesting case
"Question of N. Z. Shor:

“What is the complexity of deciding convexity
of a multivariate polynomial of degree four?”

(appeared on a list of seven open problems in complexity of
numerical optimization in 1992, [Pardalos, Vavasis])

Our main result: problem is strongly NP-hard
Mir



Agenda for the rest of the talk

1.ldea of the proof
2.Complexity of deciding variants of convexity

-- (strong, strict, pseudo,quasi)-convexity



NP-hardness of deciding convexity of quartics

Thm: Deciding convexity of quartic forms is strongly NP-hard.

=Reduction from problem of deciding
“nonnegativity of biquadratic forms”

*Biquadratic form: b(x;y)

=Can write any biquadratic form as yTA(:C)y,

Z gkl il G YLEY]
1<J, k<l

where A(g;) is @ matrix whose entries are quadratic forms
[ 12 + 222

"Example: yTA(zl:)y,with Azx) =
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Sequence of reductions

|
STABLE SET (Motzkin, a(G) —
Straus] .
------------------------- mln 'xT (A ])w
Z :l?z':l
>
Minimizing an indefinite quadratic zi20
form over the simplex
......................... [Gurvits], [Ling, Nie, Qi, Ye]

Nonnegativity of
biquadratic forms

l. ........................ Our work

Convexity of
Uim quartic forms 7



The Hessian structure

=Biquadratic form: a form of the type yTA(:z:)y,

where A(:C) is @ matrix whose entries are quadratic forms

(22 + 212  —x1Z9  —T1T3
=Example: yTA(:B)y, with A(z) = | —xi2e x5+ 215 —Zox3
| —x13  —Za®z x5+ 227

"Biquadratic Hessian form:
Special biquadratic form where A(z) is a valid Hessian

. A(:I:) above is not a valid Hessian:

IThir 8



From biquadratic forms to biquadratic Hessian forms

=\We give a constructive procedure to go
from any biquadratic form yTA(:c)y

to a biquadratic Hessian form ZTH(x, )z

by doubling the number of variables, such that:

y' A(z)y psd < 2P H(z,y)z psd

*|n fact, we construct the polynomial f(X,y) that has H(X,y) as
its Hessian directly

=| et’s see this construction...
UM 9



The main reduction

Thm: Given any biquadratic form b(x; 1),

Let [C'(x,)]i; = %bagg;j Let 7 := max |coeff(C(z,y))]

Let

f(z,y) = b(w;y)+@(ix?+iyf+ D mE A D, v

Then ~ — — iji# = -
9(z,y)

b(x;y)psd < f(x,y)convex

H(xz,y) = Hy(x,y) + Hy(2,y)

b(z;y) psd < 21 H(z,y)z psd
IMhir



Observation on the Hessian of a biquadratic form

b((l} y Z ikl Ll YEYI
1<7, k<l

ob(x:y)
Yi 0y,

Ib(z; y)

[A()]ij = [B(y)]ij:= Di0,

1

AWy = by Bl =basy)

Clely = G

| Bly)  C(z,y)
UM (- 9) = |01 (a)y) Aa)



Proof of correctness of the reduction

Start with b(;{;; y)7
Ob(x;y)

Let [C/(a,))i; := w0 Let v := max |coeff(C'(x,y))
i0Y;
2 n n
fly) =ty + S (et + Y+ 3 e 3 )
\ =1 1=l z,gji,j..,n Z’];i’j“’n J
Yg(z,y)

H(CE, y) — Hb(il'}, y) -+ Hg(xa y)
Claim: b(z;y) psd < ZTf](ﬂ:'j y)z psd

H(il?"’i;‘) _ B(y) (:.\'(;Ija-y) n ﬂ_?? Hjl(l) 0
- CTz,y) Ax) ()
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Ty + 215 —X1Ty  —X1T3
Alx) = | —myme x5+ 225 —mom3
—x1x3  —ToT3 X3+ 217
—1lal+ 821 —U1ys i 82123 201 — Taljy — T3l —Ilh
2+ Mo+ 4ot + 4o 1y IF 8220 =11y + 429 =Ty + 2298 — T3l
ol 8913 2+ 1 2 + 4o + A Tl 2yl + 4131
Dy +4my I 12+ 200t 24yt + s+ 4y 1110+ 8111
T+ 293 — 53 ~Is 4233 1o/t 8yitp 13+ 23 24y + iy + g
I3l ~I — Doty + 203 =113+ 84113 =190+ 84l

Reduction on an instance

A 6x6 Hessian with quadratic form entries

by

— I3l

—13l
=Ty — Tyl + 203y

—U1l3

t 8110

—Tyl3

t Sl

ot + o [ Ut + 4yt + 443
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Other notions of interest in optimization
=Strong convexity

=““Hessian uniformly bounded away from zero”

=sAppears e.g. in convergence analysis of Newton-type methods
=Strict convexity

=“curve strictly below the line”

=sGuarantees uniqueness of optimal solution
=Convexity
=Pseudoconvexity

=““Relaxation of first order characterization of convexity”

=sAny point where gradient vanishes is a global min

& & & &~

=Quasiconvexity
=“Convexity of sublevel sets”

Uim =Deciding convexity of basic semialgebraic sets 14



Summary of complexity results

property vs. degree | 1 | 2 | odd > 3 even > 4

strong convexity no | P no strongly NP-hard
strict convexity no | P no strongly NP-hard
convexity yes | P no strongly NP-hard
pseudoconvexity yes | P B strongly NP-hard
quasiconvexity yes | P P strongly NP-hard

15



Quasiconvexity

A multivariate polynomial p(x)=p(x,,...,x, ) is quasiconvex if all its

sublevel sets
S, ={z e R"|px) <a}

dare convex.

Convexity = Quasiconvexity

(converse fails)

=Deciding quasiconvexity of polynomials of even degree 4 or larger
is strongly NP-hard

=Quasiconvexity of odd degree polynomials can be decided in
polynomial time

IThir 16



Quasiconvexity of even degree forms

Lemma: A homogeneous polynomial p(x) of even degree d
is quasiconvex if and only if it is convex.

Proof:
="A homogeneous quasiconvex polynomial is nonnegative
=The unit sublevel sets of p(x) and p(x)*?are the same convex set

=p(x)/4is the Minkowski norm defined by this convex set and hence
a convex function

= A convex nonnegative function raised to a power d larger than one

remains convex
Corollaries:

-- Deciding quasiconvexity is NP-hard

Ihir - Deciding convexity of basic semialgebraic sets is NP-hard 17



Quasiconvexity of odd degree polynomials

Thm: The sublevel sets of a quasiconvex polynomial p(x) of
odd degree are halfspaces.

Proof:
=Show super level sets must also be convex sets

="Only convex set whose complement is also convex is a halfspace

Thm: A polynomial p(x) of odd degree d is quasiconvex iff

it can be written as r
p(z) = h(§" x)

¢ € R", h(t) monotonic univariate polynomial of degree d

s This representation can be checked in polynomial time .
il




What can we do?

One possibility: natural relaxation based on sum of squares

Defn. ([Helton, Nie]): A polynomial p(az) = p(azl, . ,a:n) IS
sos-convex if its Hessian factors as

H(X)=M"(x)M(x)
for a possibly nonsquare polynomial matrix M ().
» p(x) sos-convex = p(z) convex (obvious)

"Deciding sos-convexity: a semidefinite program (SDP)

IThir 19



Gap between convexity and sos-convexity

_ v 4 4 4 4 4 4
A convex form that [P(X)= Xy +X; X5 +X, X5 +X
1 . 2,2 2,2 2y, 2 2, 2 2y, 2 2, 2
Is not sos-convex: +2(X° % XX XX X, TR X, XXX )

+% (X_LZ )(42 +X22X52 +X32X62)

2,2 2., 2 2, 2
XX XX, XX [Ahmadi, Parrilo, ‘10]
= (X %o X X5 +X; XX 4 X6 X X X X )

convex=sos-convex?

Polynomials Forms
nd| 2 4 | >6 nd| 2 4 | >6 [Ahmadi, Parrilo, ‘10]
1 | yes | yes | yes 1 | yes|vyes | vyes [Ahmadi, Blekherman, Parrilo, ‘10]
2 |yes|yes| no 2 |yes | yes |yes
3 |yes| ho | no 3 |yes|yes | no
24 |yes | nho | ho 24 |yes| no | ho

IThir 20



Messages to take home...

property vs. degree || 1 | 2 | odd > 3 even > 4

strong convexity no | P no strongly NP-hard
strict convexity no | P no strongly NP-hard
convexity yes | P no strongly NP-hard
pseudoconvexity yes | P P strongly NP-hard
quasiconvexity yes | P P strongly NP-hard

=SOS-Convexity: a powerful SDP relaxation for convexity

convex=sos-convex?

Polynomials Forms
nd 2 | 4 | =26 nd 2 | 4 | =6
1 |yes|yes | yes 1 | yes|yes|vyes
2 | yes|yes | no 2 |yes|yes | yes
3 |yes| no | no 3 |yes|yes | no
I|Ii|- 24 |yes | no | no 24 | yes| ho | ho
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Thank you for your attention!
Questions?

Want to know more?
http://aaa.lids.mit.edu/
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