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Convexity 

This talk: 
-- Given a multivariate polynomial,  
  can we efficiently decide if it is convex? 

-- Given a basic semialgebraic set,  
  can we efficiently decide if it is a convex set? 

“In fact the great watershed in 
optimization isn't between 
linearity and nonlinearity, but 
convexity and nonconvexity.” 

Rockafellar, ’93: 

But how easy is it to distinguish between 
convexity and nonconvexity? 
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Convexity in optimization 

Applications: convex envelopes, convex 
data fitting, defining norms 
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Global optimization 

   -- Minimizing polynomials is NP-hard 

        for degree ≥ 4 

   -- But if polynomial is known to be convex, 
      even simple gradient descent methods 
      can find a global min 

(often we check convexity based on “simple 
rules” from calculus of convex functions) 
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Complexity of deciding convexity 

Input to the problem: an ordered list of the coefficients (all rational) 

Degree d odd: trivial 

d=2, i.e.,  p(x)=xTQx+qTx+c : check if Q is PSD 

d=4, first interesting case 

Question of N. Z. Shor:  

           “What is the complexity of deciding convexity  
            of a multivariate polynomial of degree four?” 

(appeared on a list of seven open problems in complexity of 
numerical optimization in 1992, [Pardalos, Vavasis]) 

Our main result: problem is strongly NP-hard 
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Agenda for the rest of the talk 

1.Idea of the proof  

2.Complexity of deciding variants of convexity 

 -- (strong, strict, pseudo,quasi)-convexity 
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NP-hardness of deciding convexity of quartics 

Reduction from problem of deciding  
“nonnegativity of biquadratic forms” 

Thm: Deciding convexity of quartic forms is strongly NP-hard. 

Biquadratic form: 

Can write any biquadratic form as 

where                is a matrix whose entries are quadratic forms 

 

Example:                      with 
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Sequence of reductions 

STABLE SET 

Minimizing an indefinite quadratic 
form over the simplex 

Nonnegativity of 
biquadratic forms 

Convexity of 
quartic forms 

[Motzkin, 
Straus] 

 [Gurvits], [Ling, Nie, Qi, Ye] 

Our work 
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The Hessian structure 

Biquadratic Hessian form:  
Special biquadratic form where            is a valid Hessian 

              above is not a valid Hessian: 

Biquadratic form: a form of the type 

where                is a matrix whose entries are quadratic forms 

 

Example:                         with 
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From biquadratic forms to biquadratic Hessian forms 

We give a constructive procedure to go  
from any biquadratic form    

to a biquadratic Hessian form  

by doubling the number of variables, such that: 

In fact, we construct the polynomial f(x,y) that has H(x,y) as 
its Hessian directly 

Let’s see this construction… 
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The main reduction 
Thm: Given any biquadratic form 

Let Let  

Let 

Then 
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Observation on the Hessian of a biquadratic form 
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Proof of correctness of the reduction 
Start with 

Let Let  

Claim: 



13 

Reduction on an instance 

A 6x6 Hessian with quadratic form entries 
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Other notions of interest in optimization 
Strong convexity 

“Hessian uniformly bounded away from zero” 

Appears e.g. in convergence analysis of Newton-type methods 

Strict convexity 

“curve strictly below the line” 

Guarantees uniqueness of optimal solution 

Convexity 

Pseudoconvexity 

“Relaxation of first order characterization of convexity” 

Any point where gradient vanishes is a global min 

Quasiconvexity 

“Convexity of sublevel sets” 

Deciding convexity of basic semialgebraic sets 


 


 


 


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Summary of complexity results 
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Quasiconvexity 

A multivariate polynomial p(x)=p(x1,…,xn ) is quasiconvex if all its 
sublevel sets 

 

are convex. 

Convexity  Quasiconvexity 

(converse fails) 

Deciding quasiconvexity of polynomials of even degree 4 or larger 
is strongly NP-hard 

Quasiconvexity of odd degree polynomials can be decided in 
polynomial time    
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Quasiconvexity of even degree forms 

Proof: 

A homogeneous quasiconvex polynomial is nonnegative 

The unit sublevel sets of p(x) and p(x)1/d are the same convex set 

p(x)1/d is the Minkowski norm defined by this convex set and hence 
a convex function 

A convex nonnegative function raised to a power d larger than one 
remains convex 

Corollaries: 
-- Deciding quasiconvexity is NP-hard 

-- Deciding convexity of basic semialgebraic sets is NP-hard 

Lemma:  A homogeneous polynomial p(x) of even degree d 
is quasiconvex if and only if it is convex. 
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Proof: 

Show super level sets must also be convex sets  

Only convex set whose complement is also convex is a halfspace 

Quasiconvexity of odd degree polynomials 

This representation can be checked in polynomial time 

Thm:  The sublevel sets of a quasiconvex polynomial p(x) of 
odd degree are halfspaces.  

Thm:  A polynomial p(x) of odd degree d is quasiconvex iff 
it can be written as 
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What can we do? 

  

Deciding sos-convexity: a semidefinite program (SDP) 

Defn. ([Helton, Nie]): A polynomial                                               is 
sos-convex if its Hessian factors as 

 

for a possibly nonsquare polynomial matrix  

 

)()()( xMxMxH T

One possibility: natural relaxation based on sum of squares 
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Gap between convexity and sos-convexity 
4 4 4 4 4 4

1 2 3 4 5 6

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 3 2 3 4 5 4 6 5 6

2 2 2 2 2 2
1 4 2 5 3 6

2 2 2 2 2 2
1 6 2 4 3 5

1 2 4 5 1 3 4 6 2 3 5 6

p(x)= x +x +x +x +x +x

      +2(x x +x x +x x  +x x +x x +x x ) 

1
      + (x x +x x +x x ) 

2

      + x x +x x +x x

      - (x x x x +x x x x +x x x x )

*Ahmadi, Parrilo, ‘10+ 

A convex form that 
is not sos-convex: 

 *Ahmadi, Blekherman, Parrilo, ‘10+ 

 *Ahmadi, Parrilo, ‘10+ 
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Messages to take home… 

SOS-Convexity: a powerful SDP relaxation for convexity 
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Thank you for your attention! 

Questions? 

 

 

Want to know more? 

http://aaa.lids.mit.edu/ 


