On Higher Order Derivatives of Lyapunov Functions

Amir Ali Ahmadi

Pablo A. Parrilo

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

American Control Conference 2011

Lyapunov stability analysis

$$\dot{x} = f(x) \quad (f: \mathbb{R}^n \to \mathbb{R}^n)$$

Goal: prove local or global asymptotic stability

Asymptotic stability established if we find a Lyapunov function

$$V(x):\mathbb{R}^n o\mathbb{R}$$
 with derivative $\dot{V}(x)=\langle rac{\partial V}{\partial x},f(x)
angle$ such that $\dot{V}(x)>0$

Algorithmic search for Lyapunov functions

- Advances in convex optimization and in particular semidefinite **programming (SDP)** have led to algorithmic techniques for Lyapunov functions
- Can parameterize certain classes of Lyapunov functions and pose the search as a convex feasibility problem
 - Quadratic Lyapunov functions for linear systems (SDP)
 - Piecewise quadratic Lyapunov functions (SDP)
 - Surface Lyapunov functions (SDP)
 - Polytopic Lyapunov functions (LP)
 - SOS polynomial Lyapunov functions (SDP)
 - Relaxations for pointwise maximum or minimum of quadratics (SDP)

Key: Lyapunov inequalities are **affine** in the parameters of V

$$V(x) > 0$$

$$\dot{V}(x) < 0$$

$$\dot{V}(x) < 0$$

This is great, but...

- We can only search for a restricted class of (low complexity) functions
- "Simple" dynamics may have "complicated" Lyapunov functions

e.g.
$$\dot{x} = -x + xy$$
$$\dot{y} = -y$$

[Ahmadi, Krstic, Parrilo,'11]

is GAS but has no (global) polynomial Lyapunov function of any degree!

- Existence of Lyapunov functions that we can efficiently search for are almost **never necessary** for stability
- Often Lyapunov functions that we find are too complicated, e.g., polynomial of high degree or piecewise quadratics with many pieces
- Recall: a polynomial in n variables and degree d has

$$\binom{n+d}{d}$$
 coefficients! (\approx 460 for n=5, d=6)

Explore simpler parameterizations?

• Can we relax the conditions of Lyapunov's theorem to prove stability with simpler functions?

Main motivation

Q: If all we need is $V \rightarrow 0$, why require a monotonic decrease?

Main motivation

≻Similarly in continuous time:

Questions of interest

- **Q1:** Conditions that allow the Lyapunov functions to **increase locally** but guarantee their **convergence to zero in the limit**?
- **Q2:** Can the search for **non-monotonic Lyapunov functions** satisfying the new conditions be cast as a **convex program**?
- •Q3: Connections between non-monotonic Lyapunov functions and standard Lyapunov functions?
- **■**Discrete time (DT) idea: use higher order differences
 - **Q1, Q2, Q3:** [Ahmadi, Parrilo '08]
- **■**Continuous time (CT) idea: use higher order derivatives
 - •Q1: [Butz '69], [Heinen, Vidyasagar '70], [Gunderson '71], [Meigoli, Nikravesh '09]
 - ■Focus of this (2-page) ACC paper:
- Simple observation on Q2 and Q3

CT: relaxing monotonicity via higher order derivatives

$$\dot{x} = f(x)$$

- Allow $V>0\,$ at some points in space
- Limit the rate at which V can increase by imposing constraints

on higher order derivatives

$$\dot{V}(x) = \langle \frac{\partial V(x)}{\partial x}, f(x) \rangle$$

$$\ddot{V}(x) = \langle \frac{\partial \dot{V}(x)}{\partial x}, f(x) \rangle$$

$$\ddot{V}(x) = \langle \frac{\partial \ddot{V}(x)}{\partial x}, f(x) \rangle$$

Cheap to compute

First two derivatives alone don't help for inferring stability

A condition of type

$$\min\{\dot{V}(x), \ddot{V}(x)\} < 0 \quad \forall x \neq 0$$

is vacuous. In particular,

$$\tau \ddot{V}(x) + \dot{V}(x) < 0 \ \forall x \neq 0,$$
for some $\tau \ge 0$

is never satisfied unless $\dot{V}(x) < 0$ everywhere [Butz,'69].

But the first three derivatives help

Thm (Butz, 1969): existence of a positive Lyapunov function V and nonnegative scalars $\tau_{1,2}$ satisfying

$$\tau_2 \ddot{V} + \tau_1 \ddot{V} + \dot{V} < 0$$
 (*)

implies (global) asymptotic stability.

- Proof by comparison lemma type arguments and basic facts about ODEs
- (*) imposed on complements of compact sets implies Lagrange stability (boundedness of trajectories)
 [Heinen, Vidyasagar '70]
- (*) is **nonconvex** (bilinear in decision vars. V and τ_i)

•We will get around this issue shortly

Condition is non-vacuous

$$\tau_{2}\ddot{V} + \tau_{1}\ddot{V} + \dot{V} < 0$$
 (*)

An example by Butz:

$$x = Ax$$

$$A = \begin{bmatrix} -4 & -5 \\ 1 & 0 \end{bmatrix} \quad \text{Eig: } -2 \pm j$$

Eig:
$$-2 \pm j$$

$$V(x) = \frac{1}{2}x^T P x,$$

$$V(x) = \frac{1}{2}x^T P x$$
, with $P = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$

$$\dot{V}(x) = \frac{1}{2}x^T Q x,$$

$$\dot{V}(x) = \frac{1}{2}x^T Q x, \quad with \ Q = \begin{bmatrix} -7 & -6 \\ -6 & -5 \end{bmatrix}$$

not negative definite

But (*) is satisfied with:

$$\tau_1 = 0 0.0021 < \tau_2 < 0.0486$$

A more interesting example

$$\dot{x}(t) = \begin{bmatrix} \cos(20t) - 0.2 & 1 \\ -1 & \cos(20t) - 0.2 \end{bmatrix} x(t)$$

Claims:

 A time-independent standard Lyap fn. (if there is one) must have a complicated structure

*But
$$V(x) = x_1^2 + x_2^2$$
 satisfies $\tau_1 = 0.0039$ $\tau_2 \ddot{V}(x) + \tau_1 \ddot{V}(x) + \dot{V}(x) < 0$

Generalization to derivatives of higher order

THM ([Meigoli, Nikravesh,'09-a]):

If you find V>0 satisfying

$$V^{(m)}(x) + \tau_{m-1}V^{(m-1)}(x) + \dots + \tau_1\dot{V}(x) < 0$$

with scalars τ_i such that the characteristic polynomial

$$p(s) = s^m + \tau_{m-1}s^{m-1} + \dots + \tau_1 s$$

has all roots negative and real, then the system is (locally/globally) asymptotically stable.

Condition later relaxed to ([Meigoli, Nikravesh,'09-b]):

- •p(s) being Hurwitz
- •p(s) having nonnegative coefficients
- Mir

(generalization to time-varying dynamics also done)

Links to standard Lyapunov functions?

We make the following simple observation:

THM: No matter what conditions are placed on the function V and the scalars τ_i , if V(0)=0,

$$V^{(m)}(x) + \tau_{m-1}V^{(m-1)}(x) + \dots + \tau_1\dot{V}(x) < 0$$

holds, and the system is (locally/globally) asymptotically stable, then,

$$W(x) = V^{(m-1)}(x) + \tau_{m-1}V^{(m-2)} + \dots + \tau_2\dot{V}(x) + \tau_1V(x)$$

is a standard Lyapunov function.

Proof: easy.

Let's revisit our example

$$\dot{x}(t) = \begin{bmatrix} \cos(20t) - 0.2 & 1\\ -1 & \cos(20t) - 0.2 \end{bmatrix} x(t)$$

$$V(x)=x_1^2+x_2^2$$
 satisfies
$$au_2\ddot{V}+ au_1+\ddot{V}+\dot{V}<0$$

$$W(x,t) = \tau_2 \ddot{V}(x,t) + \tau_1 \dot{V}(x,t) + V(x) = x^T x \{$$

$$\tau_2 [-40\sin(20t) + 4(\cos(20t) - 0.2)^2]$$

$$+\tau_1 [2(\cos(20t) - 0.2)] + 1 \}$$

satisfies W>0 $\dot{W}<0$

but W is time-varying and more complicated

Implications of this observation (I)

→ Non-monotonic Lyapunov functions can be interpreted as standard Lyapunov functions of a very specific structure:

$$W(x) = V^{(m-1)}(x) + \tau_{m-1}V^{(m-2)} + \dots + \tau_2\dot{V}(x) + \tau_1V(x)$$

- This is a Lyapunov function that has the vector field f(x) and its derivatives embedded in its structure
- •Reminiscent of Krasovskii's method: use f(x) in the parametrization of the Lyapunov function
- → Our observation does not necessarily imply that higher order derivatives are not useful
 - ullet W is often more complicated than V

Implications of this observation (II)

→ Instead of requiring

$$V(x) > 0$$
$$\tau_i \ge 0$$

$$V^{(m)}(x) + \tau_{m-1}V^{(m-1)}(x) + \dots + \tau_1\dot{V}(x) < 0$$

it is always less conservative to require

$$V^{(m-1)}(x) + \tau_{m-1}V^{(m-2)}(x) + \dots + \tau_2\dot{V}(x) + \tau_1V(x) > 0$$
$$V^{(m)}(x) + \tau_{m-1}V^{(m-1)}(x) + \dots + \tau_2\ddot{V}(x) + \tau_1\dot{V}(x) < 0$$

(with no condition on V or τ_i)

Implications of this observation (III)

- → With this observation, we can **convexify** the previously nonconvex condition:
- •Simply search for different functions $V_1(x), \ldots, V_m(x)$ with no conditions on them individually, such that

$$V_m^{(m-1)}(x) + V_{m-1}^{(m-2)}(x) + \dots + \dot{V}_2(x) + V_1(x) > 0$$

$$V_m^{(m)}(x) + V_{m-1}^{(m-1)}(x) + \dots + \ddot{V}_2(x) + \dot{V}_1(x) < 0$$

- Guaranteed to have a solution if any of the previous conditions had a feasible solution
- Specific parametrization, depends on vector field

Can be cast as a convex program

Example

$$\dot{x}_1 = -0.8x_1^3 - 1.5x_1x_2^2 - 0.4x_1x_2 - 0.4x_1x_3^2 - 1.1x_1
\dot{x}_2 = x_1^4 + x_3^6 + x_1^2x_3^4
\dot{x}_3 = -0.2x_1^2x_3 - 0.7x_2^2x_3 - 0.3x_2x_3 - 0.5x_3^3 - 0.5x_3.$$

No quadratic standard Lyapunov function exists

- But
$$\begin{array}{rcl} V_1(x) & = & 0.47x_1^2 + 0.89x_2^2 + 0.91x_3^2 \\ V_2(x) & = & 0.36x_2 \end{array}$$

$$\dot{V}_2(x) + V_1(x)$$
 SOS

$$-(\ddot{V}_{2}(x) + \dot{V}_{1}(x))$$
 SOS

Proves GAS. If desired, can construct a standard (sextic)
 Lyapunov function from it:

$$W(x) = \dot{V}^2(x) + V^1(x) = 0.36x_1^4 + 0.36x_1^2x_3^4 + 0.47x_1^2 + 0.89x_2^2 + 0.36x_3^6 + 0.91x_3^2.$$

 Number of decision variables saved as compared to a search for a standard sextic polynomial Lyapunov function: 68

satisfy

Messages to take home...

- Monotonicity requirement of Lyapunov's theorem can be relaxed by using higher order differences/derivatives
- When the higher order differential inclusions are satisfied, one can always construct a (more complicated) standard Lyapunov function
- This observation allows us to write conditions that are
 - Always less conservative
 - Checkable with convex programs
- Employing higher order derivatives in the structure of the Lyapunov function may lead to **proofs of stability with simpler functions**
 - Computationally, this translates to fewer decision variables

V(x) simple	W(x) complicated
Polynomial of low degree	Polynomial of high degree
Smooth	Piecewise with many pieces
Time independent	Time dependent

Thank you for your attention!

Want to know more?

Amir Ali's homepage:

http://aaa.lids.mit.edu

