
Feasibility Checks and Control Laws for
Reconfigurations of Spacecraft Clusters

Nima Moshtagh∗, Amir Ali Ahmadi†, Mehran Mesbahi§

Abstract— A multi-spacecraft system consists of wirelessly-
connected spacecraft that share resources in Earth orbit or deep
space. One of the enabling technologies of such a fractionated
space architecture is cluster flight, which provides the cluster
with the capability to perform a cluster scatter and regather
maneuvers to rapidly evade debris-like threats or to reconfigure
for scientific missions. In this work, we study the cluster
reconfiguration problem. First, we propose an algorithm based
on semidefinite programming to check for the feasibility of a
desired configuration. Next, we provide a control law for cluster
reconfiguration that requires only relative state information
and the adjacency matrix of the underlying network topology.
Stability analysis and simulation results are provided.

I. INTRODUCTION

Under the concept of fractionated space systems [3],
a cluster of wirelessly-interconnected modules share and
utilize resources found elsewhere in the cluster. Such an
architecture enhances the adaptability and survivability of
space systems. Collision-safe multibody cluster flight and
efficient relative navigation are enabling technologies for
fractionated space architecture.

We distinguish between our notion of cluster flight and
the more commonly discussed concept of formation flight.
Unlike formation flight, spacecraft clusters do not generally
require precise maintenance of the relative positions of the
spacecraft. Thus, as long as the relative distances do not
exceed the ranges supported by the cross-links and collision
avoidance is ensured, the relative drift of the spacecraft (due
to orbital disturbances) is perfectly acceptable [3].

The main problem studied in this work is the relative
navigation and reconfiguration of cluster flying spacecraft.
In such scenario, initial and final configurations are spec-
ified using the state-dependent graph associated with each
configuration. Typically the desired final graph is determined
based on mission objectives and sensing and communication
constraints among the modules. In large clusters, the cross-
link requirements might impose contradictory constraints on
the network, and result in infeasible network topologies.
Thus, the feasibility of any given desired configuration must
be checked before it is used for cluster reconfiguration. This
motivates the study of graph realization, where the objec-
tive is to determine whether the desired network topology
corresponds to a set of feasible states.

We propose a semidefinite programming based algorithm
for performing this feasibility check. The approach is to

* Lockheed Martin, ATC, nima.moshtagh@lmco.com
†Massachusetts Institute of Technology, a a a@mit.edu
§University of Washington, mesbahi@aa.washington.edu

reformulate the problem as a rank minimization problem with
linear and semidefinite constraints, and then apply the well-
known nuclear norm relaxation for rank minimization. This
is done in Section III. From a computational perspective,
the attractiveness of our approach stems from the fact that
semidefinite programs (SDPs) can be efficiently solved e.g.
by using interior point algorithms. These algorithms have
been implemented in several software packages such as
SeDuMi [21]. For more background on SDPs, the interested
reader is referred to [2].

Given a feasible final graph, the next stage is to generate
collision-free trajectories that efficiently reconfigure the clus-
ter. In formation control literature [15], typically the initial
and final states of the formation are specified in an inertial
frame, and the objective is for each agent to reach its final
destination while minimizing fuel consumption and avoiding
collision with other agents. In Section IV, a control law is
designed that reconfigures the network of mobile agents to
a desired graph using only adjacency information (relative
navigation). A stability analysis of the control law is also
provided.

Before presenting our main results, we formally define the
problems of interest in Section II.

II. PROBLEM STATEMENT

The problems we consider here concern designing
collision-free trajectories for a cluster of mobile agents dur-
ing a reconfiguration mission. It is assumed that only relative
state information can be used for control and reconfiguration.

Consider a network of n agents. The state (position) of
agent i is represented as a point in the agent’s configuration
space Xi (e.g. R3). The state space of all agents, X , is de-
fined as X = X1×X2×. . .×Xn. The network configuration
is denoted by x = {x1, . . . , xn} ∈ X . The trajectory of agent
i is represented as mapping xi : [0, T] → Xi, which evolves
according to the simplified system dynamics,

ẋi(t) = ui(t)

where ui is the control input.
Let δl be the minimum safe distance between any two

agents. The collision-free configuration space is now defined
as

Ω := {x ∈ X | ∥xi − xj∥ ≥ δl, ∀(i, j)} .

Let V = {1, . . . , n} be the set of n agents, and let E be
the set of sensing edges defined by

E = {(i, j) ∈ V × V | δl ≤ ∥xi − xj∥ ≤ δu} , (1)

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1094-0/12/$26.00 ©2012 AACC 961

where δu is the sensing range and δl is the collision range.1

A state-dependent graph G = (V, E) is characterized by the
node set V , and the edge set E .

The adjacency matrix corresponding to G is defined as

A : Ω → M ⊂ {0, 1}n×n ,

a mapping from the collision-free configuration space Ω to
M, the set of n × n symmetric matrices where each entry
is either 0 or 1 and the diagonal terms equal 0.

During a reconfiguration mission, suppose the initial and
the desired final configurations are specified in terms of ad-
jacency matrices Ainitial, and Afinal respectively. The first
problem is to determine whether the given final adjacency
matrix Afinal corresponds to a feasible configuration.

Problem 2.1 (Graph Realization): Suppose graph Go is
specified using its adjacency matrix Ao, and two parameters
δl and δu that respectively define the lower and upper bounds
on the edge constraints (see (1)). A realization of graph Go

is an embedding (set of positions) x ∈ Ω such that A(x) =
Ao. Find a realization of Go that is embedded in Rk for
k ∈ {1, 2, 3}.

This problem is is studied in Section III. After we deter-
mine that the given desired graph (adjacency matrix) has a
feasible realization, we would like to find a set of collision-
free trajectories for network reconfiguration. Here is a formal
definition of the reconfiguration problem:

Problem 2.2 (Cluster Reconfiguration): Given
Ainitial = A(x0) and Afinal, we wish to find the trajectories
x(t) so that A(x(0)) = Ainitial and A(x(T)) = Afinal for
some T > 0, and x(t) ∈ Ω for all 0 ≤ t ≤ T .

This problem is studied in Section IV.

III. GRAPH REALIZATION PROBLEM

Graph realization problem is studied extensively in many
contexts, from molecular conformation (where one is inter-
ested in determining the spatial structure of molecules from
a set of geometric constraints) to wireless sensor networks
(where one is interested in determining the sensor locations
from connectivity constraints) [6].

In the above examples, the distances between the pairs of
nodes are given, and the problem is to find an embedding (a
set of positions) that satisfies the distance constraints. More
formally, the embedding of graph G in Euclidean space Rk

(for a given dimension k ≥ 1) is equivalent to a set of
positions xi ∈ Rk such that the Euclidean distance between
the pair xi and xj is equal to the distance dij , i.e.

∥xi − xj∥ = dij .

Euclidean embedding problem can be formulated as a
global optimization problem [16]. The optimal value of the
optimization

min
x1,...,xn∈Rk

∑
(i,j)∈E

|∥xi − xj∥ − dij | (2)

1For simplicity, it is assumed that the sensing and collision ranges are
the same for all agents. The extension to the case where they are different
for different pairs of agents is straight forward.

is zero, if and only if x1, . . . , xn are the true node locations.
However, Saxe showed [19] that for a fixed dimension k, the
Euclidean embedding problem is NP-hard.

There are a number of relaxations of the optimization
problem (2) including those based on semidefinite program-
ming (SDP) [6], [11], [1], second order cone programming
(SOCP) [22], [7], and more recently sum-of-squares (SOS)
methods [16].

However, Schoenberg [20] showed in 1935, that existence
of an embedding, given a set of distances, is equivalent to
existence of a semidefinite matrix in terms of the positions.
Such an exact characterization has many implications that
we will use in the work.

The following theorem statement is adopted from [17].
Theorem 3.1: The distances dij can be embedded in a

Euclidean space if and only if the n× n matrix

D =


0 d212 d313 . . . d21n
d221 0 d223 . . . dn2n

...
...

... . . .
...

d2n1 d2n2 d2n3 . . . 0

 (3)

is negative semidefinite on the subspace orthogonal to the
vector 1n = [1, . . . , 1]T .

The Euclidean distance matrix (EDM) (3) is related to the
position matrix X = [x1 . . . xn] ∈ Rk×n. Since

d2ij = ∥xi − xj∥2 = ⟨xi, xi⟩+ ⟨xj , xj⟩ − 2⟨xi, xj⟩ ,

we have

D = diag(Q)1T
n + 1ndiag(Q)T − 2Q = f(Q) , (4)

where Q is the matrix of inner products (sometimes called
the Gram matrix):

Q = XTX =

⟨x1, x1⟩ . . . ⟨x1, xn⟩
...

. . .
...

⟨xn, x1⟩ . . . ⟨xn, xn⟩

 . (5)

Q is positive semidefinite by construction, and its rank is
equal to k, the dimension of the embedding space. Therefore,
we are interested in finding the position vectors x1, . . . , xn ∈
Rk with the smallest k, such that the distances between the
points satisfy the distance constraints. This problem is called
the low-dimensional embedding problem. Low-dimensional
embedding problem can be formulated as the following
optimization problem:

min
Q

rank(Q) (6)

subject to f(Q) = D (7)
Q < 0 (8)

where f(Q) is defined in (4). The constraints are linear
matrix inequalities (LMIs) which form a convex feasible
set, but the objective function is not a convex function.
Although matrix rank minimization problem (RMP) is NP-
hard, several relaxations have been proposed that solve RMP
approximately [13], [8], [9].

962

In particular, it is shown by Recht et. al [18] that minimiz-
ing the nuclear norm ∥ · ∥∗ of a matrix can provide a good
approximation for minimizing its rank. Note that rank(Q)
is equal to the number of nonzero singular values of Q, or
equivalently the cardinality of the vector of singular values
s = [σ1, . . . , σk]

T . One can approximate the cardinality of s
with its l1-norm, ∥s∥1, which is the sum of singular values
of matrix Q, and equals the nuclear norm of Q. Since Q
is symmetric, its eigenvalues are the same as its singular
values, and since Q is positive semidefinite, its eigenvalues
are non-negative. Therefore,

∥Q∥∗ = ∥s∥1 =
k∑

i=1

σi(Q) =
k∑

i=1

λi(Q) = trace(Q) . (9)

Just as l1-minimization is the “tightest” convex relaxation
of the NP-hard cardinality-minimization problem, nuclear-
norm minimization is the “tightest” convex relaxation of the
NP-hard rank minimization problem [4], [8]. In [5], it is
proven that nuclear-norm minimization succeeds nearly as
soon as recovery is possible by any method whatsoever.

Thus, instead of solving optimization (6), we solve the
approximate problem:

min
Q

trace(Q) (10)

subject to (7), (8)

which is a convex optimization problem, in fact an SDP.
In order to extract position vectors xi ∈ Rk from the

solution matrix Q, one can use matrix factorizations meth-
ods such as general eigenvalue decomposition or Cholesky
factorization.

A. Constrained Graph Realization
Now we can present a solution to Graph Realization

Problem presented in Section II. Suppose graph G is given
in the form of its adjacency matrix A. The objective is to
find an embedding x1, . . . , xn such that

δl ≤ ∥xi − xj∥ ≤ δu . (11)

In the definition of the Euclidean embedding problem, the
distance constraint ∥xi − xj∥ = dij can be relaxed by the
interval constraint (11). The upper-bound constraint ∥xi −
xj∥ ≤ δu is a convex constraint, however, the lower-bound
constraint δl ≤ ∥xi − xj∥ is not convex.

Working with the square of distances d2ij allows us to write
constraint (11) as a linear constraint on the (i, j)-th element
of EDM D:

∆l ≤ Dij ≤ ∆u , ∀(i, j) s.t. Aij = 1 (12)

where ∆l = δ2l and ∆u = δ2u. Similarly, when Aij = 0, one
can write the following constraint:

∆u ≤ Dij , ∀(i, j) s.t. Aij = 0, i ̸= j . (13)

Thus, we formulate the “graph realization with interval
constraints” as the following optimization:

min
Q,D

trace(Q) (14)

subject to (7), (8), (12), (13)

Optimization problem (14) is a convex problem since
constraints (12) and (13) are linear constraints on decision
variables Dij . A factorization of solution Q is then computed
to extract the positions x1, . . . , xn.

Remark 3.2: The solution to the relaxed optimization
problem (14) is not always a realization with an embedding
in the smallest dimension due to approximating rank(Q)
with trace(Q) in the optimization. In other words, when for
an adjacency matrix A the solution to (14) is embedded in
Rk, this does not necessarily imply that k is the smallest
possible dimension for which A is realizable.

IV. CLUSTER RECONFIGURATION

In this Section we present a solution to Problem 2.2.
Before presenting our solution, let us define the weighted
adjacency matrix of a graph. The weighted adjacency matrix
of a graph is given by

Aw : Ω → M[0 1]

a mapping from Ω (the collision-free configuration space) to
M[0 1] (the set of n×n symmetric matrices with each entry
within the interval [0 1]), and it is defined by

aij = [Aw]ij =

{
σω(δu − dij) i ̸= j
0 i = j

(15)

where σω : R → [0 1] is the sigmoid function

σω(z) =
1

1 + e−ωz
,

as illustrated in Figure 1.

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

Distance (meters)

σ ω
(5

 −
 d

ij)

Fig. 1. Sigmoid function σω(δ − d) with ω = 5, and δ = 5.

A. Adjacency-Based Reconfiguration

Now we present our result on adjacency-based reconfigu-
ration of spacecraft.

Proposition 4.1: Consider a system of n agents with
dynamics ẋi = ui ∈ R3. Let Ad ∈ M denote a given
adjacency matrix. If the state-dependent graph G remains
connected, then by applying the control law

ui = 2κω
n∑

j=1

aij
(
1−aij

)(
[Ad]ij −aij

)
(xj −xi)/dij (16)

where κ > 0, the agents converge to one of the following
configurations:

963

a) {x | A(x) = Ad};
b) {x | xi = xj , ∀i, j = 1, . . . , n},
where x ∈ R3n denotes the stack of all position vectors.

Proof: Consider the following Lyapunov function as
the distance between the given desired adjacency Ad and the
weighted adjacency Aw(x(t)) corresponding to configuration
x(t):

V (x) = ∥Ad −Aw(x)∥2F =

n∑
i=1

n∑
j=1

([Ad]ij − aij)
2 . (17)

Note that V (x) ≥ 0 for all x, and V (x) = 0 if and only if
Aw(x) = Ad. We define the control input of agent i as

ui = −κ∇xiV (x) = −κ
n∑

j=1

∂V (x)

∂dij

∂dij
∂xi

= 2κω
n∑

j=1

aij
(
1− aij

)(
[Ad]ij − aij

)
rij (18)

where aij is given by (15), and rij = (xj − xi)/dij is the
unit-norm bearing vector for the pair (i, j).

Let us define

wij =
2ωaij

(
1− aij

)
dij

(
[Ad]ij − aij

)
, (19)

Thus, the control input becomes

ui = −κ

n∑
j=1

wij(xi − xj) , (20)

which is similar to the consensus-based input developed in
[14] in the context of flocking and motion coordination.
Assume an arbitrary orientation for the edges of graph G.
Consider the n × e incidence matrix, B, of this oriented
complete graph with n vertices and e = n(n − 1)/2 edges.
Then equation (20) can be written as

ẋ = u = −κ∇xV = −κB̄W̄ (x)B̄Tx (21)

where B̄ = B ⊗ I3, and W̄ = W ⊗ I3 with

W (x) = diag{wij | (i, j) ∈ E} ,

being a diagonal e × e matrix. (⊗ denotes the Kronecker
product and I3 is the three dimensional identity matrix).

The time derivative of the Lyapunov function along the
trajectories of the system becomes

V̇ = ∇xV
T ẋ = − 1

κ
ẋT ẋ ≤ 0 .

Application of LaSalle’s invariance principal over the set
Γc = {x | V (x) < c} reveals that all trajectories starting
in Γc converge to the largest invariant set within the set
{x | V̇ = 0}. This set is characterized by the set of
states that satisfy B̄W̄ (x)B̄Tx = 03n×1 , which happens
if x ∈ null(B̄T), or if W (x) ≡ 0e×e.

The solution set null(B̄T) = span(1n ⊗ I3) corresponds
to the configuration that all agents occupy the same position:
{x | xi = xj , ∀i, j = 1, . . . , n}.

The other set of equilibrium points correspond to the set

{x | W (x) = 0e×e} = {x | A(x) = Ad},

where the state-dependent graph G has the desired adjacency
matrix.

The set of equilibrium points where all agents are at
the same position can be excluded by using a collision
avoidance term in the control input. For stability analysis in
the presence of collision-avoidance term, an approach similar
to the recent work of Lee and Mesbahi [12] can be used. This
is the subject of an ongoing work.

B. Collision Avoidance
The result of Section IV shows how network reconfigu-

ration can be performed using only adjacency information.
Though during the reconfiguration, agents could get too close
to each other and violate the collision avoidance restrictions.
In reality, any formation/cluster control requires collision
avoidance, and collision avoidance cannot be done without
range.

An inter-agent potential function [10] is defined to ensure
collision avoidance during the reconfiguration. The potential
function f(dij) is a symmetric function of the distance dij
between agents i and j and is defined as follows

f(dij) =

{
log dij +

δl
dij

dij < δl
f0 dij ≥ δl

(22)

where f0 = log(δl) + 1 is constant. The control law from
this artificial potential function results in simple steering
behaviors known as separation, which regulates the distance
between the agents within the range (0, δl).

The total collision function of agent i is then given by

fi(x) =
∑
j∈Ni

f(dij)

The total control inputs for reconfiguration now includes the
additional collision avoidance term

ui = u
reconfig
i + ucollision

i

= −κ∇xiV (x)− α∇xifi(x) (23)

where u
reconfig
i is the reconfiguration input given by (16).

Fig. 2. Collision avoidance potential function, and the norm of its gradient.

964

(a) Initial Configuration (b) Final Configuration

Fig. 3. The initial and final configurations of a network of 5 agents.

V. SIMULATIONS

Consider a cluster of n = 5 spacecraft in their initial
configuration as shown in Figure 3. The spheres around each
agent represent the collision-avoidance region with radius
δl = 1 unit. Suppose the desired final configuration of the
cluster is specified in terms of adjacency matrix Ad of the
final graph Gd(x):

Ad =


0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

 (24)

where constraint (11) must be satisfied with δl = 1 unit and
δu = 2.5 units for all Aij = 1.

In order to determine whether Ad corresponds to a feasible
state-dependent graph (as defined in Definition 2.1), we solve
the semidefinite program in (14). A feasible solution is given
by the pair (Q,D):

Q =


1.56 0.0 −1.56 0.0 0.0
0.0 1.56 0.0 −1.56 0.0

−1.56 0.0 1.56 0.0 0.0
0.0 −1.56 0.0 1.56 0.0
0.0 0.0 0.0 0.0 0.0

 .

and

D =


0 3.1250 6.2500 3.1250 1.5625

3.1250 0 3.1250 6.2500 1.5625
6.2500 3.1250 0 3.1250 1.5625
3.1250 6.2500 3.1250 0 1.5625
1.5625 1.5625 1.5625 1.5625 0

 .

(25)
It is easy to see that rank(Q) = 2. Therefore, Ad can be

embedded in R2 and corresponds to a feasible graph.
Remark 5.1: Cholesky factorization of Q = XTX pro-

vides us with the position matrix X:

X =

1.25 0.0 −1.25 0.0 0.0
0.0 1.25 0.0 −1.25 0.0
0.0 0.0 0.0 0.0 0.0

 .

To reconfigure the initial cluster, as given by Figure 3(a),
to a desired configuration corresponding to Ad given by (24),
we apply control input (23) to all spacecraft. The trajec-
tories of all spacecraft are shown in Figure 5, where each
spacecraft is located at its final position. The final positions
correspond to the desired positions as in Figure 3(b). During
the reconfiguration, collisions among the agents are avoided.
Figure 4 shows that the value of the Lyapunov function V (x)
monotonically decreases as the cluster converges to the final
configuration.

VI. SUMMARY & CONCLUSIONS

Reconfiguration of a network of mobile agents (ground
robots, UAVs, UUVs, spacecraft, etc.) is a challenging prob-
lem and of interest to NASA and DoD programs. Some of the
enabling technologies are cluster flight, relative navigation,
and distributed path planning. In this work, we studied the

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

8

Time steps

Ly
ap

un
ov

 fu
nc

tio
n:

 V
(X

)

Lyapunov function

Fig. 4. Value of Lyapunov function V (x) monotonically decreases.

965

−2
−1

0
1

2

−1

0

1

00.10.20.3

4

3

5

x

1

2

y

z

Fig. 5. Trajectories of 5 spacecraft during the reconfiguration manoeuvre.

problem of network reconfiguration using graph information
only, which is the requirement for relative navigation of the
agents. In order to develop a graph-based reconfiguration
algorithm, we designed a control law for each mobile agent
that only needed relative information (ID of the neighbors,
and the distances to them). We showed the convergence
to the desired equilibrium (desired graph), and verified the
correctness of the control law using simulations.

We also developed a feasibility check that allowed us
to see whether the desired final configuration (specified in
terms of the adjacency matrix of a graph) is a feasible
configuration. We formulated such graph realization problem
as a search for low-dimensional embedding of the graph
in the Euclidean space. Future work involves extending the
realization problem to clusters of spacecraft with orientation
constraints as well as distance constraints.

VII. ACKNOWLEDGMENTS
This work was supported by NASA-JPL under contract

NNX10CA82C, while the first author was with Scientific
Systems Company (SSCI). The authors would like to thank
Dr. Behcet Açikmese (JPL), and Dr. Raman Mehra (SSCI)
for their technical support.

REFERENCES

[1] P. Biswas, T.C. Liang, K.C. Toh, T.C. Wang, and Y. Ye. Semidefinite
programming approaches for sensor network localization with noisy
distance measurements. IEEE Transactions on Automation Science
and Engineering, 3:4:360–371, 2006.

[2] S. Boyd and L. Vanderberghe. Convex Optimization. Cambridge
University Press, 2004.

[3] O. Brown and P. Eremenko. The value proposition for fractionated
space architectures. AIAA, 2006.

[4] E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings
of the IEEE, 2010.

[5] E. J. Candes and T. Tao. The power of convex relaxation: Near optimal
matrix completion. Technical report, 2009.

[6] A. Man cho So. Semidefinite programming approach to the graph
realization problem: Theory, applications and extensions. PhD thesis,
Stanford University, 2007.

[7] L. Doherty, K. S. J. Pister, and L. El Ghaoui. Convex position
estimation in wireless sensor networks. Proc. 20th IEEE Infocom,
3:1655–1663, 2001.

[8] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis,
Stanford University, 2002.

[9] M. Fazel, H. Hindi, , and S. Boyd. Log-det heuristic for matrix
rank minimization with applications to hankel and euclidean distance
matrices. In Proc. American Control Conference, Denver, Colorado,
June 2003.

[10] H. G.Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed
and switching networks. IEEE Transactions on Automatic Control,
52(5):863 – 868, 2007.

[11] N. Krislock, V. Piccialli, and H. Wolkowicz. Robust semidefinite
programming approaches for sensor network localization with anchors.
CORR, May 2006.

[12] U. Lee and M. Mesbahi. Constrained consensus via logarithmic barrier
functions. In Proceeding of Conference on Decision and Control,
Orlando, Florida, Dec. 2011.

[13] M. Mesbahi and G. P. Papavassilopoulos. On the rank minimization
problem over a positive semidefinite linear matrix inequality. IEEE
Transactions on Automatic Control, 42(2):239–243, 1997.

[14] N. Moshtagh and A. Jadbabaie. Distributed geodesic control laws for
flocking of nonholonomic agents. IEEE Transactions of Automatic
Control, 52:681–686, 2007.

[15] N. Moshtagh, M. Mesbahi, and R. K. Mehra. Topology control of
dynamic networks in the presence of local and global constraints. In
IEEE International Conference on Robotics and Automation, Anchor-
age, Alaska, May 2010.

[16] J. Nie. Sum of squares method for sensor network localization.
Comput. Optim. Appl., 43:151–179, June 2009.

[17] P. A. Parrilo. Algebraic techniques and semidefinite optimization. MIT
6.256, Lecture 2, 2010.

[18] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization.
SIAM Review, 52(3):471–501, 2010.

[19] J. Saxe. Embeddability of weighted graphs in k-space is strongly np-
hard. In Proceedings of 17th Allerton Conference in Communications,
Control, and Computing, pages 480–489, Monticello, IL, 1979.

[20] I. J. Schoenberg. Remarks to maurice frechet’s article “sur la definition
axiomatique d’une classe d’espace distancies vectoriellement applica-
ble sur l’espace de hilbert. Ann. of Math., 36(3):724–732, 1935.

[21] J.F. Strum. Using sedumi 1.02, a matlab toolbox for optimization over
symmetric cones. optimization methods and software, 11(1):545–581,
1999.

[22] P. Tseng. Second-order cone programming relaxation of sensor
network localization. SIAM Journal on Optimization, August, 2005.

966

