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ABSTRACT

Knowledge of an automobile driver’s intended

-actions (e.g., to turn, change lanes, etc.) could fa-

cilitate the integration of intelligent vehicle systems
with the driver. The actions can be inferred from the
driver’s control actions as she prepares to execute
an action. Actions are modeled as a sequence of
internal mental states, each with a characteristic
pattern of driver control behavior. By observing the
temporal pattern of the drivers’ control behavior
and comparing it to the action models, we can
determine which action the drivers are beginning to
execute.

INTRODUCTION

With the arrival of fully automated cars still in the
distant future, “augmented control” (AC) systems
[1] that enhance the driver’s operation of the vehi-
cle are becoming a focus of development. Familiar
examples of primitive augmented systems include
adaptive cruise control systems that help the driver
maintain inter-vehicle distance and speed, and steer-
ing systems that help the driver maintain lane po-
sition. Future systems might dynamically adjust
low-level vehicle operations, such as the shift tim-
ing in the transmission, with knowledge of driver
intentions and thus improve the safety of actions
such as passing. In the future, there will also be
more information available to the driver (e.g., traf-
fic and navigation information systems). The addi-
tion of information displays could increase the atten-
tional load on the driver and potentially make driv-
ing more difficult. Without a proper understanding
of the driver’s mental state, it is conceivable that the
concurrent activation of many such systems could

be very distracting or even overwhelming. There-
fore, the future smart car must serve the role of the
driver’s “valet”, generally keeping out of sight and
mind, but providing the necessary services when
needed.

The difficulty, of course, is that we generally do
not understand humans well enough to construct a
useful mathematical model of their driving behav-
ior. Early attempts to devise AC systems adopted
the simplest possible model of the human, such as a
noise source or filter. While this makes it relatively
easy to obtain a mathematical specification of the ve-
hicle control system, including the human, such sim-
ple models make it impossible to build a system that
takes real advantage of the human’s abilities.

Previous research

A thought experiment suggests that the driving sit-
uation may be sufficiently constrained that we can
hope to infer drivers’ intentions from their motor be-
havior. Imagine being a passenger sitting in a car
and looking at the driver; do you think you could
guess when the driver was preparing to turn left?
to stop? to pass? Most people, after some reflec-
tion, answer yes to these questions; that is, they be-
lieve that drivers’ intended actions can be guessed
from observation of their movements. This belief
is supported by experimental studies that suggest
that some aspects of driving behavior (e.g., posture
changes before braking [2], eye motion before turn-
ing at moderate to high speeds [3]) are sufficiently
stereotyped to allow an action to be recognized well
before its actual execution.

In recent years, research has focused on two areas in
which to make the car more “intelligent”: determin-
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ing the intentions of the driver and determining the
state of the environment in which the driver is oper-
ating. In either case, the central question has been
whether driver behavior is a reliable indicator of ei-
ther driver intentions or the external state.

Takahashi [4] has studied the driver’s intention to
decelerate while coasting on a downhill grade. This
system predicts when the driver intends to decel-
erate and automatically shifts to a higher gear for
greater engine braking. A quantitative submodel ex-
presses the intention to decelerate as a function of
measurable vehicle parameters. The model parame-
ters were derived from case data in which many dif-
ferent drivers evaluated combinations of shift timing
and coasting speed.

Detecting the nature of the vehicle/driver’s sur-
rounding environment has been approached in a
similar manner, that is, by using driver behavior
as an indicator. Both Takahashi [5] and Qiao {6]
have used fuzzy techniques to predict the type of
surrounding terrain (i.e., mountain roads versus flat
roads) based on vehicle parameters such as speed
and accelerator position.

HIDDEN MARKOV DYNAMIC MODELS

Our approach is to modeling human behavior is to
consider the human as a Markov device with a (pos-
sibly large) number of internal ‘mental’ states, each
with its own particular control behavior, and inter-
state transition probabilities (e.g./, in a car the statés
might be centering in the lane, matching speed with
a leading car, changing lanes, and centering in the
new lane....which together constitute a lane change)
A simple example of this type of human model
would be a bank of standard quadratic controllers,
each using different dynamics and measurements,
together with a network of probabilistic transitions
between them.

Single Dynamic Models
Consider the dynamic processes

X1 = £(Xp, At) +£(2) (1)

where the function f models the dynamic evolution
of state vector X, at time &, and let us define an ob-

servation process
Y = h(Xg, At) + n(t) 2

where sensor observations Y are a function h of the
state vector and time. Both & and 7 are white noise
processes having known spectral density matrices.

Using Kalman’s result, we can then obtain the opti-
mal linear estimate X of the state vector X by use
of the following Kalman filter:

X =X;+Kp(Ye - h(X}1) Q)

where K, is the Kalman gain matrix [11]. At each
time step k, the filter algorithm uses a state predic-
tion X}, an error covariance matrix prediction P,
and a sensor measurement Y to determine an opti-
mal linear state estimate Xk, error covariance ma-
trix estimate f’k, and predictions X7, 10 pP; +1 for
the next time step.

Given the state vector X at time k& we can predict
the measurements at time k + At by

Yk—!—At = h(XkH At) (4)

and the predicted state vector at time k+ At is given
by ) )
Xptar = X+ £( Xy, At)At (%)

Multiple Dynamic Models

Human behavior, in all but the simplest tasks, is not
as simple as a single dynamic model. The next most
complex model of human behavior is to have sev-
eral alternative models of the person’s dynamics,
one for each class of response. Then at each instant
we can make observations of the person’s state, de-
cide which model applies, and then make our re-
sponse based on that model. This is known as the
multiple model or generalized likelihood approach,
and produces a generalized maximum likelihood es-
timate of the current and future values of the state
variables [12].

Mathematically, this is accomplished by settingup a
set of states 5, each associated with a Kalman filter
and a particular dynamic model:

X =30 + KO (v, - 00X, 1) ©
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where the superscript () denotes the :** Kalman fil-
ter. The measurement innovations process for the ith
model (and associated Kalman filter) is then

1—‘5{2‘) =Y, — h(i)(Xz(i), t) N

The measurement innovations process is zero-mean
with covariance K.

The i"* measurement innovations process is, intu-
itively, the part of the observation data that is un-
explained by the /¥ model. The model that ex-
plains the largest portion of the observations is, of
course, the model most likely to be correct. Thus,
at each time step, we calculate the probability Pr()
of the m-dimensional observations Y. given the it*

model’s dynamics,
exp (— %—F,(f)TR_ngj))
(271')"1/2[)6’5(‘73)1/2

Pr(i)(Yk) = (8)
and choose the model with the largest probability.
This model is then used to estimate the current value
of the state variables, to predict their future values,
and to choose among alternative responses.

Hidden Markov Dynamic Models

In the above multiple dynamic model, all the pro-
cesses have a fixed likelihood at each time step.
However, this is uncharacteristic of most situations,
where there is a fixed sequence of internal states
each with its own dynamics. Consider driving
through a curve; the driver may be modeled as hav-
ing transitioned through a series of states A =
(s1. 82, ...8¢), ;¢5, for instance, entering a curve,
in the curve, and exiting a curve. Transitions be-
tween these states happened only in the order indi-
cated, with a final transition from other to entering
the curve.

Thus in considering state transitions among a set of
dynamic models we should make use of our cur-
rent estimate of the driver’s internal state. We can
accomplish this fairly generally by considering the
Markov probability structure of the transitions be-
tween the different states. The input to decide the
person’s current internal state (e.g., which dynamic
model currently applies) will be the measurement in-
novations process as above, but instead of using this

Figure 1: The Nissan Cémbridge Basic Research
240SX simulator.

directly in Equation 8 we will instead also consider
the Markov inter-state transition probabilities.

We call this type of model a hidden Markov dynamic
model (HMDM) [1]. Using this approach one can
recognize which action is occuring by comparing the
observed pattern of driver behavior to each of sev-
eral hidden Markov dynamic models (one for each
action of interest). We use the well-known Viterbi
algorithm [7] to match the innovations processes of
the various dynamic models (Equation 7) with the
action pattern proscribed by each of the HMDMs.
This produces an estimate of which action is most
likely given the observed pattern of driver behavior,
and can be accomplished in real-time on current mi-
CrOprocessors.

DEVELOPMENT OF HMDMS FOR DRIVING
The goal of our research is to statistically character-
ize the sequence of steps within a driving action, and
to use the first few preparatory steps to identify the
action being initiated. We report our progress devel-
oping HMDMs for a range of common driving tasks
as well as preliminary results of using the HMDMs
in a real-time task recognition system.

Driving Simulation

The data collection for HMDM training was per-
formed on the Nissan Cambridge Basic Research
driving simulator. The simulator consists of the
front half of a Nissan 240SX convertible and a 60
deg (horizontal) by 40 deg (vertical) image projected
onto the wall facing the driver (Figure 1). The



Figure 2: Scene from the simulated world.

240SX is instrumented to record driver control in-
put such as steering wheel angle and parameters of
the dynamic car model such as acceleration.

Using the simulator, eight adult male subjects drove
through an extensive city-like virtual environment
illustrated in Figure 2. This world contains a large
number of buildings, many roads with standard
markings, and other moving cars. Each subject
completed three trials through the virtual world;
each trial lasted approximately five minutes, during
which time the driver’s control of steering angle and
steering velocity, car velocity and acceleration were
recorded at approximately 0.1 second intervals.

From time to time during this drive text commands
were presented on-screen, whereupon the subjects
had to assess the surrounding situation, formulate a
plan to carry out the command, and then execute the
command. The total time needed to complete each
command varied from 5 to 10 seconds, depending
upon the complexity of both the action and the sur-
rounding situation.

The commands included: (1) stop at next intersec-
tion, (2) turn left at next intersection, (3) turn right
at next intersection, (4) change lanes, (5) pass the
car in front of you, (6) follow the car in front of you.
The pass and follow commands appeared only once
per trial, while the change lane and stop commands
appeared twice. The two turn commands were re-
peated three times at different locations, each time
with different road, building, and traffic conditions.

Figure 3: A driving action model with three intenal
states (S1, S2, S3).

HMDM parameter estimation

The parameters of each Markov chain A were esti-
mated iteratively to maximize Pr(Y|\A) where the
observation sequence Y consisted of the steering an-
gle, steering speed, and acceleration data recorded
as subjects carried out these commands. The ini-
tial models were identical three-state models (Fig-
ure 3) with equal transition probabilities to each of
the following states. Using the tools provided by En-
tropic’s HTK computer software, the parameter esti-
mation was completed in two steps. A more formal
discussion of these procedures can be found in [9].

First, an initial set of parameter values was obtained
from the training data with a uniform segmenta-
tion of the training data. This was followed by re-
peated use of Viterbi alignment to re-segment the
training data. The Viterbi algorithm can be used
to recover the most likely state sequence which in
turn determines the new segmentation of the obser-
vation sequence. The parameters of each state are
re-estimated and the procedure is repeated until the
likelihood of the training data no longer increases. A
Baum-Welch re-estimation of individual HMDMs is
performed to further refine the parameters.

Next, an embedded training version of the Baum-
Welch algorithm is performed. In this case, the

model parameters were simultaneously re-estimated -

from labelled but unsegmented training data (i.e.,
the sequence in which the training examples occurs
is used, but the exact boundaries of each example are
not needed). This procedure further tunes the mod-
els for continuous real-time recognition.

Evaluating recognition performance

To assess the classification accuracy of these models
we combined them with the Viterbi recognition al-
gorithm, and examined the stream of drivers’ steer-
ing and acceleration innovations in order to detect
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and classify the driver’s actions. We then exam-
ined the computer’s classifications immediately af-
ter each command, and recorded whether or not the
computer had correctly labeled the action.

To obtain unbiased estimates of recognition perfor-
mance, we employed the “leaving one out” method.
In this method HMDMs are trained on seven sub-
jects and then tested on the eighth subject. This is
then repeated eight times, each time leaving out a
different one of the eight subjects, and the recogni-
tion statistics are averaged.

Recognition results were tabulated at one, two, and
three seconds after the presentation of a command to
the subject. Note that the minimum response time
to a command is approximately 0.5 seconds, so that
the one second point is at most one-half second after
the beginning of the driver’s action. At one second
after the command presentation (0.5 seconds after
the beginning of the action) mean recognition accu-
racy was 88.3% - 4.4% (SD). At two and three sec-
onds (1.5 and ~2.5 seconds after the beginning of
the action, respectively), mean recognition accuracy
was 89.4% + 4.3% and 87.5% +£2.8%. The chance
of randomly guessing the correct task is only 17%
(1 in 6). These results demonstrate that many types
of driving behavior are sufficiently stereotyped that
they are reliably recognizable from observation of
the driver’s initial movements.

To assess whether our sample was sufficiently large
to adequately encompass the range of variation in
the driving styles of our subjects, we compared these
previous results to the case in which we train on all
subjects and then test the training data. In this case,
the recognition accuracies were 91.0%, 88.6%, and
88.2%, indicating that we have a sufficiently large
sample.

It should be noted that the performance of the cur-
rent models is slightly reduced compared to the re-
sults reported in [1]. The models in [1] were trained
on four parameter observation vectors (vehicle ve-
locity was the fourth parameter) that were also sub-
sampled to 20Hz. Due to hardware limitations in our
real-time implementation, it was not possible to sup-
ply 20Hz data to the recognizer, so the models in the

present study were trained from 10Hz data. The ve-
locity parameter was eliminated to make recognition
of the actions velocity-independent.

REAL-TIME RECOGNITION

We have implemented a version of a real-time task
recognition system on the 240SX simulator adapt-
ing the real-time recognition capabilities of the HTK
software to work with non-speech signal sources.
The simulator acts as the signal source and sends a
3-parameter observation vector (acceleration, steer-
ing angle, steering wheel velocity) 10 times per sec-
ond via an RPC connection to another computer run-
ning the HTK Viterbi recognizer. The HTK host
reads the data and performs continuous task recog-
nition on the signal. A frame-by-frame record of the
recognizer’s classification (the action HMDM with
the highest likelihood of generating the observed se-
quence) is compared to the log file produced by the
simulator to assess the recognition performance. In
an actual system, the recognizer would send the cur-
rent classification back to the vehicle, to initiate the
appropriate adjustment or display the needed infor-
mation.

In a preliminary test of the implementation of the
real-time system, three subjects drove through the
virtual city following the on-screen commands as
they appeared. One of the three subjects was also in-
cluded in the training pool. We examined the num-
ber of correct guesses in 0.5 second windows up to
three seconds after the command presentation and
found that recognition performance varied widely
for the tasks. For left turns, the recognition rate was
fairly constant between 50-60%. One second af-
ter the command, passing recognition was up to 60-
70% and after two seconds, right turn recognition
was over 60%. Both stopping and following recog-
nition only reached 40-50% after 2.5 seconds. In-
terestingly, lane change recognition started around
50% and decreased with time. This may reflect the
faster completion time of lane changes compared to
the other tasks.

WORK IN PROGRESS

The current procedure of giving on-screen com-
mands to the driver is obviously unrealistic. In ad-
dition, the point at which the driver decides to be-



gin execution is an indeterminate time after the com-
mand presentation. The resulting variation in the
segmentation of the training set reduces the recog-
nition performance of the HMDMs. Under nor-
mal circumstances, drivers choose when to execute
a task, albeit constrained to varying degrees by the
surrounding traffic, road signs, etc.

Therefore, we are testing a new protocol for collect-
ing training data. The subjects now drive through a
more extensive city-like environment with the free-
dom to choose when and where to execute the ma-
neuvers. They verbally report the initiation and
completion of a maneuver (e.g., they will say “T am
turning right”) while the experimenter records the
time of the report in the log file produced by the sim-
ulator. This will hopefully provide a more consis-
tent segmentation of the training data. We are also
recording the state of the surrounding traffic since
this is information which the driver might use in de-
ciding a course of action.

Using this data set, it will also be possible to observe
what the drivers are doing just before initiating a ma-
neuver. If they demonstrate consistent behavior be-
fore their execution of the maneuver, then it may be
possible to create a model of the driver’s prepara-
tory actions. In this case, it will be possible to pre-
dict the driver’s intention rather than simply detect-
ing the action after it has begun.
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