The (Abridged) Art of the Propagator, Abridged

Alexey Radul

March 23, 2009
International Lisp Conference
or

Computing with Boxes, Arrows, and Circles
or
Computing with Boxes, Arrows, and Circles

- Why you might want to
- Something to get right if you try it
A propagator is a machine that reads some cells and can write to some cells always on, asynchronous, stateless.
A propagator is a machine that reads some cells and can write to some cells
always on, asynchronous, stateless
A propagator is a machine that reads some cells and can write to some cells always on, asynchronous, stateless.
A propagator is a machine that reads some cells and can write to some cells always on, asynchronous, stateless
Network them, and values propagate
this distributes naturally
Network them, and values propagate

this distributes naturally
Network them, and values propagate

this distributes naturally
Network them, and values propagate
this distributes naturally
Network them, and values propagate

this distributes naturally
Win: Constraints are just piles of mutually inverse propagators
Win: Constraints are just piles of mutually inverse propagators
Win: Constraints are just piles of mutually inverse propagators
Win: Constraints are just piles of mutually inverse propagators
Win: Constraints compose into multidirectional computations
which can grow incrementally without adjusting explicit controls
which can grow incrementally without adjusting explicit controls
But: A cell can get stuff from multiple sources

Is this bad?
But: A cell can get stuff from multiple sources

Is this bad?
But: A cell can get stuff from multiple sources

Is this bad?
But: A cell can get stuff from multiple sources

Is this bad?
“Old View”: Cells hold values

Leads to all kinds of trouble

▶ precedence
▶ overwriting
▶ infinite reactions and fights

▶ loss of essence
“Old View”: Cells hold values

Leads to all kinds of trouble

- precedence
- overwriting
- infinite reactions and fights
- ...
“Old View”: Cells hold values

Leads to all kinds of trouble

- precedence
- overwriting
- infinite reactions and fights
- . . .
- loss of essence
“Constraints” may stop constraining
Loops may buzz forever
Fights may break out
New View: Cells hold information about values
New View: Cells hold information about values and merge it as it comes in from many sources.
E.g. interval arithmetic is partial information
Partial information makes no sense without multiple sources
Win: Truth maintenance is partial information
Win: Making merge generic decouples the accident of kind of accumulator from the essence of propagation
Win: Making merge generic decouples the accident of kind of accumulator from the essence of propagation and now we can use many different kinds of accumulators.
Example: Implicit Search

Baker, Cooper, Fletcher, Miller, and Smith live on the first five floors of this apartment house. Baker does not live on the fifth floor. Cooper does not live on the first floor. Fletcher does not live on either the fifth or the first floor. Miller lives on a higher floor than does Cooper. Smith does not live on a floor adjacent to Fletcher’s. Fletcher does not live on a floor adjacent to Cooper’s.
We can write a program like this

```scheme
(define (multiple-dwelling)
  (let ((baker (one-of 1 2 3 4 5))
        (cooper (one-of 1 2 3 4 5))
        (fletcher (one-of 1 2 3 4 5))
        (miller (one-of 1 2 3 4 5))
        (smith (one-of 1 2 3 4 5)))
    (require-distinct
      (list baker cooper fletcher miller smith))
    (abhor (= baker 5))  (abhor (= cooper 1))
    (abhor (= fletcher 5)) (abhor (= fletcher 1))
    (require (> miller cooper))
    (abhor (= 1 (abs (- smith fletcher))))
    (abhor (= 1 (abs (- fletcher cooper))))
    (list baker cooper fletcher miller smith)))
```
Compile it to a network like this
Track which guesses a value depends on
Nogoods: \{A,B\}

A,B
T: 1:
A,B
−1:
A,B
T:
B,C

4:B
5:C
3:A −
1
=\text{abs}
> R
require
A
abhor

And use that for accurate backtracking
And use that for accurate backtracking
Without recomputing anything unrelated
Without recomputing anything unrelated
Without recomputing anything unrelated
To solve that problem in 63 backtracks instead of 500
Pick the knowledge representation for your own problem, but
Partial information and propagator networks are essentially intertwined.