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Abstract – We develop a general theory of transport-limited aggregation phenomena occurring
on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the
complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-
limited aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere
(K > 0) and the pseudo-sphere (K < 0), which approximate “bumps” and “saddles” in smooth
surfaces, respectively. Although the curvature affects the global morphology of the aggregates,
the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as
the particle size is much smaller than the radius of curvature. We conjecture that all aggregates
grown by conformally invariant transport on curved surfaces have the same fractal dimension as
DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase
from hyperbolic (K < 0) to elliptic (K > 0) geometry, which we attribute to curvature-dependent
screening of tip branching.

Copyright c© EPLA, 2010

Introduction. – The Laplacian growth model and
its stochastic analogue, diffusion-limited aggregation
(DLA) [1], describe the essential physics of non-
equilibrium pattern formation in diverse situations [2].
Examples include viscous fingering [3], dendrite solidifi-
cation [4], dielectric breakdown [5], and dissolution [6],
depending on conditions at the moving, free boundary.
Some extensions to non-Laplacian growth phenomena,
such as advection-diffusion-limited aggregation [7,8]
(ADLA) and brittle fracture [9], are also available, which
exploit mathematical similarities with the DLA model.
Almost all prior work with these growth models has

assumed flat Euclidean space, typically a two-dimensional
plane, but real aggregates, such as mineral dendrites [10],
cell colonies [11], and cancerous tumors [12], often grow
on curved or rough surfaces. In principle, surface curvature
should affect the morphology of stochastic aggregates, but
we are not aware of any prior work, except for simulations
of Eden-like clusters on spheres [11], which lack the long-
range interactions of DLA and related models through
the evolving concentration field. In the case of continuous
interfacial motion, there have been several mathematical

(a)E-mail: bazant@mit.edu

studies of viscous fingering (without surface tension)
on spheres [13,14], but we will show that stochastic
aggregation of discrete particles is rather different, due to
the physical constraint of fixed particle size in the curved
space.
In this letter, we extend transport-limited growth

models to curved two-dimensional surfaces via conformal
projections from the plane. Time-dependent conformal
maps are widely used in physics [15] and materials
science [16] to describe interfacial dynamics in two dimen-
sions. Continuous conformal maps have long been applied
to viscous fingering [3,17], and more recently, Hastings
and Levitov introduced stochastic, iterated conformal
maps for DLA [18]. Both continuous and stochastic
conformal-map dynamics have also been extended to
other conformally invariant (but non-Laplacian and
nonlinear) gradient-driven transport processes [7,8,19],
such as advection-diffusion in a potential flow [20,21] or
electrochemical transport in a quasi-neutral solution [19].
Indeed, there is nothing special about harmonic functions
(solutions to Laplace’s equation) in the plane, aside
from the direct connection to analytic functions of a
complex variable (real or imaginary part). The key
property of conformal invariance is shared by other
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equations [16,19] and, as noted here, applies equally
well to conformal (i.e. angle preserving) transformations
between curved surfaces. We formulate continuous and
discrete conformal-map dynamics for surfaces of constant
Gaussian curvature, not only the sphere with positive
curvature, but also the pseudosphere, with negative
curvature. We use the approach to study the fractal and
multi-fractal properties of DLA on curved surfaces.

Transport-limited growth on curved surfaces. –
At first, it would seem that conformal-map dynamics
cannot be directly applied to a non-Euclidean geome-
try, and certainly the formulation could not be based
only upon analytic functions of the complex plane. Never-
theless, if there exists a conformal (angle-preserving)
map between the curved manifold and the plane, and if
the underlying transport process is conformally invari-
ant [7,8,16,19,21], then any solution to the transport equa-
tions in the non-Euclidean geometry can be conformally
mapped to a solution in the complex plane, without chang-
ing its functional form. Such maps do exist, as we illustrate
below with important special cases.
Let Ωm(t) be the exterior of a growing object on a

non-Euclidean manifold, M , and Φ be a conformal map
from a (part of) complex plane to M . We speak of the
domain Ωm(t) as having its shadow, Ωz(t) =Φ−1(Ωm(t)),
on the complex plane under the projection Φ−1. As in the
flat-surface case, we can describe the growth by a time-
dependent conformal map, g(w, t), from the exterior of
the unit disk, Ωw, to the exterior of the growing shadow,
Ωz(t), which in turn is mapped onto the curved geometry
by the inverse projection. Care must only be taken that
the dynamics of g(w, t) should describe Ωz(t) in such a
way that the evolving object, Ωm(t), follows the correct
physics of growth on M , rather than in the intermediate
complex plane, which is purely a mathematical construct.
In particular, to model the stochastic aggregation of
identical particles of fixed size in the curved space M ,
the particle size must vary with position in the shadow
domain, due to local stretching by the conformal map to
the plane.
Let us illustrate this point for both continuous and

discrete versions of conformally invariant, transport-
limited growth [8,16]. For continuous growth, we general-
ize the Polubarinova-Galin equation equation [8,16,22] for
a curved manifold with a conformal map Φ(z) as follows:

Re {w g′(w) gt(w)}=
α σ(w, t)

|Φ′ ◦ g(w)|2 . (1)

for |w|= 1, where α is a constant and σ(w, t) is the time-
dependent flux density on the boundary of Ωw. This result
is easily obtained by substituting Φ ◦ g for g in the original
equation.
For stochastic growth, we adjust the Hastings-Levitov

algorithm [18] on the shadow domain. The algorithm is
based on the recursive updates of the map,

gn(w) = gn−1 ◦φλn,θn(w), gn(w) = g(w, tn), (2)

R0−R

North Pole

South Pole
z

ΦR(z)
φ

Ωz(t)

Ωm(t)

Fig. 1: (Colour on-line) Stereographic projection, Φ−1, from
the exterior of the growing object Ωm(t) on a sphere of radius
R to the exterior of the shadow, Ωz(t), on a complex plane. The
point Φ(z) is projected from the north pole to the point z. The
origin of the z-plane is tangent to the sphere at the south pole,
and the latitudinal angle φ is measured from the south pole.

where φλ,θ is a specific map that slightly distort Ωw
by a bump of area λ around the angle θ. While the
random sequence {θn} follows the probability distribution,
p(θ, tn)∝ σ(eiθ, tn), invariant under conformal maps, the
preimage of bump area, λn, should be determined so that
the bump area is fixed as λ0 on the manifold, M . Thus
the bump size of the n-th accretion is determined by

λn =
λ0

|Φ′ ◦ gn−1(eiθn)|2 · |g′n−1(eiθn)|2
. (3)

We are not aware of any prior modification of the Hastings-
Levitov algorithm with this general form. Previous studies
on DLA in a channel geometry [23] could be viewed as the
case M = {z : 0< argz < 2π} and Φ(z) = log(z), although
the manifold is Euclidean.
It is important to stress that our general transport-

limited growth models are not conformally invariant in
the most general sense, since the full time-evolution
of the interface cannot be simply mapped from one
geometry to another. It is only the growth probability
measure for stochastic dynamics (or the interfacial velocity
distribution for continuous dynamics) for a particular
realization of the interface, at a given moment in time,
which is invariant under conformal mapping. In the case
of DLA in curved geometries (discussed below), this means
that the angles on the unit disk in the complex plane (the
pre-image of the cluster in curved space, after inverting
the projection and the iterated Hastings-Levitov map in
the plane) are independent, identically distributed random
variables, but the particle size must vary in the complex
plane, to maintain a constant size after projection to the
curved space.

Stereographic projections. – To illustrate the
general theory, we first make use of the classical
stereographic projection [24,25] to describe growth on a
(Riemann) sphere. A stereographic projection is obtained
by projecting the surface of a sphere from the north pole
to a plane whose origin is tangent to the south pole;
see fig. 1. If Φ is an inverse stereographic projection
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with sphere of radius R, Φ−1 maps the point (R,φ, θ)
in spherical coordinates to z =R tan(φ/2)eiθ in the
complex plane. Here θ is the azimuthal angle and φ is
the latitudinal angle measured from the south pole. If the
modulus, | · |, on the sphere is defined to be the distance
to the origin (south pole) in the curved metric (arc-length
of the great circle) in a similar way to | · | on a complex
plane, |z| and |Φ(z)| satisfy

|z|
2R
= tan

(
|Φ(z)|
2R

)
. (4)

The Jacobian factor of the projection is angle-
independent; thus, it is given by

|Φ′(z)|= d|Φ(z)|
d|z| =

1

1+ (|z|/2R)2 (5)

from the derivative of eq. (4). Using eq. (5), we can
formulate continuous interfacial dynamics, eq. (1), or
stochastic dynamics, eq. (3) on a sphere.
While the surface of a sphere is a three-dimensional

visualization of an elliptic (or Riemannian) geometry
with constant positive Gaussian curvature K =R−2,
there also exists a conformal projection to the complex
plane from a hyperbolic geometry with constant nega-
tive curvature, K =−R−2. Physically, the hyperpolic
geometry locally resembles a saddle point, or “mountain
pass”, on a curved surface. Unlike an elliptic geometry,
a hyperbolic geometry cannot be isometrically embedded
in 3D Euclidean space. (In other words, it is not possible
for a surface in three dimensions to consist entirely of
saddle points.) Instead, only a part of the geometry can
be embedded in three dimensions, through a surface
known as the pseudosphere. A conformal projection to
the complex plane can be obtained by simply viewing
the hyperbolic geometry as a surface of a sphere with
an imaginary radius, iR, as suggested from the sign of
curvature. Substituting iR for R alters eqs. (4) as

|z|
2R
= tanh

(
|Φ(z)|
2R

)
(6)

and eq. (5) as

|Φ′(z)|= 1

1− (|z|/2R)2 . (7)

The image of hyperbolic geometry under the projection
is thus limited to the interior of a disk with radius 2R,
and the boundary, |z|= 2R, corresponds to the infinity.
The stereographic projection serves as a non-isometric
visualization of the geometry known as Poincaré disk. The
length element dz at dz in the planar disk corresponds
to the element dz/(1− (|z|/2R)2) in the hyperbolic
geometry.

DLA on constant-curvature surfaces. – We now
illustrate our general mathematical formalism by simu-
lating DLA clusters in geometries of constant curvature,

where the (fixed) particle size is much smaller than the
radius of curvature. This allows to grow large clusters
(e.g. without hitting the opposite pole of the sphere)
and consider universal effects of surface curvature,
which do not depend on the particle size. As discussed
above, the harmonic probability measure on the disk
in the plane, p(θ) = 1/2π, is equivalent to the physical
growth probability measure on the cluster in the curved
geometry, obtained by iterated conformal maps in the
plane, eq. (3), followed by stereographic projection to the
curved geometry.
Representative DLA clusters grown by our method are

shown in fig. 2, for both elliptic and hyperbolic geometries.
The former is represented in fig. 2(a) by a cluster of
equal-sized particles growing on a sphere from the south
pole, towards a particle source at the north pole. Since
it is impossible to embed the latter in three dimensions,
we show instead the “shadow” of the cluster in the
Poincaré disk, |z|< 2R, where the particles shrink in size
with distance from the origin. In both cases, the spatial
variation of the particle sizes in the shadow domain (to
keep constant particle size in the curved physical domain)
yields subtle differences in cluster morphology, compared
to the familiar case of DLA clusters in a Euclidean
geometry.
A significant advantage of the conformal-mapping

formulation of DLA, compared to discrete random-walk
simulations, is that the Laurent expansion of g(w, t)
analytically encodes information about the geometrical
moments of the cluster [18,26]. For example, the confor-
mal radius, A1, and the center of charge, A0, come from
the first two terms of the expansion, g(w)≈A1w+A0.
Such coefficients obtained from DLA clusters on curved
surfaces are not directly useful, however, since they are
the moments of the mathematical shadow in the complex
plane, not the original cluster in the physical domain.
Nevertheless, using the property that circles are mapped
to circles under an (inverse) stereographic projection, it
is possible to define analogous quantities corresponding
to A1 and A0.
We note that the image, Φ(A1w+A0), of the unit circle,

|w|= 1, is also a circle on M , and it is the one that best
approximates the cluster and the far-field in Ωm(t). Thus,
we define the conformal radius, A1, and the center of
charge, A0, on M to be the radius and the deviation of
Φ(A1w+A0) respectively:

A1 =
1

2
{ |Φ(A1+ |A0|)|+ |Φ(A1− |A0|)| }, (8)

A0 =
1

2
{ |Φ(A1+ |A0|)|−|Φ(A1− |A0|)| }. (9)

On curved surfaces, however, the fractal dimension Df ,
cannot be determined from the scaling, n∼ 〈A1〉Df , since
the geometry is not linearly scalable with A1; the two
domains within radii of different values of A1 are not self-
similar to each other, and the log-log plot of n vs. A1 is
not linear either.
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South Pole 

∞

A1 = (π/2)|R|
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Fig. 2: (Colour on-line) DLA clusters on the elliptic (a)
and the hyperbolic (b) geometries. The elliptic geometry is
isometrically embedded on the surface of a sphere and the
hyperbolic geometry is visualized on the Poincaré disk with
the metric, ds=dz/(1− (|z|/2R)2). We use R/

√
λ0 = 100 and

aggregate 4942 and 9001 particles to fill the great circles of
radius (π/2)R (dashed lines) in the elliptic and hyperbolic
geometries, respectively.

Instead, we study the fractal properties of the clusters
as follows. We use the sphere radius R as a relevant length
scale while keepingA1 proportional to R for self-similarity.
Thus, we grow a cluster until A1 reaches φ0R for various
radiuses R, but with a fixed particle size, λ0 = 1, and a
fixed angle φ0 = π/2. The angle φ0 is as such since the
circle (dashed lines in fig. 2) becomes a great circle on a
sphere. If N is the number of particles to fill the radius,
the fractal dimension is determined from 〈N〉 ∼RDf . From
the statistics of 1000 clusters for each R in a geometrically
increasing sequence from 79 to 400, we obtain the fractal

Table 1: The fractal dimension Df and the multifractal dimen-
sions D2q+1 of DLA clusters on three different geometries.

Geometry Elliptic Euclidean Hyperbolic
Df 1.704± 0.001 1.704± 0.001 1.693± 0.001
D2/Df 0.577± 0.003 0.529± 0.006 0.527± 0.001
D3/Df 0.591± 0.006 0.503± 0.005 0.499± 0.001
D4/Df 0.617± 0.012 0.486± 0.004 0.482± 0.001
D5/Df 0.631± 0.018 0.473± 0.004 0.469± 0.001
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log
10
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g 10

 〈N
〉

Hyperbolic
Euclidean
Elliptic

2 2.2 2.4 2.6
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 〈λ
Nq

〉

Hyperbolic
Euclidean
Elliptic

q = 0.5

q = 1.0

q = 1.5

(a)

(b)

Fig. 3: (Colour on-line) (a) The average number of particles,
〈N〉, to fill the disk of conformal radius,A1 = (π/2)R, vs. radius
R on the three geometries. (b) Moments 〈λqN 〉 of the pre-image
bump size, λN , vs. R, which define D2q+1 via (10).

dimensions, Df ≈ 1.70, as shown in table 1. Figure 3(a)
shows 〈N〉 vs. R in the three geometries. The relative
deviation of Df between geometries is surprisingly small
compared to the deviation of the surface properties caused
by the curvature. For example, the area contained within
a radius (π/2)R in the elliptic (or hyperbolic) geometry
is about 23% smaller (or larger) than the corresponding
area in the Euclidean space. Nevertheless, this factor only
changes the prefactor, not the exponent, of the scaling,
〈N〉 ∼RDf .
Our results suggest that the fractal dimension Df is

insensitive to the surface curvature. This property is
apparently related to the fact that, over small length
scales comparable to the the particle size

√
λ0, the surface

is locally Euclidean. This result is consistent with previous
studies of ADLA clusters [8], whose fractal dimension
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is unaffected by the background flow of concentrated
fluid, even though the flow strongly influences the global
morphology and “mean shape” of the clusters [7]. We
conjecture that any conformally invariant transport-
limited aggregation process on a d-dimensional curved
manifold has same, universal fractal dimension as DLA
in flat (Euclidean) space in d dimensions. This includes
complicated stochastic phenomena, such as ADLA
growth of aggregates in a two-dimensional fluid flow on
the surface a sphere or pseudosphere (hyperbolic saddle).
More subtle statistics of the aggregates, related to

the warping of particle sizes by projections from curved
geometries to the plane, are revealed by multifractal
scalings. The multifractal properties [27,28] of the clus-
ters, which derive from time-evolution of the probability
measure, do seem to depend on the curvature in our simu-
lations. Following ref. [26], we measure the multifractal
dimensions Dq from the relation,

〈λqN 〉 ∼R
−2qD2q+1 . (10)

The averaging in eq. (10) is made over λN at uniformly
distributed angle. Figure 3(b) shows the first three
moments of λN as functions of R, and table 1 shows
Dq/Df in the three geometries. We note that Dq for the
elliptic geometry seem to be still transient, influenced
by finite-size effects. The multifractal dimensions do
not satisfy the inequality Dq >Dq′ for q < q′ [27]. Since
the space itself is finite and the distance to infinity is
bounded, the instability in growth is pronounced in
elliptic geometry. The normalized center-of-charge fluctu-
ation, 〈|A0|2〉1/2/R, is about 0.3 for an elliptic geometry
although it decreases as R increases. For Euclidean
and hyperbolic geometries, the fluctuations are around
0.03 and 0.02, respectively. It should also be noted that
the growth probability on the sphere is not the usual
harmonic measure since the far-field potential, −log|z|,
on plane is mapped to the singular potential, log(π−φ),
around the north pole.
In spite of some lingering finite-size effects in our simu-

lation results, we conjecture that multifractal dimensions
increase in the order of hyperbolic, Euclidean, and elliptic
geometries. The justification is that, when the measure-
ments are similarly made for decreasing latitudinal
angles, φ0 = π/3 and π/6, Dq on elliptic and hyperbolic
geometries, they converge to Dq on the Euclidean plane.
This is also supported by the slight difference in Dq
between Euclidean and hyperbolic geometries, which does
not appear to be attributable to statistical error.
Although we have not performed a detailed analysis of

the cluster morphologies corresponding to different multi-
fractal exponents, we believe the observed dependence
of Dq on curvature is related to the depth of “fjords”
between growing branches of clusters grown in the
different geometries. In elliptic geometry, the circum-
ference of a circle with radius φ0R is 2π sinφ0R, which
is shorter than 2πφ0R in Euclidean geometry. This has
fundamental implications for “screening” by the tips of

neighboring branches of a growing cluster, which preferen-
tially attach particles before they can penetrate deep into
the fjord between the branches. If we consider a pair of
branches which make the same opening angle on the two
geometries, the area between them is more screened in
elliptic geometry than in Euclidean geometry. Therefore,
we expect a different distribution of λ due to the different
spatial curvature. Due to the competition neighboring
regions on a smaller circumference, tip-splitting events
are subdued, as observed in continuous growth [14],
and eventually fewer branches survive. Although we
have not performed a detailed analysis of tip splitting,
some evidence for this effect can be seen in fig. 2(b),
where the DLA cluster seems to become less branched at
larger radii. The opposite argument applies to hyperbolic
geometry, where the circumference is given by 2π sinhφ0R,
the inter-branch area is less screened, and tip splitting is
encouraged. Effectively, there is more space for branches
to split and grow separately in the hyperbolic geometry,
which can be seen qualitatively in fig. 2(b), where the
cluster becomes increasingly more branched at larger
radii. In future work, it would be interesting to analyze
the spectrum of λ and its connection to tip splitting
events.
In summary, we have developed a mathematical

theory of transport-limited growth on curved surfaces
and applied it to DLA on two-dimensional surfaces of
constant Gaussian curvature. Our simulations suggest
that the fractal dimension of DLA clusters is universal,
independent of curvature, and depends only on the spatial
dimension. The multifractal properties of DLA, however,
seem to depend on curvature, since tip-splitting is related
to the different degrees of screening of the inter-branch
areas. We conjecture that these results hold in general,
for any conformally invariant transport-limited growth
process, in any number of dimensions.

∗ ∗ ∗
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REFERENCES

[1] Witten T. A. and Sander L. M., Phys. Rev. Lett., 47
(1981) 1400.

[2] Bunde A. and Havlin S. (Editors), Fractals and Disor-
dered Systems, second edition (Springer, New York) 1996.

[3] Bensimon D., Kadanoff L., Shraiman B. I. and Tang
C., Rev. Mod. Phys., 58 (1986) 977.

[4] Kessler D. A., Koplik J. and Levine H., Adv. Phys.,
37 (1988) 255.

[5] Niemeyer L., Pietronero L. and Wiesmann H. J.,
Phys. Rev. Lett., 52 (1984) 1033.

[6] Bazant M. Z., Phys. Rev. E, 73 (2006) 060601.
[7] Davidovitch B., Choi J. and Bazant M. Z., Phys. Rev.
Lett., 95 (2005) 075504.

46005-p5



J. Choi et al.

[8] Bazant M. Z., Choi J. andDavidovitch B., Phys. Rev.
Lett., 91 (2003) 045503.

[9] Barra F., Levermann A. and Procaccia I., Phys. Rev.
E, 66 (2002) 066122.

[10] Chopard B., Herrmann H. J. and Vicsek T., Nature,
353 (1991) 409.

[11] Wang C. Y. and Bassingthwaighte J. B., Math.
Biosci., 142 (1997) 91.

[12] Ho P. F. and Wang C. Y., Math. Biosci., 155 (1999)
139.

[13] Entov V. M. and Etingof P. I., Eur. J. Appl. Math.,
8 (1997) 23.

[14] Parisio F., Moraes F., Miranda J. A. and Widom
M., Phys. Rev. E, 63 (2001) 036307.

[15] Gruzberg I. and Kadanoff L. P., J. Stat. Phys., 114
(2004) 1183.

[16] Bazant M. Z. andCrowdy D., in Handbook of Materials
Modeling, edited by Yip S. et al., Vol. I (Springer) 2005,
Art. 4.10.

[17] Howsion S. D., Eur. J. Appl. Math., 3 (1992) 209.
[18] Hastings M. and Levitov L., PhysicaD,116 (1998) 244.
[19] Bazant M. Z., Proc. R. Soc. A., 460 (2004) 1433.

[20] Kornev K. and Mukhamadullina G., Proc. R. Soc.
London, Ser. A, 447 (1994) 281.

[21] Choi J., Margetis D., Squires T. M. and Bazant
M. Z., J. Fluid Mech., 536 (2005) 155.

[22] Polubarinova-Kochina P. Ya., Dokl. Akad. Nauk
SSSR, 47 (1945) 254; Galin L. A., Dokl. Akad. Nauk
SSSR, 47 (1945) 246.

[23] Somfai E., Ball R. C., DeVita J. P. and Sander
L. M., Phys. Rev. E, 68 (2003) 020401.

[24] Needham T., Visual Complex Analysis (Oxford Univer-
sity Press) 1997.

[25] Jones G. A. and Singerman D., Complex Functions: An
Algebraic Geometric Viewpoint (Cambridge University
Press) 1987.

[26] Davidovitch B., Hentschel H. G. E., Olami Z.,
Procaccia I., Sander L. M. and Somfai E., Phys. Rev.
E, 59 (1999) 1368.

[27] Hentschel H. G. E. and Procaccia I., Physica D, 8
(1983) 435.

[28] Halsey T. C., Jensen M. H., Kadanoff L. P.,
Procaccia I. and Shraiman S., Phys. Rev. A, 33 (1986)
1141.

46005-p6


