Speaker Rufin Vogels, Katholieke Universiteit Leuven
Time 4pm, Departmental Tea immediately following.
Date Friday, 8 February 2008
Place BCS Auditorium, 46-3002
Title Stimulus selective adaptation in macaque inferior
temporal neurons: fMRI, Local field potentials and
spiking activity.

Abstract:
Repetition of a stimulus reduces the response in many cortical areas. This
adaptation effect has been observed at the single cell level in macaques as
well as in fMRI signals in humans. This adaptation effect has been used in
fMR-Adaptation (fMR-A) studies to infer neuronal stimulus selectivities in
human cortex. Inferring neuronal selectivities from fMR-A, however, requires
an understanding of the relationship between the stimulus selectivity of
neuronal adaptation and responses, which can be studied by measuring
directly neuronal activity in monkeys. We demonstrated that monkeys show
fMRI adaptation in inferior temporal (IT) cortex using the same adaptation
protocol and visual stimuli as in human fMRI. Subsequently, we recorded
spiking activity in the IT region of macaques that shows fMRI adaptation,
investigating the relationship between stimulus selectivity of adaptation and
responses. As expected, repetition of identical object images reduced the
spiking activity of single IT neurons. Presentation of an image to which the
neuron was unresponsive did not alter the response to a subsequent image
that activated the neuron. Successive presentation of two different images to
which the neuron responded similarly produced adaptation, but less so than
the repeated presentation of an image. Thus neuronal adaptation at the single
cell level showed a greater degree of stimulus selectivity than the responses.
Furthermore, we measured the effect of adaptation on the shape tuning of
spiking activity and local field potentials in macaque IT cortex. For both
neuronal activity measures, the degree of shape tuning was unaffected by
adaptation. The adaptation effect was greater when repeating a less effective
shape than when that shape followed the most effective one, indicating that
the degree of adaptation depends on the relation between test and adapter
shape and not only on the response to the adapter. I will discuss the
implications of these findings for mechanisms of adaptation as well as for the
interpretation of fMR-A data.