Parallelization of Two-Dimensional Skeletonization Algorithms

Bhavya Daya
Electrical & Computer Engineering Department, University of Florida

Abstract

Non-pixel based skeletonization techniques have advantages over traditional pixel-based method, such as distance transform and thinning. One of the advantages includes a faster processing time. The disadvantage of non-pixel based techniques is the complexity. Pixel-based techniques are easier to implement and computational efficiency can be achieved by taking advantage of parallel computers. The parallelization of the pixel-based techniques, thinning and distance transform, is formulated, designed, compared and optimized. One algorithm, the distance transform, proved superior in performance and quality of skeletonization. It was showed that the serial and parallel distance transform algorithm performs better than the serial and parallel thinning algorithm. Results showed that the proposed parallel algorithm is computationally efficient and closely aligns with the human’s perception of the underlying shape. Optimizations were performed without compromising the quality of the skeletonization.

Many applications depend on the skeletonization algorithm. The parallelization of the skeletonization algorithm creates a stepping stone for the entire image processing application to enter the parallel computing realm. Increasing the performance of the skeletonization process will speed up the applications that depend on the algorithm.

1. Introduction

Image skeletonization is one of the many morphological image processing operations. By combining different morphological image processing applications, an algorithm can be obtained for many image processing tasks, such as feature detection, image segmentation, image sharpening, and image filtering. Image skeletonization is especially suited to the processing of binary images or grayscale images. The parallelization of the skeletonization algorithm will provide a stepping stone for image processing applications to transcend to the parallel computing realm. Many sequential algorithms exist for achieving a two-dimensional binary image skeletonization.

For a skeleton of an image to be successful and useful in its designated application, it must possess three properties [1]:

1. It must be closely aligned with the human’s perception of the underlying shape
2. It must be robust against noise
3. It must be computed in an efficient and timely manner

Skeletonization is achieved by two common methods, thinning and distance transform. Thinning and distance transform are pixel based techniques that need to process every pixel in the image [1]. This can incur a long processing time and leads to reduced efficiency. Various techniques have been developed and implemented, but a large percentage of them possess some common faults that limit their use. These faults include noise sensitivity, excessive processing time, and results not conforming to a human’s perception of the underlying object in the image [1]. Since skeletonization is very often an intermediate step towards object recognition, it should have a low computation cost.
2. Related Work

The literature survey unveiled that many different skeletonization algorithms are performed to obtain the three main goals of a good algorithm. Some algorithms emphasize one goal more than another.

The connectivity of the image is also greatly considered in skeletonization algorithms. Many perform variations of the distance transform and thinning approaches. Some even attempted a hybrid form of the two. [8] Since skeletonization works well when it is tailored for particular images, many algorithms were devised to obtain the skeletons of these specific image types. The major problem of the algorithms is that it works well for some images and not others, especially with regard to thinning algorithms.

Some complex techniques that have been developed that aren’t pixel-based techniques. These techniques conform to the skeleton requirements and are computed efficiently. [1] The parallelization of these algorithms would seem useless due to its efficiency. A simple algorithm can achieve the performance on a parallel computer comparable or even better than a complex algorithm on a sequential machine.

Some literature mentions that the transitioning of two-dimensional skeletonization to three-dimensional skeletonization is a difficult process. The 3D skeletonization techniques were surveyed, most of them start off using the two-dimensional techniques of thinning or distance transform. [3]

3. Background

The generation of a digital image skeleton is often one of the first processing steps taken by a computer vision system when attempting to extract features from an object in an image. Due to its compact shape representations, image skeletonization has been studied for a long time in computer vision, pattern recognition and Optical Character Recognition. It is a powerful tool for intermediate representation for a number of geometric operations on solid models.

An image skeleton is presumed to represent the shape of the object in a relatively small number of pixels, all of which are, in some sense, structural and therefore necessary. The skeleton of an object is, conceptually, defined as the locus of center pixels in the object. [3] Unfortunately, no generally agreed upon definition of a digital image skeleton exists. Of the literally hundreds of papers on the subject of thinning which are in print, the vast majority are concerned with the implementation of a variation on an existing thinning method, where the novel aspects are related to the performance of the algorithm. But for all definitions, at least 4 requirements below must be satisfied for skeleton objects [3]:

1. Centeredness satisfaction: Skeleton is geometrically centered within the object boundary or as close as possible.
2. Connectivity preservation: The output skeleton should have the same connectivity as the original object and should not contain any background element.
3. Topology must remain constant
4. As thin as possible: 1-pixel thin is the requirement for a 2D skeleton, and in 3D, as thin as possible.

Although the target is to satisfy the skeleton requirements, many algorithms perform well on certain types of images. Some algorithms provide an excellent skeleton for one image and a horrible one for another image. An algorithm should be fast and reliable in producing a good skeleton on any image. The quality is just as important as the execution time of the algorithm.

The simplest type of image which is used widely in a variety of industrial and medical applications is binary, i.e. a black-and-white or silhouette image. [4] A binary image is usually stored in memory as a bitmap, a packed array of bits. Binary image processing has several advantages but some corresponding drawbacks:
Table 1: Advantages and Disadvantages of Binary Images

<table>
<thead>
<tr>
<th>Advantages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Easy to acquire</td>
<td></td>
</tr>
<tr>
<td>• Low storage: no more than 1 bit/pixel, often this can be reduced as such images are very amenable to compression.</td>
<td></td>
</tr>
<tr>
<td>• Simple processing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Limited application: as the representation is only a silhouette, application is restricted to tasks where internal detail is not required as a distinguishing characteristic.</td>
<td></td>
</tr>
<tr>
<td>• Specialized lighting is required for silhouettes: it is difficult to obtain reliable binary images without restricting the environment.</td>
<td></td>
</tr>
</tbody>
</table>

There are different categories of skeletonization methods: one category is based on distance transforms, and a specified subset of the transformed image is a distance skeleton. [1] Another category is defined by thinning approaches; and the result of skeletonization using thinning algorithms should be a connected set of digital curves or arcs. [1] Thinning algorithms are a very active area of research, with a main focus on connectivity preserving methods allowing parallel implementation. Images below display the results of a 2D skeletonization thinning algorithm.

![Figure 1: Original Image](image1.png) ![Figure 2: Intermediate Step](image2.png) ![Figure 3: Skeleton of Original Image](image3.png)

Figure 1: Original Image [3] Figure 2: Intermediate Step [3] Figure 3: Skeleton of Original Image [3]

Thinning or erosion of the image is a method that iteratively peels off the boundary layer by layer from outside to inside. The removal does not affect the topology of the image. This is a repetitive and time-consuming process of testing and deletion of each pixel. It is good for connectivity preservation. The problem with this approach is that the set of rules defining the removal of a pixel is highly dependent on the type of image and different set of rules will be applied for different types of images. Figure 4 is an image of the thinning process as applied to a three-dimensional image. The phases are the thinning layers.
The distance transform is the other common technique for achieving the medial axis or skeleton of the image. There are three main types of distance transforms, chamfer based, Euclidean and voronoi diagram based. [5] The simplest approach for the skeletonization algorithm is the Euclidean distance transform. This method is based on the distance of each pixel to the boundary and tries to extract the skeleton by finding the pixels in the center of the object; these pixels are the furthest from the boundary. The distance coding is based on the Euclidean distance. This method is faster than the thinning approach and can be done in high degree of parallelism. [1] Unfortunately, the output is not guaranteed to preserve connectivity. The distance transform process applied to skeletonization can be visualized as in the figure below. The ridges on the image to the right belong to the skeleton.

As mentioned earlier, the computation cost of these methods affects the use of the skeletonization algorithm. Skeletonization is an essential part of image processing applications, with the increase in performance of skeletonization techniques the applications will also have a lower computation cost.

4. Methodology

The serial code for both algorithms was written for comparison with parallel algorithms. In order to determine if the serial code was achieving a skeletonization that was appropriate, it was compared to MATLAB’s results for the skeletonization. MATLAB contains the functionality to perform the distance transform skeletonization process and the thinning skeletonization process. MATLAB uses a different algorithm for performing the thinning skeletonization process and uses a different distance transform for achieving skeletonization. The distance transform skeletonization process implemented in MATLAB achieves the skeletonization by performing the Euclidean Distance Transform.

A shared memory architecture, Marvel Cluster, was chosen for implementation. The machine contains 16 symmetric multiprocessors with 32 GB of memory. Both algorithms use the domain decomposition approach. The image matrix is stored in shared memory for access by any processor. Each processor contains in local memory a piece of the entire image matrix that is
relevant for its calculations. If other matrix values is not present in local memory and is required, the value is fetched from shared memory.

The image is statically allocated by dividing the image into strips. Each processor or thread is assigned to perform computation on the strip that is allocated to it. Each processor performs the same computation on different sets of data or in this case, different parts of the image matrix. The split allocation is shown in the image below.

![Thread Allocation Diagram]

Figure 7: Thread Allocation

The shared memory machine was chosen for this application for a couple main reasons. Before these reasons are mentioned, it is useful to consider why clusters and a message passing machine were not utilized. Message passing machines have proven in the past that performance obtained is greater than shared memory machines. Since there are a lot of data that requires processing and the communication between processors without shared memory is predicted to be quite large, the shared memory communication abstraction was chosen. The shared memory machine was predicted to perform well when the application requires data decomposition and large amount of data.

4.1 Parallelization of Distance Transform Algorithm

The distance transform is a common technique for achieving the medial axis or skeleton of the image. The Euclidean Distance transform was discussed in more detail in the Background section. The distance transform approach can be accomplished by finding the Euclidean distance of each pixel from the border of the image. The image below shows an example of the Euclidean distance of a two dimensional image. The distances that are the greatest from the border represent the skeleton of the image. The connectivity is the most difficult aspect to preserve.

![Euclidean Distance Table]

Figure 8: Euclidean Distance Transform
The simplest approach for the skeletonization algorithm is the Chessboard Distance Transform. It has been found that the chessboard distance transform will provide a good approximation for the Euclidean distance transform with a reduction in computation cost in both the serial and parallel domain. Since the work is done at the pixel level, few errors will not be visible to a person viewing the image. This method is based on the distance of each pixel to the boundary and tries to extract the skeleton by finding the pixels in the center of the object; these pixels are the furthest from the boundary. An example of the chessboard distance transform is shown in the figure below.

![Figure 9: Chessboard Distance Transform](image)

The serial distance transform algorithm contains many data dependencies. The image has to be traversed in row major order in order to achieve the skeletonization. Each pixel depends on the value in rows and columns in ahead of it. When determining the distance from the edge of the image, the previous computed values are depended on when looking at a particular pixel.

Two methods for parallelizing the distance transform are:

1. Ignore data dependencies inherent to the algorithm
2. Red Black Ordering

Red black ordering is where the image pixels are ordered by alternating the colors, red and black. The red pixels are never directly adjacent to any other red pixels. Directly adjacent to a pixel means either to the right, left, above or below the pixel. This allows the red pixels to all be computed in parallel and the black pixels can be computed in parallel, after the red pixels have computed. Theoretically and during the formulation process, this method seemed to provide potential for a large improvement in performance. The unforeseen problem with this approach is realized later in the development process.

The PRAM analysis of the favored approach of ignoring data dependencies revealed that the speedup becomes linear as the size of the image, assumed to be \(nn\), becomes very large. Also the system size, \(p\), has to be a multiple of \(n\) in order to achieve the linear speedup. If the number of processors, \(p\), equals to the size of the image, \(n\), then linear speedup can be achieved but the skeletonization process would not be properly performed. There has to be a compromise between the performance and accuracy of the algorithm. The PRAM analysis is questionable. Since the communication is not included in the analysis, the actual performance of the algorithm cannot be predicted. Based on the PRAM analysis, some speedup should be achieved but it will not be linear unless an optimization is performed.

4.1.1 Serial Baseline

The serial code was written after theory of the distance transform algorithm was researched. The information essential for generating the distance transform matrix is shown below. The functions \(f1\) is applied to the image \(I\) in standard scan order, producing \(I^*(i; j) = f1(i; j; I(i; j))\), and \(f2\) in reverse standard scan order, producing \(T(i; j) = f2(i; j; I^*(i; j))\). This shows that the reverse scan of the image requires that the standard scan order be completed.
The C serial code that implements the chessboard distance transform according to theoretical definition above is below. A similar method is performed to obtain the skeletonization from the distance transform matrix created. The entire code can be found in the source code section.

```c
// implements the Chessboard distance transformation
for(x = 1; x < X; x++) //process in raster mode - scan order
{
    for(y = 1; y < Y; y++)
    {
        if(M[x][y] == 1)
        {
            min=M[x-1][y];
            if(M[x-1][y] < min) min = M[x-1][y];
            if(M[x][y-1] < min) min = M[x][y-1];
            M[x][y] = min + 1;
        }
    }
}
for(x = X-1; x > 0; x--) //process in anti-raster mode – reverse scan order
{
    for(y = Y-1; y > 0; y--)
    {
        if(M[x][y] > 1)
        {
            min = M[x][y+1];
            if(M[x+1][y] < min) min = M[x+1][y];
            if(min+1 < M[x][y]) M[x][y] = min + 1;
        }
    }
}
```

The serial baseline of the distance transform algorithm follows the flowchart below. The algorithm requires the image to be traversed four times. The skeletonization process analyzes the distance transform matrix created. Each pixel is analyzed to determine if it is considered to be part of the skeleton, by comparing the pixel value to its immediate neighbors. The pixels with the largest value are the ones that are farthest from the edge. These pixels are guaranteed to be part of the image’s skeleton.
4.1.2 Parallel Code - Ignoring Data Dependencies

The serial algorithm is followed, but the data is distributed among different processors performing the computation in parallel. The distance transform image is obtained as shown below. The entire code can be viewed in the appendix.

It was predicted that ignoring dependencies achieves a good skeletonization when the number of processors is not too large compared to the image size. As the size of the image increases, the system size or number of processors should also increase to achieve a decent speedup.

```
//Perform Chessboard Distance Transform on Image
upc_forall(int i=1; i<X; i++; i*THREADS/X)
{
    for(int j=1; j<Y; j++)
    {
        if(A[i][j]==1)
        {
            int min=A[i-1][j];
            if(A[i-1][j] < min) min = A[i-1][j];
            if(A[i][j-1] < min) min = A[i][j-1];
            A[i][j] = min + 1;
        }
    }
}
upc_barrier;

upc_forall(int i=X-1; i>0; i--; i*THREADS/X)
{
    for(int j=Y-1; j>0; j--)
    {
        if(A[i][j]>1)
        {
            int min = A[i][j+1];
            if(A[i+1][j] < min) min = A[i+1][j];
            if(min+1 < A[i][j]) A[i][j] = min + 1;
        }
    }
}
```

The flowchart of the parallel algorithm is similar to the serial algorithm, with the difference that the computation is being performed on different parts of the image matrix simultaneously. The barrier synchronization is in place because the next step cannot continue until all the threads have completed the previous step in the algorithm. Optimizations to reduce the wait and synchronization time were experimented with and described later.

The reading of an image matrix from a file and writing the final image matrix to a file consumes a lot of processing time. This is especially because every processor needs to open the file. It would be good if each processor reads the part of the file, relating to its local work and allocate it into local and shared memory. The optimization of the file IO aspect of the algorithm is also considered and discussed later. The algorithm is such that there isn’t a way to avoid the barrier synchronization points. To achieve a good skeletonization, these synchronization points have to be in place.
4.1.3 Parallel Code - Red Black Ordering

The red black ordering approach is highly parallelizable. Many pixels can be computed simultaneously. The ordering alternates the pixels that will be computed. The problem with this approach is that the result is highly dependent on the image. Some images work well when the reverse scan order is performed before the standard scan order. Some images do not result in a skeleton at all. Some images work well with the standard scan order performed first. Since the algorithm does not produce a reliable skeleton each time, this method was not chosen to be utilized.

The chessboard distance transform is implemented using the method described. The entire code is available in the appendix.

//Perform the forward scan of the chessboard distance transform
int k;
upc forall(int i=1; i<X; i++) //red pixels
{
 if(i%2==0) { k=1; }
 else if(i%2!=0) { k=2; }
 for(int j=k; j<Y; j+=2)
 //Perform the forward scan of the chessboard distance transform
```c
if (A[i][j] == 1) {
    int min = A[i-1][j];
    if (A[i-1][j] < min) min = A[i-1][j];
    if (A[i][j-1] < min) min = A[i][j-1];
    A[i][j] = min + 1;
}
}

upc_barrier;

upc forall(int i=1; i<X; i++; i*THREADS/X) // black pixels
{
    if (i%2==0) { k=2; }
    else if (i%2!=0) { k=1; }

    for(int j=k; j<Y; j=j+2)
    {
        if (A[i][j] == 1) {
            int min = A[i-1][j];
            if (A[i-1][j] < min) min = A[i-1][j];
            if (A[i][j-1] < min) min = A[i][j-1];
            A[i][j] = min + 1;
        }
    }

    // Perform reverse scan of the chessboard distance transform
    upc forall(int i=X-1; i>0; i--; i*THREADS/X) // red pixels
    {
        if (i%2==0) { k=1; }
        else if (i%2!=0) { k=2; }

        for(int j=Y-k; j>0; j=j-2)
        {
            if (A[i][j] > 1) {
                int min = A[i][j+1];
                if (A[i+1][j] < min) min = A[i+1][j];
                if (min+1 < A[i][j]) A[i][j] = min + 1;
            }
        }
    }
    upc_barrier;

    upc forall(int i=X-1; i>0; i--; i*THREADS/X) // black pixels
    {
        if (i%2==0) { k=2; }
        else if (i%2!=0) { k=1; }

        for(int j=Y-k; j>0; j=j-2)
        {
```
if(A[i][j]>1)
{
 int min = A[i][j+1];
 if(A[i+1][j] < min) min = A[i+1][j];
 if(min+1 < A[i][j]) A[i][j] = min + 1;
}
}

The skeletonization process stays the same for the red-black ordering algorithm. Changes are only made to the chessboard distance transform part of the program.

4.2 Parallelization of Thinning Algorithm

Thinning or erosion of the image is a method that iteratively peels off the boundary layer by layer from outside to inside. The removal does not affect the topology of the image. This is a repetitive and time-consuming process of testing and deletion of each pixel. It is good for connectivity preservation. The problem with this approach is that the set of rules defining the removal of a pixel is highly dependent on the type of image and different set of rules will be applied for different types of images. Thinning is best when performed on alphabets and numbers.

The parallelism was accomplished by having each pixel evaluated by looking at the eight pixels surrounding it. Based on a set of elimination rules, the pixel might be eliminated or it remains until it is later eliminated or it will become permanent for the skeleton image. The table shows the elimination rules used during implementation.

The PRAM analysis of the parallelized thinning algorithm revealed the same outcome as the distance transform PRAM analysis. The prediction was that the linear speedup is achievable if the problem size and system size both increase.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Elimination Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Never</td>
</tr>
<tr>
<td>1</td>
<td>Never</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Never</td>
</tr>
</tbody>
</table>
4.2.1 Serial Code

The serial code is basically the parallel code running on one processor. One processor goes through the entire image and eliminates pixels based on the elimination table. Iterations need to be performed on the image to achieve a skeleton. Some images take longer than others. The performance is highly dependent on the image, image size, and system size. Some images do not result in a good skeleton even when performed on one processor. The flowchart shows the details of the algorithm. The number of iterations depends on the image being thinned. The algorithm also requires quite a bit of storage overhead by allocating an original image matrix and a copy image matrix. The thinning is performed using data from the original matrix and updating the new matrix. In order for the elimination procedure to work, two two-dimensional arrays are required.

```
do
{
    done=1;
    Skel();
    Iterate();
    //Print out the image matrix
    for(int i=0; i<X; i++)
    {
        for(int j=0; j<Y; j++)
        {
            A[i][j] = B[i][j];
        }
    }
}
while(done==0);
```

The Skel() function checks each pixel and compares the pixels surrounding it to the elimination table to determine if it should be eliminated. Each pixel can be analyzed and eliminated in parallel. The Iterate() function determines if another thinning iteration needs to be performed on the image.

The new matrix that was created after the skeleton process is copied to the original matrix. The copying takes longer when the image is larger.
4.2.2 Parallel Thinning Code

The parallel thinning code is the serial algorithm performed on each processor and on different sets of data. The data is split up using the strip decomposition which was also used in the distance transform algorithm. The problem is that the waiting time for the algorithm is significant because each processor processes the image, then analyzes if it needs to perform another thinning iteration, then performs the algorithm again. The wait time decreases the performance of the algorithm. The detailed algorithm is outlined in the flowchart. The flowchart shows the parallel algorithm on four processors.
5. Comparison of Distance Transform and Thinning Algorithms

The image input into the thinning and distance transform algorithms is 256 by 256 pixels. The algorithms utilize dynamic memory allocation. The effect of static allocation and dynamic allocation is discussed later. Dynamic allocation is used due to the improved overall performance it provides. The performance of the serial and parallel algorithms for both techniques is shown in the figure below. The parallel algorithms were performed on four processors in the figure below.

![Total Times by Function: Default Revision](image)

Figure 11: First bar is the serial DT algorithm, the Second bar is the serial Thinning algorithm, the Third bar is the parallel DT algorithm on 4 nodes, and the Fourth bar is the parallel Thinning algorithm on 4 nodes

It can be seen that although the thinning algorithm is easily parallelizable, the thinning needs to be done many times which decreases the performance. The distance transform method yields a lower execution time, parallel and serial, when compared to the thinning algorithm. The parallel algorithm for the distance transform has a lower execution time than the serial thinning algorithm on the same input image. The parallel algorithm for the distance transform algorithm has approximately three times the execution time of the serial algorithm. The communication of the processors needs to be decreased. The output of the images from both algorithms is shown below. The parallel distance transform output is similar to the serial output. Of course, the MATLAB operation is much better, but it can be seen that the functionality was achieved.
The output of the serial and parallel thinning algorithms are identical. The MATLAB thinning algorithm uses a different approach to thinning therefore the result is not useful for comparison. The superimposition of the distance transform and thinning algorithm outputs may provide a better skeletonization result than one algorithm alone. It seems that thinning is better suited for character and fingerprint recognition.

The performance analysis performed above, does not exclude the file I/O operations. The manual execution time results yielded the same conclusions. The file I/O added extra overhead to the program, but the thinning algorithm still performed slower than the distance transform algorithm on the same image. The output of the thinning algorithm is also not as good as the output of the distance transform algorithm.

This comparison allows one algorithm to be chosen over the other. The distance transform algorithm provides the better skeletonization and potential for better overall performance. Optimizations were attempted for the thinning algorithm to see if the performance can be increased tremendously.

6. Performance Analysis

The performance analysis does not include the file I/O part of the program because it wasn’t parallelized. The computation, which was parallelized in the formulation phase of the project, is compared to determine the speedup.

When ghost zone optimization is utilized for four threads, the speedup of the computational part of the program is 3.6. The execution time for the serial algorithm is 25.381 ms and the parallel distance transform algorithm with ghost zone executes in 7.043 ms. Ghost zone optimization is discussed later.
The distance transform algorithm without the ghost zone optimization was compared to the serial algorithm and parallel algorithm run on a single processor. It can be predicted that ghost zone optimization increases the chance of achieving linear speedup. The parallel program running on a single processor is shown to be faster than the serial program. This was an odd result that requires further investigation.

Table 3: Performance of Parallel Distance Transform Algorithm

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Serial Baseline Execution Time</th>
<th>Parallel Execution Time</th>
<th>Speedup: Compared to Serial Code</th>
<th>Speedup: Compared to Parallel Code on One Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.381 ms</td>
<td>20.213 ms</td>
<td>1.256</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>25.381 ms</td>
<td>10.504 ms</td>
<td>2.207</td>
<td>1.924</td>
</tr>
<tr>
<td>3</td>
<td>25.381 ms</td>
<td>9.532 ms</td>
<td>2.663</td>
<td>2.12</td>
</tr>
<tr>
<td>4</td>
<td>25.381 ms</td>
<td>7.355 ms</td>
<td>3.45</td>
<td>2.748</td>
</tr>
<tr>
<td>5</td>
<td>25.381 ms</td>
<td>5.702 ms</td>
<td>4.51</td>
<td>3.545</td>
</tr>
<tr>
<td>6</td>
<td>25.381 ms</td>
<td>5.396 ms</td>
<td>4.704</td>
<td>3.746</td>
</tr>
<tr>
<td>7</td>
<td>25.381 ms</td>
<td>4.707 ms</td>
<td>6.03</td>
<td>4.294</td>
</tr>
<tr>
<td>8</td>
<td>25.381 ms</td>
<td>4.183 ms</td>
<td>6.068</td>
<td>4.832</td>
</tr>
<tr>
<td>9</td>
<td>25.381 ms</td>
<td>4.154 ms</td>
<td>6.11</td>
<td>4.866</td>
</tr>
<tr>
<td>10</td>
<td>25.381 ms</td>
<td>3.557 ms</td>
<td>7.136</td>
<td>5.683</td>
</tr>
<tr>
<td>11</td>
<td>25.381 ms</td>
<td>3.432 ms</td>
<td>7.395</td>
<td>5.890</td>
</tr>
<tr>
<td>12</td>
<td>25.381 ms</td>
<td>3.372 ms</td>
<td>7.527</td>
<td>5.994</td>
</tr>
<tr>
<td>13</td>
<td>25.381 ms</td>
<td>2.983 ms</td>
<td>8.509</td>
<td>6.776</td>
</tr>
</tbody>
</table>

Figure 17: Graphical Analysis of Speedup
It seems that the communication increases as the number of processors increase. This communication is limiting the approach to linear speedup. Another problem is that the algorithm used doesn’t consider data dependencies. Therefore as the number of processors becomes larger than 15 processors, the image is significantly different from the serial baseline image. The user can make a compromise and achieve four to five times speedup on five to six processors and still achieve the image required.

7. Optimization of Algorithms

Both algorithms were optimized to analyze the performance increase. Thinning algorithm optimizations were performed, in case the performance greatly increases after performing the optimization. Some optimizations relate to both algorithms and were performed to see the impact it would have on overall performance. The common optimizations to both algorithms are described below.

Experiment 1: Investigate the best configuration with Dynamic Memory Allocation for Both Algorithms

Dynamic memory allocation was investigated to optimize the memory on the threads. The best optimization for the parallel thinning algorithm that could be achieved was 0.91325 seconds. The serial thinning algorithm had an overall execution time of 280.5 milliseconds.

The other memory distributions didn’t reduce the communication overhead. The same was seen with the distance transform algorithm. The best configuration resulted in 160 ms of overall execution time.

```c
A=(shared int **)upc_all_alloc(THREADS, X*sizeof(int *));
for(i = 0; i < X; i++)
{
    A[i] = (shared int *)upc_all_alloc(THREADS, Y*sizeof(int));
    for(j = 0; j < Y; j++)
    {
        int temp;
        fscanf(fpt, "%d", &temp);
        A[i][j] = temp;
    }
}
```

Experiment 2: Attempt to Parallelize the File I/O Operations

It was attempted to make each thread only read in the data necessary for most of its computation. This will cause the execution time to decrease. The parallel I/O operations were not working as needed. The file reading was not being properly done. The data from the file does not match with the data found in the vector. Since there are problems, focus has been turned to reducing the communication and hiding that communication behind computation.

Much of the other processing besides the computation is the file input and output. All the processors need to be aware of the file and open it. Parallelizing this will significantly improve the performance of the parallel program. When the functionality of this improves, then it can be used to decrease the file I/O aspect of the program.
7.1 Thinning Algorithm

Experiment 1: Investigation of Bulk Transfer effect on Thinning Algorithm

Thinning algorithm was run using four threads and the following static allocation.

\[
\begin{align*}
\text{shared [1] int A[64*THREADS][256];} \\
\text{shared [1] int B[64*THREADS][256];}
\end{align*}
\]

Bulk transfer was incorporated to view its effects on the performance of the thinning algorithm. The execution time without bulk transfer was 1.33092 seconds. The execution time for the algorithm when using bulk transfer is 1.17401 seconds. The puzzling result found was that when dynamic allocation was used and bulk transfer was not used, the execution time was less than 1.17401 seconds. It was 0.91325 seconds.

![Total Times by Function: Default Revision](image)

Figure 18: The second bar is the static allocation without bulk transfer, the third bar is static allocation with bulk transfer, and the fourth bar is dynamic allocation without bulk transfer. The first bar is the serial baseline.

The bulk transfer was not being allowed by the compiler when dynamic memory allocation was used. The reason for the dynamic memory allocation reducing the execution time is that the setup of the memory allocation allows the image to be split into blocks of data and not strips.
7.2 Distance Transform Algorithm

Experiment 1: Effects of Dynamic Memory Allocation on Distance Transform Algorithm

Dynamic memory allocation reduces the performance of the algorithm. The overhead of allocating memory dynamically affects the performance especially when the image size is small. The following shows the performance of the distance transform program performed on one processor and four processors. Dynamic memory allocation is used. Speedup is not observed because the communication between the nodes and memory allocation is causing the performance to decrease. The speedup observed is 0.406. The static memory allocation results in a speedup of 0.473. Since the image size was large, a large impact was not witnessed.

The image above shows the dynamically allocated parallel distance transform algorithm when compared to the serial baseline. The execution time of the parallel algorithm was 159.13 ms and the serial baseline executed in 64.64 ms.

This is the chart of static memory allocation parallel distance transform compared to the serial baseline. The communication still needs to be improved, but the memory allocation was investigated in this experiment. The parallel algorithm executed in 136.72 ms.
The following code shows the dynamic memory allocation adjustment made.

```c
A=(shared int **)upc_all_alloc(THREADS, X*sizeof(int *));
for(i = 0; i < X; i++)
{
    A[i] = (shared int *)upc_all_alloc(THREADS, Y*sizeof(int));
    for(j = 0; j < Y; j++)
    {
        int temp;
        fscanf(fpt, "%d", &temp);
        A[i][j] = temp;
    }
}
```

Experiment 2: Ghost Zone Optimization for Distance Transform Algorithm

The remote shared accesses create a lot of overhead in the parallel algorithm. It is possible to overlap communication with computation. This is done using split-phase barriers instead of blocking barriers. Blocking barriers have been used in the parallel program. Local processing can be done while waiting for data or synchronization.

The ghost zones are the boundaries between the thread data. The communication at these points is the most. The ghost zone is therefore pre-fetched. While the pre-fetching takes place, the computation on the other local data can be performed. After all threads process the local data computation, the ghost zone is processed.
The execution time of the parallel distance transform algorithm drops to 107.41 ms. The ghost zone execution is good for performance improvement, but the improvement will be more visible when there are more processors and larger images. The speedup is 0.602.
Experiment 3: Effect of Ghost Zone Optimization on Speedup as Number of Processors Change

Table 4: Performance Table

<table>
<thead>
<tr>
<th>Number of Processors</th>
<th>Serial Baseline Execution Time</th>
<th>Parallel Execution Time</th>
<th>Speedup: Compared to Serial Code</th>
<th>Speedup: Compared to Parallel Code on One Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.381 ms</td>
<td>20.232 ms</td>
<td>1.254</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>25.381 ms</td>
<td>10.16 ms</td>
<td>2.498</td>
<td>1.99</td>
</tr>
<tr>
<td>3</td>
<td>25.381 ms</td>
<td>7.834 ms</td>
<td>3.24</td>
<td>2.582</td>
</tr>
<tr>
<td>4</td>
<td>25.381 ms</td>
<td>6.953 ms</td>
<td>3.65</td>
<td>2.91</td>
</tr>
<tr>
<td>5</td>
<td>25.381 ms</td>
<td>6.186 ms</td>
<td>4.103</td>
<td>3.27</td>
</tr>
<tr>
<td>6</td>
<td>25.381 ms</td>
<td>5.452 ms</td>
<td>4.655</td>
<td>3.71</td>
</tr>
<tr>
<td>7</td>
<td>25.381 ms</td>
<td>4.891 ms</td>
<td>5.189</td>
<td>4.14</td>
</tr>
</tbody>
</table>

Figure 23: Speedup Improvement using Ghost Zone Optimization
8. Conclusion

The analysis of both pixel-based algorithms revealed that parallelization will cause performance improvement but it will not be linear. After implementation, optimization and analysis, it was found that the best algorithm is the distance transform algorithm when executed on five to six processors. The performance and accuracy are decent at this system size. The optimizations can be further investigated to achieve linear speedup. Many different methods, such as parallel file I/O, can speed up the algorithm tremendously. Future work should focus on obtaining linear speedup on a small system size. Based on preliminary results, it seems possible to achieve the goal.

9. References

