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Abstract Many areas of academic and industrial work make use of the notion of a
‘technology’. This paper attempts to reduce the ambiguity around the definition of what
constitutes a ‘technology’ by extension of a method described previously that finds highly
relevant patent sets for specified technological fields. The method relies on a less
ambiguous definition that includes both a functional component and a component con-
sisting of the underlying knowledge in a technological field to form a two-component
definition. These two components form a useful definition of a technology that allows for
objective, repeatable and thus comparable analysis of specific technologies. 28 techno-
logical domains are investigated: the extension of an earlier technique is shown to be
capable of finding highly relevant and complete patent sets for each of the technologies.
Overall, about 500,000 patents from 1976 to 2012 are classified into these 28 domains. The
patents in each of these sets are not only highly relevant to the domain of interest but there
are relatively low numbers of patents classified into any two of these domains (total patents
classified in two domains are 2.9 % of the total patents and the great majority of patent
class pairs have zero overlap with a few of the 378 patent class pairs containing the bulk of
the doubly listed patents). On the other hand, the patents within a given domain cite patents
in other domains about 90 % of the time. These results suggest that technology can be
usefully decomposed to distinct units but that the inventions in these relatively tightly
contained units depend upon widely spread additional knowledge.
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Introduction

There are many applications in academic and industrial settings where studying a specific
‘technology’ is useful (Pavitt 1984) and thus differentiating among specific descriptions of
a ‘‘technology’’ is an important research agenda. A very important goal of some of this
work is to more closely link technologies and industries in order to more clearly understand
the economic impact of various technologies (Evenson and Putnam 1988; Verspagen et al.
1994). Indeed, an extensive program (Schmoch et al. 2003; Schmoch 2008) has developed
a preliminary ‘‘concordance’’ between the industrial classes as economically viable and the
International Patent Classes (IPC) as representative of technologies. The concordance has
been empirically developed based upon patenting activity of firms in various industries.
However, the concept of ‘‘a technology’’ and ‘‘an industry’’ are often if not usually con-
flated whereas technologies as technically understood cut across industries as shown in
great detail by Rosenberg (1979). Cockburn and Griliches (1987) describe their attempts to
categorize industries for their study on patent valuations in the following words

An industry in this sense is quite clearly defined at the conceptual level, but (as
usual) is difficult to define in practice

In any event, the issue in this paper is not linking technologies to specific industries.
While recognizing the great potential value of a more direct linkage of technological and
economic data, this work is aimed at understanding non-economic relationships among
technologies; such relationships are also of some interest. For example, a potential long-
term trend towards convergence of technologies (Luan et al. (2013) requires an objective
means for defining distinct technologies that are seen to merge over time. Importantly, the
emergence of new technologies also requires an objective understanding of interactions
among technologies over time. As a second example, there has been much recent interest in
how specific renewable energy technologies have been adopted in comparison to one
another (Jacobsson and Johnson 2000; Neij 1997). Other studies have looked at variation
of R&D spending across several technologies (Levin 1988). Others are concerned about
how the rate of technical improvement changes for a specific technology (Benson and
Magee 2014; Benson 2014). Business leaders are often searching for specific ‘technolo-
gies’ for investment or how they relate to a competitive analysis (Utterback and Acee
2005; Bower and Christensen 1995). We refer to these and other types of analysis of
technologies as the field of ‘technological research.’ At this point in time, the patent
classification systems in use (the US Patent Classification System, UPC, the European
Patent Classification Systems, ECLA and the International Patent Classification System,
IPC) do not adequately allow such comparisons.1 Choi and Hwang (2013) describe the

1 The Cooperative Patent Classification (CPC) system currently under the joint development of the Euro-
pean and US Patent offices (see http://www.cooperativepatentclassification.org/obj.html) will be interesting
to understand and test when fully available and used by both patent offices.
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need for an unambiguous and less time-consuming method for selecting of a set of
inventions that describe a particular technological field.

Regarding the limitations of this research, all the patents within the fields of interest
could not be collected due to the ambiguous boundaries between technical fields.
Also, most technical fields, not only those of LED and wireless broadband, have a
vast amount of patents, taking a great deal of time and manpower to extract and
refine processes of patent data. In this research, the target field was therefore nar-
rowed down for analysis thanks to consultation with experts. (Choi and Hwang 2013)

These examples use the term ‘technology’ in many different ways with varying levels of
specificity. Technological cross-analysis requires an objective and consistent definition of
what constitutes a technology. Nonetheless, flexibility in the definition is necessary
because (1) some ‘‘technologies’’ can be sub-categories of other ‘‘technologies’’ and (2) the
wide range of purposes for studies where the unit of analysis is a ‘technology’. Thus, an
ideal taxonomic structure for technology should place emphasis on specificity, repeat-
ability and flexibility across many different types of analyses. One auspicious starting point
for such a structure is to utilize a two-part definition for specific technologies.

Many widely used taxonomic structures include definitions that consist of two com-
ponents: form and function in a product, form and structure in a piece of literature or a
society (from an ethnographers point of view), form and content in art, or prescriptive and
descriptive grammar. In all of these definitions, one component takes a top-down ‘func-
tional’ view of the subject, and the other component consists of a bottom-up ‘composi-
tional’ approach. The following section will describe a number of previous attempts at
defining technology from both top-down and bottom-up approaches.

Background

Functional definition of a technology (top-down)

One of the least repeatable and generalizable aspects of technological research is the
selection of the unit of analysis, a problem that was explored in Magee et al. (2014). Many
different units of analysis are used in technological research and are shown on a continuum
in Fig. 1. Some studies have examined specific inventions at specific times, such as Nel-
son’s (1962) or Riordan and Hoddeson’s (1997) study of the invention of the transistor.
Similarly, Tushman and Anderson’s (1986) list of technological discontinuities or Girif-
alco’s (1991) list of innovations since the 18th century attempt to focus on singular

Fig. 1 Range of technological unit of analysis in technological change research and a technological domain
as used in this paper
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inventions. Others, such as Solow (1956), have studied technology as a single integrated
unit, in an attempt to explain economic growth that is not caused by additional labor or
capital. More commonly, researchers attempt to study specific technological fields (called
technological research in the introduction). Studying technologies at this intermediary level
mitigates the subjectivity and lack of breadth inherent in selecting individual inventions,
while allowing for greater specificity and deeper analysis than when studying all of
technology at once.

There is still much ambiguity in the intermediate unit of analysis ‘‘technological field.’’
Arthur (2007) posited that any technology has two main elements. The first element is that
any technology is ‘a means to fulfill a human purpose.’ Examples of purposes he notes
include ‘to power an aircraft’, or ‘to sequence a DNA sample,’ or to ‘generate electricity.’
Arthur’s second element of technology is that it must take advantage of a particular effect
or phenomenon. This effect could be something like the conversion of light to electrons
through the photoelectric effect, or the mathematical principles that govern radio waves;
the effects do not necessarily need to be physical, they can be scientifically, mathemati-
cally, or even socially based. Thus Arthur’s definition of a technology is:

a technology is a means to fulfill a purpose, and it does this by exploiting some
effect. (Arthur 2007)

Earlier, Dosi (1982) presented a similar definition that incorporates the different
embodiments of knowledge that are represented by a technology.

Let us define technology as a set of pieces of knowledge both directly ‘practical’
(related to concrete problems and devices) and ‘theoretical’ (but practically appli-
cable although no necessarily already applied) know-how, methods, procedures,
experience of successes and failures and also of course physical devices and
equipment. (Dosi 1982).

Dosi’s definition of technology includes the practical knowledge that is related to the
domain which is often embodied as patents, theoretical knowledge that is associated, but
not necessarily used yet which can be things such as scientific articles and finally the
specific artifacts that represent the technology which are often the end products or enabling
tools used to make the products.

In Magee et al. (2014), many of the underlying concepts behind Dosi and Arthur’s
definitions are maintained, while the definition of technology is further modified to move
closer to the goal of a specific, repeatable and flexible denotation. First, due to the sig-
nificant and different uses of the term ‘technology’, the term used in both that and this
paper is Technological Domain (TD), which provides clear differentiation from the other
uses of the term ‘technology’.

A technological domain can be defined as: The set of artifacts that fulfill a specific
generic function utilizing a particular, recognizable body of knowledge. (Magee
et al. 2014)

This definition is more specific in terms of the set of artifacts (which includes systems,
processes and algorithms as well as devices) than Arthur’s use of the term ‘means.’
Additionally, the term purpose is less ambiguous when it is described as a specific generic
function. The precision in this term provides more clarity about the relationship between a
domain and their performance characteristics and links the technological domain to its
economic purpose. Finally, the term ‘some effect’ has been replaced by ‘a particular,
recognizable body of knowledge,’ in an attempt to more closely link the technological
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domain with the underlying knowledge that it is based upon and reduced uncertainty about
unknown effects that are not yet considered ‘knowledge’ that may crosscut several tech-
nological domains.

It is also important to note the areas in which this definition is intentionally non-specific.
The two terms to take notice of are the ‘set of artifacts…’ and ‘…a recognizable body of
knowledge.’ These two terms allow for a technological domain to be as broad as ‘semi-
conductors’ or as narrow as ‘industrial stereolithography 3D printers’. The fact that this
definition does not require a certain level of specificity makes it more flexible and able to
represent a large set of potential technological domains. Another benefit of this flexibility
is that it is likely impossible to create a specific set of technological domains that uniquely
map the entire space of technology, and technological change is strongly dynamic so that
one time-invariant best structure is not a practical or worthwhile goal. This flexible defi-
nition of a technological domain allows for the scale and scope of a domain to be adapted
to the goals of the specified research. The range of the technological domain as defined in
this paper is shown in schematically Fig. 1.

Composition (bottom-up) definition of technology: locating a set of patents
that represents a technological domain

Difficulties in creating accurate and complete lists of inventions

One of the main strategies used by many technological change researchers is to explain
differences in technologies by analyzing the underlying inventions that make up each
‘technology’. Excellent examples that do such analyses as a function of time include
Gilfillan (1935), Hunter (1949), Passer (1953), Fogel (1964) and Rosenberg (1982). All of
these studies note that their listing is incomplete because of small incremental improve-
ments too numerous to fully determine. On the other hand, some researchers attempt to
categorize only the important specific technical improvements in a technological field, for
example Tushman and Anderson’s (1986) paper on technological discontinuities. They
claim to demonstrate that ‘technology evolves through periods of incremental change
punctuated by technological breakthroughs.’ In this and many other cases of invention
categorization, there is both a lesser and a greater classification relating to the ‘break-
throughs’ and the ‘incremental’ inventions—with most examples attempting to focus
heavily on the greater classification (i.e. only listing breakthrough inventions within a
field).

While the definitions of the greater or lower classification are often given, they are also
almost always subjective and open to interpretation. This means that often times the
decision of whether an invention is upper or lower class can be different based upon the
researcher, which reduces the repeatability of the theories derived from these subjective
determinations. For example, in their review of breakthrough inventions, Tushman and
Anderson described the process of selecting their innovations as easy, but have very little
detail regarding their selection process beyond that.

Technological discontinuities were relatively easy to identify because a few inno-
vations so markedly advanced the state of the art that they clearly stand out from less
dramatic improvements (Tushman and Anderson 1986)

The result of their simple search is Table 1 below that lists the technological discon-
tinuities for three technological fields.

1970 Scientometrics (2015) 102:1965–1985
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Analyzing Table 1, one perceives a wide variety of artifacts and inventions that are
classified as breakthrough, including the first production of commercial cement and the
introduction of a longer (150 ft) kiln for producing cement. It is possible that these
‘‘breakthroughs’’ received a significant amount of attention; however, it is certain
(Rosenberg 1982) that they were enabled by other inventions that are less well known. This
is a significant issue because for every Watt steam engine that gets the majority of the
credit, there are a number of Wilkinson boring machine that enabled the engine to have
precise and concentric cylinders; for every transistor there is a point rectifier for a radio
that demonstrated the initial principle first. The purpose of these examples is to show that
while we may remember one specific invention (or even a specific artifact such as the DC-
3) as being the most important, it is often one of many inventions (or a combination of
many) that together were able to create a new and successful product or product class.
Thus, a quantitative and repeatable methodology of relating inventions to a specific
technological domain is required for an adequate compositional approach- assessing
publicity is not adequate.

Patents as a proxy for inventions

Patent data has been widely used for categorizing inventions into specific technological
areas in recent years. Patents are an attractive choice for analyzing technological change
because they are: generalizable, objective, quantitative and yet contain extensive quali-
tative information. Patents include a strong majority of technical fields over a long period
of time, and thus allow for easier generalization of the research. Moreover, there are
specific criteria for an invention to be patented and professional experienced evaluators
creating an objective standard as to what counts as an invention. Each patent is well
tracked and includes a wealth of quantitative meta-data and qualitatively detailed text
allowing for many types of analyses. Of course, it is certain that patents do not contain
all developments in a domain due to secrecy, lack of interest in protecting the innovation
and other reasons detailed in Mones et al. (2014) and elsewhere. Not all inventions are
patented and inventions are not equivalent to all aspects of a technological domain. Our
use of patents in this work makes the assumption that the technical characteristics of the
field are captured in the patent data so that interactions of fields found in patents would
be largely unchanged if one had access to all information about the technological
domain. At present, there is no method known for testing this assumption since the non-
patented technical changes are largely not documented so it remains a potential limitation
of the work. However, even obtaining the relevant patents is challenging (Stefanov and
Tait 2011; Alberts et al. 2011).

In selecting a set of patents that represent a technological domain, it is important that the
set be complete and contains a high percentage of patents that are relevant to the field of
interest. Completeness is the number of relevant patents in that set divided by the total
number of relevant patents in the entire United States patent database (a number that can
never be known for sure). Similarly, the relevance of a patent set resulting from a search is
defined as the number of relevant patents in that set divided by the total number of patents
in the same set. A large number of patent-searching techniques were explored and their
completeness and relevance evaluated by Benson and Magee (2013). Benson and Magee
(2013) also developed a robust, repeatable method initially called the Hybrid-Keyword
Classification method for selecting a set of highly relevant and complete patent sets that
represent a particular technological domain.

Scientometrics (2015) 102:1965–1985 1971
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Classification overlap method (COM)

The method developed in Benson and Magee (2013) involves searching for keywords that
are selected as potentially important in the technological domain of interest and analyzing
the patents in each of the sets retrieved with the keyword analysis by quantitative metrics
assessing the patent classes of the sets. The patents that are in both the most likely UPC
patent class as well as the most likely IPC patent class are then taken as the patents in the
domain. The basic intuition behind this classification overlap method is that the US patent
examiners (who make all the classification assignments in the US patent system that we
utilize) differentially utilize—at least implicitly—the two systems in ways that go beyond
the sub-classifications in each system. Thus, additional confirming evidence of the nature
of the technology in a patent is obtained by requiring that the patent be in both the top IPC
and UPC classes. The fact that each patent is classified in several IPC and UPC classes
allows this dual classification to not be over-restrictive thus resulting in reasonably good
completeness as well as relevancy. Each possible set is assessed by reading of patents in
the potential set by two different technically-knowledgable people who independently
judge the relevancy of the patents to the technological domain of interest.2 300 Patents are
read for each set which results in an overall relevancy assessment for the patent set that
is ± 5.7 %.3 Although COM was empirically supported in the previous work, applying it
to 28 cases in the present work (rather than only five as in the initial work) has uncovered
some worthwhile enhancements. The enhancements were sometimes necessary because of
the reduced scope of some domains in the present work but also were developed semi-
empirically and iteratively (using patent relevance testing as feedback) to a greater extent
than in the previous work.

With these enhancements, a more general method—renamed the Classification Overlap
Method (COM)—has been developed and was elaborated in Benson (2014). The COM is
repeatable and can be used by many different types of users, including those who are not
well versed in the complexity of the patent system. Figure 2 shows an overview of the
COM method with the components that are different from the previous method high-
lighted. The most direct uses of the COM are identical to that of the previous method and
are discussed in depth in Benson and Magee (2013). This paper will emphasize more
advanced emendations to the direct COM method and will refrain from repeating the cases
that were previously described. The most important of these changes will now be discussed
in turn.

Multiple combinations of UPCs and IPCs

The major difference between the previous method and the COM is the increased focus on
the overlap of more than two patent classes to select final patent sets. The previous method
largely relied upon the overlap between one IPC and one UPC, with an occasional
inclusion of another IPC or another UPC. The COM places more emphasis on evaluating
the combinations of overlaps between three or more classification codes in an attempt to
find the most complete and relevant patent sets as is shown in Fig. 3 using two

2 In the two cases where the two raters differed by more than 7 % in the relevancy rating, a third rater was
used and in both cases, a different overlap was used. Thus, in all cases, the relevancy rating given is the
average of the two (closely agreeing) raters.
3 This percentage follows from a standard sampling test for very large data sets that states that the
uncertainty range at 95 % confidence is determine by 1/(N)1/2.

1972 Scientometrics (2015) 102:1965–1985

123



representative IPC classes and two representative UPC classes. In all cases, analysis of
mean precision and recall (MPR), tests of relevancy and analysis of completeness guide
selection of the Classes chosen for overlap in this method.

The standard one UPC and one IPC overlap is represented by combining sectors A&B
for IPC1/UPC1, combining B&C&D for IPC1/UPC2 and by combining D&E for IPC2/
UPC2. When more than one of the IPC or UPCs has a fairly high MPR there can be a 2:1
overlap such as combining B&C&D&E for IPC1/IPC2/UPC2 or A&B&C&D for IPC1/
UPC1/UPC2 although this latter grouping is unlikely to be the final patent set as the
addition of UPC1 to the set only adds overlap A, which is relatively small and therefore
may not significantly add completeness to the UPC2/IPC1 patent set. In other cases, there
are technological domains that are best represented by 2 completely separate patent class
overlaps, such as IPC1/UPC1 and IPC2/UPC2: these combinations are represented by A&B
and D&E. Finally, there are some situations where relevance testing indicates that an IPC
or UPC class is NOT related to the particular TD, in which case it is possible to exclude
patent sets in the same way that one would include them in an overlap. For example, one
could create a patent set such as IPC1/UPC2 NOT UPC1, which would result in just sectors
C&D (rather than A&B&C&D). This Boolean set selection adds further flexibility and
specificity to the COM. It is important to note that the overlap of only UPCs or IPCs (i.e.
UPC1/UPC2 or IPC1/IPC2) has not shown to result in useful patent sets, as it is the
information contained in the two separate classification systems that provides the essence
of COM effectiveness (Benson and Magee 2013).

Fig. 2 Process flow of the COM with the largest differences from the previous method (Benson and Magee
2013) highlighted
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Lower level hierarchy classifications

The method described in Benson and Magee (2013) was designed to work at the primary
level of the UPC (the number before the ‘/’) and the 4 digit level of the IPC (ex: H01L).
The COM allows for the selection of highly relevant patent sets by overlaps of IPC and
UPC classes at lower level hierarchy classifications in each of the patent classification
systems. An example of this is 3D printing, where the primary UPC located is 264 (Plastic
and nonmetallic article shaping or treating: processes), however the more appropriate
patent class for SLA 3D Printing is 264/401 (Stereolithographic Shaping From Liquid
Precursor). This same approach can be applied to the IPCs in SLA 3D printing with the
primary IPC being B29C (Shaping Or Joining Of Plastics; Shaping Of Substances In A
Plastic State, In General; After-Treatment Of The Shaped Products, E.G. Repairing) and
the appropriate IPC being B29C35/08 (Heating, cooling or curing, e.g. crosslinking, vul-
canising; Apparatus therefor… by wave energy or particle radiation). These lower level
hierarchy classifications are overlapped and tested for relevancy and completeness in the
same way as described above for the higher level hierarchy classifications to find the
appropriate patent sets.

Pre-searching using known company names or inventors

Another enhancement found effective in the current expanded effort is that the COM
makes use of ‘seed sets’ of patents that can be found using more than just a keyword
search. Locating a seed set of patents using keywords works very well for most

Fig. 3 Different types of overlap types between multiple IPCs and UPCs using the COM with specific
sectors labeled
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technological domains, however, in some cases searching for the patents that are assigned
to companies or particular inventors that are known to operate in a particular technological
domain can act as a useful supplement to the initial keyword search. This technique was
used in selecting the patents for the Genome Sequencing technological domain, as there
were a few well-known organizations that worked on Genome Sequencing (e.g. Af-
fymetrix, Oxford Nanopore Sciences, Sequenom, Illumina, Knome, Broad Institute) and
thus helped located the final patent classification codes.

Results

To demonstrate the applicability of the two-component definition of technology and in
particular the effectiveness of the COM, 28 technological domains are analyzed in this
paper.

Functional definition of 28 domains

Magee et al. (2014) defined the 28 domains within their functional performance categories
as is shown in Table 2. The first row of the table is the operand on which the domain acts,
and the first column of the table shows the operation that the technological domain
performs.

The previous work done on this functional technology classification system shows that
the 9 types of classifications represent a relatively complete overview of all possible
technologies. The 28 domains analyzed in this paper fall into 8 out the 9 (with matter
storage being the exception) possible operand-operation classifications and thus represent a
very wide range of technological functions. Magee et al. (2014) describe in further detail
the other components of the top-down functional definitions.

Compositional definition of 28 domains

Using the COM it was possible to locate a relatively complete and relevant set of patents
for 28 technological domains, which demonstrates the COM to be applicable across a wide
variety of different technical areas and hierarchy levels. These new results confirm that US
patent examiners are using the two classification systems in distinctly different ways and
thus the information of using both UPC and IPC codes (all that are coded on each patent)
returns more highly relevant patent sets to the technological domains than is possible by
simple use of one or the other classification systems. The present results add substantially
to the strength of this conclusion which was first made in Benson and Magee (2013).

Patent sets were found for one half of the 28 domains by the direct COM using the
overlap of the UPC and IPC classes with the highest MPR. Patent sets for another 8
domains were located with the COM using the overlap between multiple UPC and IPC
classification codes as illustrated in Fig. 3. Finally, 6 of the domains used the COM with
lower level patent class hierarchies or keyword modification.

Using the direct COM to define 14 technological domains

Patent sets were found for one half of the 28 domains by the direct COM using the overlap
of the UPC and IPC classes with the highest MPR. This result shows the ease of which
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highly relevant and complete data sets can be located using the COM. All of the patent sets
except electrical information transmission that were located using the direct COM had
empirical relevancy assessments higher that 80 %. Table 3 shows a summary of the patent
sets selected for the 14 TD using the direct COM method.

Although each of these 14 TDs results from the overlap of one IPC and one UPC, the
size of the resulting patent sets varies from 1,744 patents (camera sensitivity) to 149,491
patents (integrated circuit processors). Many different seed sets were evaluated for each of
the TDs in order to find the most relevant and complete final set. The highly- automated
nature of the COM makes it possible to test a large number of seed sets to help ensure that

Table 2 The 28 domains studied in the paper classified by functional technological classifications with
operands and operations, adapted from Magee et al. (2014)

Information Energy Matter

Storage Integrated circuit memory
Magnetic memory
Optical memory

Batteries
Capacitors
Flywheel

Transfer Coaxial telecom
Optical telecom
Wireless telecom

Electrical power transmission Aircraft transport

Transformation Integrated circuit processors
Electronic computation
Camera sensitivity
MRI
CT scan
Genome sequencing

Combustion engines
Electrical motors
Solar PV
Wind turbines
Fuel cell
Incandescent lighting
LED lighting

Milling machine
3D printing
Photolithography
Superconductivity

Table 3 Patent sets for the 14 domains that were found using the direct COM including the UPC and IPC
classes used in the overlap

TD Size Relevancy (%) Patent class overlap

Camera sensitivity 1,744 86 257 AND H04N

Capacitor energy storage 5,944 84 361 AND H01G

Electric motors 17,869 86 310 AND H02K

Electrical energy transmission 10,375 86 363 AND H02M

Electrical information transmission 44,910 67 439 AND H01R

Electronic computation 13,204 97 712 AND G06F

Integrated circuit information storage 49,018 81 365 AND G11C

Integrated circuit processors 149,491 81 257 AND H01L

LED artificial illumination 3,792 85 313 AND H01L

Magnetic information storage 33,576 93 360 AND G11B

Milling machines 2,315 93 409 AND B23C

Optical information storage 23,543 82 369 AND G11B

Solar photovoltaic energy generation 5,203 85 136 AND H01L

Superconductivity 1,776 85 505 AND H01L
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minimal relevant patents are missed. For example, when searching for patents in the
‘Electric Motor’ TD, 20 different keywords were used to populate seed patent sets as
shown in Table 4.

After the IPCs and UPCs from each seed set are located, several of the overlaps are
tested based upon the MPR variables. In Table 4, classes H02K appears to have the
dominant MPR independent of search seeds but UPC classes 290, 318 and 310 all appear
potentially viable. Thus crosses of each of these UPC classes with IPC class H02K are
tested with the relevancy results shown in Table 5.

Table 4 Seed patent sets used to located final patent set for ‘Electric Motors’ technological domain along
with the number of patents in the seed set and the corresponding UPC and IPC with the highest MPR

Search term Size of seed patent set IPC MPR for IPC UPC MPR for UPC

Electric motor 37,459 H02Ka 0.15 310b 0.12

Stator 20,019 H02K2 0.37 3103 0.322

Rotor 44,367 H02K2 0.26 3103 0.2

Electric machine 14,098 B23Hc 0.2 3103 0.14

Generator 591,838 G06Fd 0.17 365e 0.1

Electric generator 62,238 H02Pf 0.075 290 g 0.16

Winding currents 10,188 H02P7 0.14 318 h 0.13

Brushless motor 2,137 H02K2 0.244 3189 0.294

Electromagnetic coil 7,087 H01Fi 0.07 335j 0.12

Electric primary mover 25 H02P7 0.16 2908 0.123

Motor 152,382 H02P7 0.296 3189 0.28

Rotary motor 8,163 H02K2 0.06 3103 0.06

Electric windings 10,795 H02K2 0.178 3103 0.153

Mechanical commutator 319 H02K2 0.196 3103 0.189

Electric commutator 1,677 H02K2 0.25 3103 0.26

Squirrel cage motor 238 H02K2 0.23 3103 0.236

Wound rotor 1605 H02K2 0.3456 3103 0.34

Permanent magnet motor 3,688 H02K2 0.333 3103 0.312

Brushless AC 115 H02P7 0.236 3189 0.222

Induction motor 3,126 H02P7 0.232 3189 0.272

a (Dynamo-Electric Machines)
b (Electrical generator or motor structure
c (Working of metal by the action of a high concentration of electric current on a workpiece using an
electrode which takes the place of a tool; such working combined with other forms of working of metal)
d (Electric digital data processing)
e (Static information storage and retrieval)
f (Control or regulation of electric motors, generators, or dynamo-electric converters; controlling trans-
formers, reactors or choke coils)
g (Prime-mover dynamo plants
h (Electricity: motive power systems
i (Magnets; inductances; transformers; selection of materials for their magnetic properties)
j (Electricity: magnetically operated switches, magnets, and electromagnets
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Table 5 shows that the 310/H02K overlap is the most preferable patent set because it
has the largest number of patents and a much higher empirical relevancy ratio. This process
was repeated for each of the 28 TDs with details shown in Benson (2014).

Multiple UPC or IPC classes used in the COM overlap for 8 technological domains

As was illustrated in Fig. 3, the COM can be adapted to use the overlap of more than two
patent classifications as long as there is at least one UPC and one IPC (i.e. the overlap
between 3 UPCs obviates the essential power of the COM)). For example, after analyzing
21 seed patent sets for the combustion engine TD, the two IPC/UPC overlaps in the first
two lines of Table 6 (123/F02B and 123/F01L) were both found to have very high rele-
vancy and a relatively large number of patents. The third line of Table 6 shows that when
combined they make an even larger patent set still with a very high relevancy ratio.
Additionally there is very little overlap between the two patent sets, as is shown by the
small discrepancy between the combined set (n = 19,640) and the addition of each of the
sizes of the individual sets (13,431 ? 6,719 = 20,150). The large total patent set size and
the high relevancy indicates that the combined patent set 123/F02B/F01L is the most
representative patent set for the combustion engine TD.

Out of the 28 TDs, 8 of the patent sets were located by using the overlaps of 3 or more
classifications. The patent sets found using 3 or more classification and the COM are given
in Table 7. Note that the first five of these are relatively simple combinations of three
classes but the last three are more complex with illustration in Fig. 3 and details in Benson
(2014).

Further COM modifications

While many of the TDs were relatively easy to find using the COM, there were a few that
required deeper searching and more sophisticated applications of the COM.

Table 5 IPC and UPC overlaps
along with patent set size and
relevancy ratios

Patent class overlap set Number of patents Relevancy (%)

2908 AND H02K2 768 16

3189 AND H02K2 2,754 55

3103 AND H02K2 18,575 85

Table 6 Resulting patent set overlaps for the ‘Combustion Engine’ technological domain demonstrating
the use of three patent classification codes in the overlap

Patent class overlap set Number of patents Relevancy (%)

123a AND F02Bb 13,431 95

123 AND F01Lc 6,719 98

123 AND (F01L OR F02B) 19,640 96

a (Internal Combustion Engines)
b (Internal-combustion piston engines; combustion engines in general)
c (Cyclically operating valves for machines or engines)
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An example of this is the search for the ‘Genome Sequencing’ TD. The result of the
seed set analysis showed that clearly the US patent class 4354 was the most related UPC,
and that the IPC could be a number of options including C12 N,5 G01 N.6 All of the IPCs
were tested for relevancy and none of the direct COM overlaps resulted in a highly relevant
set. The next step was to look closer into the lower level hierarchy patent classification
codes by searching for patents from companies that were known to be working in this
space:

(AN:(Affymetrix) OR AN:(Oxford Nanopore Sciences) OR AN:(Sequenom) OR
AN:(454 Life Sciences) OR AN:(Illumina) OR AN:(Knome) OR AN:(Complete
Genomics) OR AN:(Broad Institute)) AND (abst:(sequencing) OR ttl:(sequencing))

This search results revealed lower level UPCs such as 435/6.11 (Nucleic acid based
assay involving a hybridization step with a nucleic acid probe, involving a single nucle-
otide polymorphism (SNP), involving pharmacogenetics, involving genotyping, involving
haplotyping, or involving detection of DNA methylation gene expression) or 435/6.12 (With
significant amplification step (e.g., polymerase chain reaction (PCR), etc.)). These more
specific UPCs were combined with the international patent class C12Q for the final data
set.

((CCL:(435/6.11) OR CCL:(435/6.12)) AND ICL:(C12Q)) AND (APD:[1976-1-1 TO
2013-7-1]) AND DOCUMENT_TYPE:United States Issued Patent

Which resulted in a patent set with 4,861 patents with a 0.74 relevancy ratio. The
summary of the 6 TDs in which the COM modifications were used is shown in Table 8.

Table 7 Summary of patent sets for the 8 patent sets that were found using the COM with overlap of
3 ? patent classifications including the classifications used in the overlap

TD Size Relevancy
(%)

Patent class overlap

Combustion engines 19,094 96 123 AND (F01L OR F02B)

Computed tomography (CT) 6,817 88 378 AND (A61B OR G01 N)

Photolithography 14,975 87 (430 OR 355) AND G03F

Wind turbine energy generation 2,498 94 (416 OR 290) AND F03D

Wireless Information
Transmission

39,675 94 455 AND (H01L OR H04B)

Incandescent Artificial
Illumination

642 89 (313 AND H01K) AND NOT (H01J1 OR
F21 V)

Magnet Resonance Imaging
(MRI)

1,778 86 (324 AND A61B) OR (600 AND G01R)

Optical Information
Transmission

36,494 82 (398 AND H04B) OR (385 AND G02B)

4 (Chemistry: molecular biology and microbiology).
5 (Micro-organisms or enzymes; compositions thereof).
6 (Investigating or analyzing materials by determining their chemical or physical properties).
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Implications for understanding structure of technology

Overlap of the patent sets

The COM is a technology-patent search engine; therefore, the patent sets that are located
for each technology are not required to be exclusive of other technological domains (i.e.
solar PV patents can also be integrated circuit patents). One of the results of locating these
patent sets is the ability to analyze the overlap between the patents. Because each patent
can be multiply listed in a number of different UPCs and IPCs, some patents will be
present in multiple patent sets in the patents selected to represent the 28 TDs examined for
this research. The question we examine is how large the overlaps are.

In order to quantify the overlap between the patents, each patent set was compared with
each of the other 27 domains in order to find the overlap ratio between the two patent sets.
This ratio is shown in Eq. 1, with Pi and Pj representing all the patents in domains i and j.

countðPi \ PjÞ
minðPi;PjÞ

ð1Þ

Note that Eq. 1 gives an overlap ratio of zero when there are no patents that are present
in both sets and an overlap ratio of 1 when all of the patents in the smaller set are contained
in the larger set. The ratio is also defined so that the overlap is identical for any two
domains; thus, there are 378 possible overlap ratios [(282 - 28)/2] in our 28 domains.
Since patents in our sets on average are classified into 4.61 UPC’s and 2.4 IPC’s each, it is
possible that we similarly have large overlaps and this is what is tested here.

The first result is that 225 of these 378 possible overlaps have zero patents in both sets.
Moreover, another 135 have very small overlap ratios (\ 0.001)—see Fig. 4. Thus, there is
either zero or quite low overlap among the great majority of our cases and some of the
apparent overlap may be due to our non-perfect relevancy of classification. For example,
there are three patents that are present in both the Electrochemical Battery Energy Storage
TD and the Aircraft Transport TD, and there are 16,122 patents in the Batteries TD and
8,629 patents in the Aircraft TD, therefore the overlap of Aircraft with Batteries is 0.0003
as is shown below.

Pbatteries \ Paircraft

minðPbatteries;PaircraftÞ
¼ 3

minð16122; 8629Þ
¼ 0:0003 ð2Þ

The three patents are shown in Table S1 of the SI and clearly show that the three patents in
question are related to fuel cells but not batteries so this is another case of zero overlap of
relevant patents.

Thus, it is clear that the vast majority of possible patent overlaps between different
domains is zero or near zero; however there are 7 overlaps between domains that share
more than 10 % ([ 0.1 in Fig. 4) of their patents between the two domains. Table S2 in the
SI shows all seven of these cases and their overlap ratio. In all of these cases, the two
domains share a common patent classification code whether it be IPC or UPC. For
example, Solar PV (136 and H01L) and Integrated Circuits (257 and H01L) both share the
large international patent classification H01L (Semiconductor Devices; Electric Solid State
Devices not Otherwise Provided for) therefore the 2,221 patents that are in both techno-
logical domains need only to be listed in three patent classes: 257,136 and H01L
(remembering that the average patent is list in about seven classes).

1980 Scientometrics (2015) 102:1965–1985

123



Moreover, the overlaps in listing do in these cases (except perhaps for batteries and fuel
cells) represent close technology relatedness. Our highest number of overlapped patents
(3,189) is between the magnetic and the optical information storage domains (see all
overlap numbers in SI Table S4). These domains (see Table 3) share IPC G11B with
magnetic storage patents found from the cross with UPC 360 and optical storage crossed
with UPC 369. Table S3 in the SI shows the title and abstracts for a few of these doubly
listed patents. These five patents (and others we have examined) show that optical and
magnetic storage are not quite mutually exclusive domains and that some of the inventions
are clearly opto-magneto storage inventions. In this case, even our ‘‘clean top 100’’ pat-
ents7 share 10 patents (see Table 5 in the SI). Table S5 in the SI shows that only 20 of the
clean top 100 are listed in two such lists with 1/2 of them in the clearly converging optical
and magnetic memory information storage.

Thus, the patent overlaps among our domains show some reality for convergence
between technologies. However, the extensive mutual exclusivity of the patents in these 28
domains indicates that the COM patent searching method can be effectively used as the
compositional definition of technology.

Coverage of the US patent database by our patents and their citations

In this paper, 28 domains were identified using the COM, there are certainly many more
domains that could be classified using this methodology. The total number of patents
(counting the duplicates only once) in all of the TDs studied in this paper is 496,733 and
the number of cited patents analyzed was 2,619,355, which can be compared to the
4,666,574 patents that were issued between 1976 and 2013 (uspto.gov 2014). This means
that just over 10 % of the total patents have been categorized into TDs, and that the cited
patents represent nearly 56 % of the total patents issued. Realistically, the number of
technological domains that would comprise nearly all of the patents could be in the range
of 300–1,000 TDs based upon the number of patents and domains that were analyzed in
this study. Of course, the number of domains would depend upon the scope of choice for

Table 8 Patent sets for the 6 patent sets that were found using the COM with modifications

TD Size Relevancy
(%)

Patent class overlap

3D-Printing (industrial
stereolithography)

251 93 264/401 AND B29C35/08

Aircraft transport 8,629 79 244 AND (B64D OR B64C) AND NOT (‘canopy’ OR
‘parachute’ or ‘helicopter’)

Electrochemical battery
Energy storage

16,122 83 (429 AND H01M) AND NOT ‘fuel cell’

Flywheel energy storage 154 70 74/572 AND (F16F15 OR H02K7)

Fuel cell energy
production

7,368 97 (429 AND H01M) AND ‘fuel cell’

Genome sequencing 3,990 74 (435/6.11 OR 435/6.12) AND C12Q

The classes are also given now, but usually deeper in the patent classification hierarchy

7 When doing the readings for the relevancy ratings, we read up to 150 of the most cited patents and
eliminated those we found (consensus of two readers) were not relevant until we had the relevant, most cited
100 patents in the domain.
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the chosen technological definition (function and knowledge base). The fact that the
citations by the patents in our domains comes from a much larger percentage of the total
patents (56 %) than these domains (* 10 %) is not surprising since we find that the typical
set of citations of patents within its own domain is * 2–20 % with the average internal
citations within a domain being * 10 %. Thus, typically patents use knowledge from a
much wider part of the technological landscape than their own closely related domain.8

The very wide knowledge base tapped by these largely mutually exclusive sets of patents is
the second aspect of technological structure implied by the results reported here.

Conclusions

The use of a top-down two-component definition for technologies enables a very effective
bottom-up compositional definition of a set of 28 technological domains. The two com-
ponents of the top-down definition are generic functions and particular recognizable bodies
of knowledge.

The method used for executing the patent search in the compositional definition is an
extended version of a method previously described (Benson and Magee 2013). The extension
involves more emphasis upon multiple (more than the basic 2) IPC and UPC class listings to
be utilized in the gathering of the final patent set. As in the earlier work, the effectiveness of
this method indicates that the US Patent examiners are using the two classification systems
differently enough to make the joint groups of patents more aligned with (relevant to) the
technological domains defined by our top-down two component approach than patent sets
using a singular classification system. It is possible that the new more detailed IPC classifi-
cation scheme being jointly developed by the US and European Patent office-the Cooperative
Patent Classification (CPC) system will have a single structure that works as well but this is
unknown at this time (EPO and USPTO 2014). Since classification overlap is the essential
element, the extended method is named the Classification Overlap Method (COM). Over a
wide range of technological domains, the COM is shown in this paper to yield highly relevant
sets of patents where relevance is empirically assessed by reading of patents. The COM is also
shown here to give a fairly complete set of patents as assessed by use of multiple seed patent
sets and analysis of all of the resulting possible overlaps.

Although the relevance and completeness of the 28 patent sets is a key aspect of
evaluating the effectiveness of COM in patent search, technological structural implications

Fig. 4 Number of potential
domains domain overlaps (out of
a possible 378) that share the
indicated fraction of patents
between two domains

8 As an example, none of the patents in the camera sensitivity domain are doubly listed in the wireless
telecommunication domain but nonetheless, there are 79 citations from patents listed in camera sensitivity to
patents in the wireless domain.
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arise from further analysis of the patents in the 28 domains. In particular, we find
remarkably low overlap among patents in the various domains. We find that more than
80 % of the pairs of potential overlaps in fact have zero (or very near zero) overlap. In the
seven domain pairs (out of 378 total possible pairs) where more than 0.01 of the patents are
listed in both domains, there is clear evidence of ‘‘technology convergence’’. In these
cases, we note the importance of the very large Integrated Circuits domain and find further
support for the idea that this technological domain is a ‘‘general purpose technology’’.

While the first structural implication is mutual exclusivity of the patent sets derived
from use of the two component top-down definition, the citation distribution is much more
widespread with only 10 % of citations by patents in a domain being to other patents in that
domain. Assuming that citations represent use of knowledge in the domain, the structure of
technology appears to be well-defined domains that nonetheless widely use knowledge
from throughout the technological landscape.

Limitations of the current study and further useful work includes continued improve-
ment of the COM and continued use of the method to further explore overall technological
structure. Although our method for assessing relevancy (dual readers of all patents with
resolution by three participants when rare discrepancies appear) is effective, it is time-
consuming and the most ‘‘non-automated’’ and potentially subjective part of the COM.
Thus, research to assess relevancy by natural language processing (NLP) as demonstrated
by Park et al. (2013) and Moeller and Moehrle (2014) is a very worthwhile avenue to
pursue. Such work might not only be able to make further improvements in the COM but
also might lead to further technological structural findings.

Our first structural implication is extensive mutual exclusivity of the patent compositional
execution for the 28 domains studied here. We also find a few cases where technology
convergence in the sense discussed in Luan et al. (2013) is clearly occurring between sepa-
rately defined domains. The major limitation of the current conclusions is that while exten-
sive, 28 domains are only about 10 % of the total patent set and thus the existence of mutual
exclusivity mixed with some convergence cannot be described quantitatively with reliability.
The solution to this limitation is much more (* 910) extensive domain definition using the
two part top-down approach described here followed by use of the COM to arrive at the
compositional definition in terms of patent sets. Analysis of the overlap structure of this wider
array of patent sets would do much to clarify current technological structure and could be
done as a function of time to explore changes in convergence between domains and diver-
gence or the appearance of new domains over time. Our second structural implication (very
broad tapping of knowledge even in mutually-exclusive domains) appears more reliable.
Nonetheless, examination of the citation network among a more complete set of domains as
defined here would yield much additional knowledge about technological structure.
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