Here we present a short proof of a special case of Dirichlet’s theorem on primes in arithmetic progressions.

Theorem. For a prime p, there are infinitely many primes congruent to 1 modulo p.

Proof. It is clear that a has order p in $(\mathbb{Z}/(a^p - 1))^\times$, so

$$p \mid \phi(a^p - 1).$$

Suppose there are finitely many primes congruent to 1 mod p, say all of them are p_1, \cdots, p_n. Then let

$$a = p \prod_{i=1}^{n} p_i.$$

It follows that $a^p - 1$ is not divisible by p, so at least one of its prime factors is congruent to 1 modulo p because $p \mid \phi(a^p - 1)$. But $a^p - 1$ is also not divisible by p_1, \cdots, p_n, so there is another prime congruent to 1 modulo p, and we are done. \qed