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Abstract

Motivated from second-order stochastic dominance, we introduce a risk measure that we call
shortfall. We examine shortfall’s properties and discuss its relation to such commonly used risk
measures as standard deviation, VaR, lower partial moments, and coherent risk measures. We
show that the mean-shortfall optimization problem, unlike mean-VaR, can be solved e7ciently as
a convex optimization problem, while the sample mean-shortfall portfolio optimization problem
can be solved very e7ciently as a linear optimization problem. We provide empirical evidence
(a) in asset allocation, and (b) in a problem of tracking an index using only a limited number
of assets that the mean-shortfall approach might have advantages over mean-variance.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

The standard deviation of the return of a portfolio is the predominant measure of
risk in :nance. Indeed mean-variance portfolio selection using quadratic optimization,
introduced by Markowitz (1959), is the industry standard. It is well known (see Huang
and Litzenberger, 1988 or Ingersoll, 1987) that the mean-variance portfolio selec-
tion paradigm maximizes the expected utility of an investor if the utility is quadratic
or if returns are jointly normal, or more generally, obey an elliptically symmetric
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distribution. 1 It has long been recognized, however, that there are several conceptual
di7culties with using standard deviation as a measure of risk:

(a) Quadratic utility displays the undesirable properties of satiation (increase in wealth
beyond a certain point decreases utility) and of increasing absolute risk aversion
(the demand for a risky asset decreases as the wealth increases), see e.g., Huang
and Litzenberger (1988).

(b) The assumption of elliptically symmetric return distributions is problematic because
it rules out possible asymmetry in the return distribution of assets, which commonly
occurs in practice, e.g., due to the presence of options (see, e.g., Bookstaber and
Clarke, 1984). More generally, departures from ellipticity occur due to the greater
contagion and spillover of volatility e-ects between assets and markets in down
rather than up market movements, see, e.g., King and Wadhwani (1990), Hamao et
al. (1990), Neelakandan (1994), and Embrechts et al. (1999). Asymmetric return
distributions make standard deviation an intuitively inadequate risk measure because
it equally penalizes desirable upside and undesirable downside returns. In fact,
Chamberlain (1983) has shown that elliptically symmetric are the only distributions
for which investor’s utility is a function only of the portfolio’s mean and standard
deviation.

Motivated by the above di7culties, alternative downside-risk measures have been
proposed and analyzed in the literature (see the discussion in Section 3.1.4). Though
intuitively appealing, such risk measures are not widely used for portfolio selection
because of computational di7culties and problems with extending standard portfolio
theory results, see, e.g., a recent review by Grootveld and Hallerbach (1999).
In recent years the :nancial industry has extensively used quantile-based downside

risk measures. Indeed one such measure, Value-at-Risk, or VaR, has been increasingly
used as a risk management tool (see e.g., Jorion, 1997; Dowd, 1998; Du7e and Pan,
1997). While VaR measures the worst losses which can be expected with certain
probability, it does not address how large these losses can be expected when the “bad”,
small probability events occur. To address this issue, the “mean excess function”, from
extreme value theory, can be used (see Embrechts et al., 1999 for applications in
insurance). More generally, Artzner et al. (1999) propose axioms that risk measures
(they call them coherent risk measures) should satisfy and show that VaR is not a
coherent risk measure because it may discourage diversi:cation and thus violates one
of their axioms. They also show that, under certain assumptions, a version of the mean
excess function, which they call tail conditional expectation (TailVaR), is a coherent
measure (see Section 3.1.5 below).
Our goal in this paper is to propose an alternative methodology for de6ning,

measuring, analyzing, and optimizing risk that addresses some of the conceptual

1 In particular, any multivariate random variable R with probability density f(r) = 1=
√

det(�)g((r −
�)′�−1(r− �)), obeys an elliptically symmetric distribution (where the function g :R+ → R+). While there
exist elliptic distributions without :nite moments, we consider here only elliptic distributions with :nite
variances.
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di9culties of the mean-variance framework, to show that it is computationally tract-
able and has, we believe, interesting and potentially practical implications.
The key in our proposed methodology is a risk measure called shortfall, which

we argue has conceptual, computational and practical advantages over other commonly
used risk measures. It is a variation of the mean excess function and TailVaR mentioned
earlier (see also Uryasev and Rockafellar, 1999). Some mathematical properties of the
shortfall and its variations have been discussed in Uryasev and Rockafellar (1999), and
Tasche (2000).
Our contributions and the structure in this paper are:

1. We de:ne shortfall as a measure of risk in Section 2, and motivate it by examining
its natural connections with expected utility theory and stochastic dominance.

2. We discuss structural and mathematical properties of shortfall, including its relations
to other risk measures in Section 3. Shortfall generalizes standard deviation as a
risk measure, in the sense that it reduces to standard deviation, up to a scalar factor
depending only on the risk level, when the joint distribution of returns is elliptically
symmetric, while measuring only downside risk for asymmetric distributions. We
point out a simple explicit relation of shortfall to VaR and show that it is in general
greater than VaR at the same risk level. Moreover, we provide exact theoretical
bounds that relate VaR, shortfall, and standard deviation, which indicate how big
the error in evaluating VaR and shortfall can possibly be. We obtain closed form
expressions for the gradient of shortfall with respect to portfolio weights as well
as an alternative representation of shortfall, which shows that shortfall is a convex
function of the portfolio weights, giving it an important advantage over VaR, which
in general is not a convex function. This alternative expression also leads to an
e7cient sample mean-shortfall optimization algorithm in Section 5. We propose a
natural non-parametric estimator of shortfall, which does not rely on any assumptions
about the asset’s distribution and is based only on historical data.

3. In Section 4, we formulate the portfolio optimization problem based on mean-
shortfall optimization and show that because of its convexity it is e7ciently solv-
able. We characterize the mean-shortfall e7cient frontiers and, in the case when a
riskless asset is present, prove a two-fund separation theorem. We also de:ne and
illustrate a new, risk-level-speci:c beta coe7cient of an asset relative to a portfolio,
which represents the relative contribution of the asset to the portfolio shortfall risk.
When the riskless asset is present, the optimal mean-shortfall weights are charac-
terized by the equations having the CAPM form involving this risk-level-speci:c
beta. For the elliptically symmetric, and in particular normal, distributions, the opti-
mal mean-shortfall weights, the e7cient frontiers, and the generalized beta for any
risk level all reduce to the corresponding standard mean-variance portfolio theory
objects. However, for more general multivariate distributions, the mean-shortfall op-
timization may lead to portfolio weights qualitatively di-erent from the standard
theory and, in particular, may considerably vary with the chosen risk level of the
shortfall, see simulated and real data examples in Section 6.

4. In Section 5, we show that the sample version of the population mean-shortfall
portfolio problem, which is a convex optimization problem, can be formulated as
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a linear optimization problem involving a small number of constraints (twice the
sample size plus two) and variables (the number of assets plus one plus the sample
size). Uryasev and Rockafellar (1999) have independently made the same observa-
tion in the context of optimizing the conditional Value-at-Risk. This implies that
the sample mean-shortfall portfolio optimization is computationally feasible for very
large number of assets. Together with observations in item 3. above, this also impor-
tantly implies that the mean-shortfall optimization may be preferable to the standard
mean-variance optimization, even if the distribution of the assets is in fact normal
or elliptic, because in this case it leads to the e7cient and stable computation of
the same optimal weights and does not require the often problematic estimation of
large covariance matrices necessary under the mean-variance approach.

5. In Section 6, we present computational results suggesting that the e7cient frontier
in mean-standard deviation space constructed via mean-shortfall optimization out-
performs the frontier constructed via mean-variance optimization. We also numer-
ically demonstrate the ability of the mean-shortfall approach to handle cardinality
constraints in the optimization process using standard linear mixed integer program-
ming methods. In contrast, the mean-variance approach to the problem leads to a
quadratic integer programming problem, a more di7cult computational problem.

2. De�nition and motivation of shortfall

In this section, we adopt the expected utility paradigm and theorems of stochastic
dominance to motivate our de:nition of shortfall. Consider an investment choice based
on expected utility maximization with an investor-speci:c utility function u(·). This
means that an investment with random return X is preferred to the one with random
return Y if E[u(X )]¿E[u(Y )], where the expectations are taken with respect to the
corresponding distributions of X and Y respectively.
As it is very di7cult to articulate a particular investor’s utility, the literature usually

considers large classes of utility functions satisfying very general properties. Most
commonly considered classes are the class U1 of increasing utility functions (more is
preferred to less) and the class U2 of increasing and concave utility functions (risk
averse investors), see Ingersoll (1987) and Huang and Litzenberger (1988).
When the joint distribution of returns R is multivariate normal, mean-variance port-

folio selection is consistent with expected utility maximization in the sense that given a
:xed expected return, any investor with utility function in U2 will prefer the portfolio
with the smallest standard deviation. This means that in this case standard deviation is
the appropriate measure of risk simultaneously for all utility functions in U2. The same
is true for elliptically symmetric distributions. However, for more general distributions,
variance looses this property: even if E[X ]¡E[Y ] and �X ¿�Y , there exist u∈U2,
such that E[u(X )]¿E[u(Y )], (see Ingersoll, 1987).
There exists an extensive theory connecting preferences over various utility classes to

stochastic dominance relations between the distributions of the investment alternatives,
see, e.g., a survey by Levy (1992). We will use the following theorem of Levy and
Kroll (1978) which characterizes preferences of investors with utilities in Ui, i = 1; 2,
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in terms of the quantile functions of their investments. We de:ne the �-quantile of a
random variable X as q�(X ) := inf{x|P(X 6 x)¿ �}; �∈ (0; 1).

Theorem 1 (Levy and Kroll, 1978; Levy, 1992). Let X and Y be random variables
with continuous densities.

(a) E[u(X )]¿E[u(Y )] for all u∈U1 if and only if q�(X )¿ q�(Y ); ∀�∈ (0; 1) and
we have strict inequality for some �.

(b) E[u(X )]¿E[u(Y )] for all u∈U2 if and only if E[X |X 6 q�(X )]¿E[Y |Y 6 q�

(Y )]; ∀�∈ (0; 1) and we have strict inequality for some �.

Let us now consider a portfolio of n assets whose random returns are described by
the random vector R=(R1; : : : ; Rn)′ having a joint density with the :nite mean �=E[R].
We will assume throughout the paper that the joint distribution of R is continuous. Let
x = (x1; : : : ; xn)′ be portfolio weights, so that the total random return of the portfolio
is X = R′x. As we would like to concentrate on risk measures, let us :x the mean
portfolio return to E[R′x] = rp. Investors are interested in maximizing their expected
utility E[u(X )].
According to Theorem 1(a), if u∈U1 this is equivalent to minimizing over x the

(1 − �)-con:dence level Value-at-Risk VaR�(x) := �′x − q�(R′x); ∀�∈ (0; 1), where
q�(R′x) denotes the �-quantile of the distribution of the portfolio return R′x. (It is
a common practice in risk management to center VaR at the expected value, see for
example Jorion (1997), so that for the normal distribution it is equal to the standard
deviation times a factor depending only on �.) Note that VaR�(x) gives the size of the
losses below the expected return, which may occur with probability no greater than �.
Of course, the minimization of VaR�(x) may not be achieved with a single portfolio
simultaneously for all �∈ (0; 1). But Theorem 1(a) establishes that a portfolio x chosen
to minimize VaR�(x) for a :xed � and a given mean is non-dominated, i.e., there is
no other portfolio with the same mean which would be preferred to x by all investors
with utilities u∈U1. Thus, Theorem 1(a) naturally leads to minimizing VaR�(x) of a
portfolio with weights x for some �. However, the fact that VaR�(x) is a non-convex
function of x causes theoretical and computational di7culties (see Lemus et al., 1999).

Let us now consider investors with utility u∈U2, i.e., it is not only increasing
but also concave. Again :xing the mean portfolio return to E[R′x] = rp, according to
Theorem 1(b), this is equivalent to minimizing the shortfall at the risk level �:

s�(x) := �′x− E[R′x|R′x6 q�(R′x)]; ∀�∈ (0; 1): (1)

This de:nition means that s�(x) measures how large losses, below the expected re-
turn, can be expected if the return of the portfolio drops below its �-quantile. As
with VaR�(x), the minimization of s�(x) may not be achieved simultaneously for all
�∈ (0; 1) with a single portfolio. But Theorem 1(b) establishes that a portfolio x cho-
sen to minimize s�(x) for a :xed � and a given mean is non-dominated, i.e., there is
no other portfolio with the same mean which would be preferred to x by all investors
with utilities u∈U2. Thus, one is naturally led to minimize the quantity s�(x) for some
� which we call shortfall at level �.
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3. Properties of shortfall

The purpose of this section is to deepen our understanding of shortfall. We discuss
its relation to other risk measures and outline various properties of shortfall.

3.1. Relation to other risk measures

In this section, we explore the relations of shortfall to other measures of risk.

3.1.1. Relation to standard deviation
In this section, we show that for elliptically symmetric distributions the shortfall

is proportional to the standard deviation, and thus comparing portfolio risks using
shortfall with any � is equivalent to using the standard deviation. In this sense, shortfall
generalizes standard deviation as a risk measure.

Proposition 1. (a) If the vector of returns R obeys a multivariate normal distribution
with mean � and covariance matrix �, then

s�(x) =
�(z�)
�

(x′�x)1=2; (2)

where �(z) is the density of the standard normal and z� is its upper �-percentile, that
is P{Z ¿z�}= � and Z is a standard normal.
(b) If the vector of R has an elliptically symmetric distribution with a mean vector

� and the covariance matrix �, then

s�(x) = p(�)(x′�x)1=2; (3)

where the factor p(�) depends on the speci6c form of the elliptical distribution.

Proof. (a) If R obeys a multivariate normal distribution with mean � and covariance
matrix �, then X = R′x obeys a normal distribution with mean � = �′x and variance
�2 = x′�x. Thus,

s�(x) = � − E[X |X 6 q�(X )] = � − 1

��
√
2�

∫ q�(X )

−∞
x exp

(
− (x − �)2

2�2

)
dx

=− 1

��
√
2�

∫ q�(X )

−∞
(x − �) exp

(
− (x − �)2

2�2

)
dx

=− �

�
√
2�

∫ z�

−∞
y exp

(
−y2

2

)
dy =

�(z�)
�

�:

The proof of part (b) is analogous.

Remark. If the vector of returns R obeys a multivariate normal distribution with mean
� and covariance matrix �, then it is easy to see that VaR�(x) = z�(x′�x)1=2, that
is in this case, standard deviation, VaR and shortfall are essentially equivalent, see
Embrechts et al. (1999).
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3.1.2. Relation to value-at-risk
Recall that VaR�(x) := �′x− q�(R′x).

Proposition 2. The following relations between VaR and shortfall hold:

(a) Shortfall at level � is the average of VaRs for all levels below �, i.e., s�(x) =
1=�
∫ �
0 VaRu(x) du.

(b) s�(x)¿VaR�(x).
(c) Both s�(x) and VaR�(x) are decreasing functions of �.

Proof. (a) The expression follows from E[X |X 6 q�(X )] = 1=�
∫ �
0 qu(X ) du.

(b) It is clear from the de:nition of the quantile that VaR�(x) is a decreasing function
of �, which together with part (a) implies that s�(x)¿VaR�(x).
(c) Let 06 �16 �26 1. Since s�(x) = 1=�

∫ �
0 VaRu(x) du, we have

s�2 (x) =
�1
�2

s�1 (x) +
1
�2

∫ �2

�1
VaRu(x) du

6
�1
�2

s�1 (x) +
1
�2

VaR�1 (x)
∫ �2

�1
du (VaRu(x) decreasing)

6
�1
�2

s�1 (x) +
�2 − �1

�2
s�1 (x) (part (b))

= s�1 (x):

3.1.3. Optimal bounds on shortfall
In this section, for given values of the mean and standard deviation, we obtain

universal bounds on VaR and shortfall that are best possible in the sense that there
exist probability distributions that attain them. This allows us to compute bounds on
VaR and shortfall even if the distribution of returns are unknown. For ease of notation,
we write in this subsection s�(x) = s� and q�(R′x) = q�. We use the techniques from
Bertsimas and Popescu (1999) to derive these bounds.

Theorem 2. The inequalities shown in Table 1 are valid and best possible.

Table 2 compares the value of shortfall for the normal case: s�=�(z�)=��, where, as
in Eq. (2), �(z) is the density of the standard normal and z� is its upper �-percentile,
with the largest value

√
(1− �)=��, which s� may possible achieve for any distribution.

Table 2 shows that while for a risk level �=10% the maximum possible “model risk” of
shortfall estimation is moderate, for the commonly considered smaller risk level �=1%,
the normal model may underestimate shortfall by a factor of up to 9:9499=2:6652=3:7.

3.1.4. Relation to lower partial moments
The general idea of downside risk measures has been extensively discussed in the

:nancial economics literature starting with the safety :rst approach of Roy (1952) and
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Table 1
Optimal bounds on quantiles and shortfall

(a) Optimal Bounds on VaR� := � − q� −�
√

�=(1− �)6VaR�6 �
√

(1− �)=�,
given � and �

(b) Optimal Bounds on s� given �; �; and VaR�

{
VaR� if VaR�¿0

−VaR�(1−�)=� if VaR�¡0

}
6s�6�

√
(1−�)=�,

(c) Optimal Bounds on s� given � and � 06 s�6 �
√

(1− �)=�.

Table 2
Comparison of shortfall under a normal distribution and under the worst case distribution

� ’(z�)=�
√

1− �=�

0.1 1.7550 3.0000
0.05 2.0627 4.3589
0.01 2.6652 9.9499
0.005 2.8919 14.1067

Markowitz’s (1959) discussion of semi-variance. A more general notion of lower partial
moment (LPM) as a measure of risk was introduced and analyzed by Bawa (1975,
1978), Fishburn (1977), and Bawa and Lindenberg (1977), see also more recent papers
by Harlow and Rao (1999) and Grootveld and Hallerbach (1999). The LPM of order
a with the threshold  of a portfolio return X = R′x is de:ned as follows:

LPMa( ;X ) :=
∫  

−∞
( − t)a dFX (t); a¿ 0: (4)

Notice that the lower partial moment for a = 0 (LPM0( ;X ) = FX ( )) corresponds
to Roy’s safety and a = 2 corresponds to semi-variance. The threshold parameter  
is usually chosen as a short term interest rate, or expected return, or as a minimal
acceptable return. Though intuitively appealing, the LPM risks are not widely used
for portfolio selection because of computational di7culties and the fact that standard
portfolio theory results, like linear two-fund separation, extend to the LPM risks only
for some special values of � or for some special families of distributions, see Harlow
and Rao (1999) and Grootveld and Hallerbach (1999). We have s�(x)=�′x−q�(R′x)+
1=�LPM1(q�(R′x);R′x). In contrast to LPM measures of risk, we show in Section 5
that shortfall minimization is e7ciently solvable.

3.1.5. Relation to coherent risk measures
Artzner et al. (1999) propose four axioms which, they argue, every measure of risk

should satisfy. They call measures of risk that satisfy those four axioms coherent.
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While Artzner et al. (1999) considered only discrete probability spaces, Delbaen (2000)
extends their de:nitions to the case of arbitrary probability spaces. A coherent risk
measure %(X ) of an investment with the random return X is a real-valued function
de:ned on the space of real-valued random variables which satis:es the following
axioms:

(i) (Translation invariance). For any a∈R, %(X + a) = %(X )− a.
(ii) (Subadditivity). For any random variables X and Y; %(X + Y )6 %(X ) + %(Y ).
(iii) (Positive homogeneity). For all t¿ 0, %(tX ) = t%(X ).
(iv) (Positivity). If X ¿ 0, %(X )6 0.

This de:nition rules out as incoherent, under general distributional assumptions, risk
measures based on standard deviation (violates axiom (iv)), on value-at-risk (vio-
lates axiom (ii)), and on semi-variance (violates axiom (iv)). However, when the
assets’ returns have elliptically symmetric distributions, all these risk measures are
coherent.
Recall that we have X =R′x. Artzner et al. (1999) introduce the risk measure called

tail conditional expectation (TailVaR) TCE�(x)=−E[R′x|R′x6 q�(R′x)]. It is easy to
verify that TCE�(x) is a coherent risk measure when the underlying random variables
R have a joint density.
Note that the Artzner’s et al. (1999) de:nition of risk does not consider assets’

expected returns separately, while we follow the standard practice and consider the
reward, measured by the expected return, separately from risk. So, s�(x) = �′x +
TCE�(x), and because of this mean adjustment it violates axiom (i): s�(X +a)=s�(X ),
and axiom (iv): we have s�(X )¿ 0. It satis:es, however, the remaining two axioms
(ii) and (iii), see Proposition 3. Note also that if we :x the expected return of the
portfolio, then shortfall minimization results in the same allocation x as in the problem
of minimizing the tail conditional expectation.

3.2. An alternative expression for shortfall

In this section, we show that the shortfall s�(x) can be expressed in terms of the
so-called “check” function %�(·) sometimes used in de:ning quantiles, see Koenker and
Bassett (1978). This representation, which is interesting in its own right, gives an alter-
native proof of shortfall’s convexity and also leads to an e7cient sample mean-shortfall
optimization algorithm in Section 5.
Let z ∈R and �∈ (0; 1). We de:ne the function

%�(z) = �z − z1{z¡0} =

{
�z if z¿ 0;

(�− 1)z if z¡ 0:

It is straightforward to verify that

argmin
c∈R1

E[%�(R′x− c)] = q�(R′x): (5)
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Now we can write the expression for the shortfall of portfolio x as

s�(x) = �′x− E[R′x|R′x6 q�(R′x)]

= E
[
(R′x− q�(R′x))− 1

�
(R′x− q�(R′x))1{R′x6q�(R′x)}

]

=
1
�
E[%�(R′x− q�(R′x))] (from Eq: (5)) =

1
�
min

c
E[%�(R′x− c)]: (6)

Note that the function %�(z) is convex, and thus it follows that shortfall is a convex
function of x, see Rockafellar (1970). Note that in contrast to shortfall s�(x), VaR(x)
is not in general a convex function of x as illustrated in Artzner et al. (1999). 2

3.3. Mathematical properties of shortfall

The following general properties of shortfall are used in various parts of the paper.
Formula (7) for the gradient of s�(x) has been also independently obtained by Tasche
(2000) and Scaillet (2000).

Proposition 3. Shortfall satis6es the following properties:

(a) s�(x)¿ 0 for all x and �∈ (0; 1). Moreover, the shortfall s�(x) is equal to zero
for some x and � if and only if R′x is constant with probability 1.

(b) The shortfall is positively homogeneous, i.e., s�(tx) = ts�(x), for all t¿ 0.
(c) If the distribution of returns has a continuous positive density, then

∇xs�(x) = � − E[R|R′x6 q�(R′x)]: (7)

Proof. (a) Let X = R′x. Conditioning on X 6 q�(X ) and its complement, we obtain

s�(x) = E[X ]− E[X |X 6 q�(X )] = (1− �){E[X |X ¿q�(X )]

−E[X |X 6 q�(X )]}¿ 0;

and s�(x) = 0 for all �∈ (0; 1) if and only if P(R′x= c) = 1.
(b) Clearly, q�(tR′x) = tq�(R′x) for t¿ 0, and thus homogeneity follows.
(c) (see also Scaillet, 2000). We will prove (7) for one component of ∇xs�(x). We

have
@s�(x)
@xk

= �k − 1
�
9
9xk

E[(R′x) 1{R′x6 q�(R′x)}):

Writing the last expectation as a bivariate integral in the variables u=
∑

j �=k xjrj and
v= rk and di-erentiating with respect to xk , we obtain denoting f(u; v) the correspond-
ing bivariate density:

2 Artzner et al. (1999) show that there are distributions for which

VaR
(
1
2
x1 +

1
2
x2

)
¿

1
2
VaR(x1) +

1
2
VaR(x2):
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9s�(x)
9xk

= �k − 1
�
9
9xk

∫ ∫
R2
(u+ xkv)1{u+ xkv6 q�(R′x)}f(u; v) du dv

= �k − 1
�
9
9xk

∫ ∞

−∞

∫ q�(R′x)−xk v

−∞
(u+ xkv)f(u; v) du dv

= �k − 1
�

∫ ∞

−∞

∫ q�(R′x)−xk v

−∞
vf(u; v) du dv

−1
�

∫ ∞

−∞

(
9q�(R′x)
9xk

− v
)

q�(R′x)f(q�(R′x)− xkv; v) dv: (8)

By the de:nition of the quantile q�(R′x)

�=
∫ ∫

{(u;v) : u+xk v6q�(R′x)}
f(u; v) du dv=

∫ ∞

−∞

∫ q�(R′x)−xk v

−∞
f(u; v) du dv:

Di-erentiating this equation with respect to xk we obtain that the last integral in (8)
is equal to 0, and thus (7) follows.

Remark. Under appropriate conditions on the distribution of R, it can be also shown
that the Hessian of s�(x) has the form

∇2
xs�(x) =

fR′x(q�(R′x))
�

Cov(R|R′x= q�(R′x)); (9)

where fR′x(:) is the probability density of R′x and Cov(R|:) is the conditional covari-
ance matrix of R. Note that (9) also implies the convexity of s�(x).

3.4. Estimation of shortfall

In this section, we discuss the estimation of s�(x) given a sample of T returns on the
n assets r1; : : : ; rT . Let rt(x) = r′tx be the portfolio return in period t given a portfolio
allocation x. We propose the following natural estimator of shortfall. We sort rt(x) in
the increasing order:

r(1)(x)6 r(2)(x)6 · · ·6 r(T )(x):

Let Tr denote the sample mean of r1; : : : ; rT and K = 
�T�. Using these de:nitions we
obtain the non-parametric estimator of s�(x):

ŝ�(x) = x′ Tr − 1
K

K∑
j=1

r(j)(x); (10)

which does not rely on any distributional assumptions.
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In case one needs to estimate s�(x) for � so small that �T ¡ 1, extreme value theory
can be used to extrapolate outside the observed sample, i.e., to estimate the expected
size of ‘a yet unseen disaster’, see, e.g., Embrechts et al. (1999).

4. The e!cient shortfall frontier

In this section, we consider the mean-shortfall portfolio optimization problem

minimize s�(x)

subject to x′� = rp; e′x= 1;
(11)

where e is the column vector of 1s. Problem (11) is de:ned analogously to the
mean-variance portfolio optimization:

minimize x′�x

subject to x′� = rp; e′x= 1:
(12)

Because of the convexity of s�(x) a solution x�(rp) of Problem (11) exists, and the
graph of s�(rp) = s�(x�(rp)) as a function of rp gives the minimum �-shortfall frontier.
We next show that this frontier is a convex curve in the (rp; s�) plane.

Proposition 4. The frontier curve s�(rp) is convex.

Proof. Let x1 and x2 be any two frontier portfolios with distinct means rp1 = x′1�
and rp2 = x

′
2�. Let 1∈ (0; 1). Then rp = 1rp1 + (1 − 1)rp2 is the mean of the portfolio

1x1 + (1− 1)x2. Now since the portfolio x�(rp) is a minimizer of s�(x) with portfolio
mean rp and since s�(x) is convex in x,

s�(rp) = s�(x�(rp))6 s�(1x1 + (1− 1)x2)6 1s�(x1) + (1− 1)s�(x2)

= 1s�(rp1 ) + (1− 1)s�(rp2 ):

4.1. Minimum shortfall frontier in the presence of a riskless asset

We next consider the mean-shortfall portfolio optimization problem in the presence
of a riskless asset with rate of return rf. Recall :rst that the minimum variance frontier
found by solving the problem

�(rp) = minimize x′�x

subject to x′� + (1− e′x)rf = rp
(13)

can be generated as a linear combination of the riskless asset and a single risky portfolio
obtained by solving (13) for a single value of rp. In the usual case when rp¿ rf, the
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frontier consists of a positively sloped ray in the (rp; �(rp)) plane:

�(rp) = A(rp − rf) where A= ((� − erf)′�−1(� − erf))−1=2;

see Ingersoll (1987) or Huang and Litzenberger (1988) for details.
We next show that a similar situation takes place for the minimum shortfall frontier

when a riskless asset is present. The minimum shortfall frontier in the presence of a
riskless asset is de:ned as

s�(rp) = minimize s�(x)

subject to x′� + (1− e′x)rf = rp:
(14)

Proposition 5 (Tasche, 2000): The minimum shortfall frontier in the (rp; s�(rp)) space,
with rp¿ rf, is a ray starting from the point (rf; 0) and passing through a particular
point (r∗p ; s�(r∗p )) with r∗p ¿rf.

Proof. We consider the Lagrangean for the problem (14) L(x; 3) = s�(x) − 3(x′� +
(1− x′e)rf − rp), and set its derivatives to zero:

9L
9x = � − E(R|x′R6 q�(R′x))− 3(� − erf) = 0;

9L
93 = rp − (x′� + (1− x′e)rf) = 0; (15)

where we used formula (7) in the :rst part of Eqs. (15). Let r∗p ¿rf be a particular
target mean value. Let us denote by x∗ and 3∗ the solutions of Eqs. (15) for rp = r∗p .

Consider an arbitrary rp¿ rf and choose a scalar 1 such that rp = 1rf + (1 − 1)r∗p .
Since q�((1− 1)R′x∗)= (1− 1)q�(R′x∗) we observe that the vector (1− 1)x∗ and the
scalar 3∗ solve Eqs. (15) for rp=1rf+(1−1)r∗p . Therefore, the entire minimum shortfall
frontier can be generated by solving Eqs. (15) for a single r∗p and then multiplying
the solution by a scalar factor. The minimum shortfall corresponding to rp is s�(rp) =
s�((1− 1)x∗) = (1− 1)s�(r∗p ).

Note that, in view of (2) and (3), when the joint distribution of returns is normal
or, more generally, elliptical with :nite variance, the shortfall optimization problems
(14) and (11) reduce, for all �∈ (0; 1), to the mean-variance problems (12) and (13),
respectively. For more general joint distributions of R, however, the solutions of the
problems (14) and (11) will depend on �, see the examples in Section 6.

4.2. Shortfall beta

In this section, we show that, generalizing the standard beta coe7cient in a natural
way, we can de:ne a risk-level-speci:c shortfall beta and interpret it analogously to
the CAPM model.
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Proposition 6 (Tasche, 2000): The optimal solution of Problem (14) satis6es:

�j − rf = 4j;�(x�)(rp − rf); j = 1; : : : ; n; (16)

4j;�(x) =
1

s�(x)
9s�(x)
9xj

=
�j − E(Rj|x′R6 q�(R′x))
x′� − E(x′R|x′R6 q�(R′x))

; j = 1; : : : ; n: (17)

Proof. Multiplying Eq. (15) by x, using the second of Eqs. (15), and solving for 3
we obtain

3=
�′x− E(x′R|x′R6 q�(R′x))

x′� − rfe′x
=
�′x− E(x′R|x′R6 q�(R′x))

rp − rf
:

Substituting the value of 3 in Eqs. (15) we obtain (16).

The quantity 4j;�(x), which we call shortfall beta, can be interpreted as the relative
change in shortfall when varying the weight of asset j. Note that, as with the stan-
dard beta,

∑n
j=1 xj�j�(x) = 1, which e-ectively gives a decomposition of the portfolio

shortfall into the individual assets’ contributions, see Tasche (2000), and also Garman
(1997), Dowd (1998), and Lemus et al. (1999) for a similar decomposition of VaR.
For the multivariate normal and for elliptically symmetric distributions of returns, (17)
reduces to the standard de:nition of beta, 4j(x)=Cov(Rj;R′x)=Var(R′x), for all values
of �∈ (0; 1); this can be veri:ed by direct calculation using the fact that for elliptic dis-
tributions the conditional expectation of any linear combination of R given its another
linear combination is linear in the conditioning variable, see, e.g., Muirhead (1982). It
is also easy to show that the shortfall beta 4j;�(x) is an example of the generalized
measure of systematic risk of an asset relative to a portfolio discussed in Ingersoll
(1987).
The fact that 4j�(x) depends on � can be used to quantify the empirically observed

fact that components of the market (portfolio) become more dependent on the market
when the latter is more volatile, i.e., far out in the tails, and are less dependent on the
market in more quiet periods. For asymmetric distributions, 4j�(x) depends on �, where
as for elliptic distributions 4j;�(x) is constant over � (see also Section 6). Thus, elliptic
distributions cannot capture this phenomenon. Writing the vector ��(x) as ∇x log s�(x),
it is easy to verify that ��(x) is constant over � if and only if s�(x) = g(�)b(x) with
some functions g(�) and b(x) which depend on the joint distribution of returns.
Note that the validity of Eq. (16) for all �∈ (0; 1) implies that 4j;�(x�) is constant

over � and, in fact, equal to the standard beta 4j(xmv) evaluated at the mean-variance
optimal portfolio xmv (assuming that second moments exist).

5. Sample mean-shortfall optimization

In this section, we outline e7cient algorithms for the sample mean-shortfall optimiza-
tion problem. The advantage of our approach is that we do not make any assumptions
on the distribution of returns R, but rather work directly with the historical data. We
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show that the sample mean-shortfall optimization can be formulated as a linear opti-
mization problem involving a small number of constraints (twice the sample size plus
two) and variables (the number of assets plus one plus the sample size). This formu-
lation replaces sorting, usually required for computing quantile-based quantities, with
an appropriately chosen linear program. In fact, more generally, this approach may
be computationally competitive for sorting large arrays and it may be of independent
interest.
Let r1; : : : ; rT be the vectors of realized (historical) returns in periods t = 1; : : : ; T .

Assume that our forecast for the vector of returns for the next period T + 1 is the
historical mean: Tr =

∑T
i=1 ri=T .

In Eq. (10) we considered the following non-parametric estimator of shortfall: ŝ�(x)=
x′ Tr−∑K

i=1 r(i)(x)=K , where r(t)(x); t=1; : : : ; T , are the order statistics of the portfolio
returns r′tx and K = 
�T�. Given a :xed �∈ (0; 1) and a target portfolio return rp, the
sample mean-shortfall optimization problem can be stated as follows:

Zsample = minimize
x

x′ Tr − 1
K

K∑
i=1

r(i)(x)

subject to x′ Tr = rp; x′e = 1:

(18)

It is possible that there might be additional linear constraints of the form Ax6 b
present in the problem, for example, non-negativity constraints x¿ 0. It is not obvious
how Problem (18) might be solved because of the presence of the order statistics
r(i)(x).
Note, however that

∑t
i=1 r(i)(x)6

∑
i∈S r

′
ix; S : |S|=t; t=1; : : : ; T . Therefore, Prob-

lem (18) can be reformulated as follows:

Zsample = minimize
x

x′ Tr − 1
K

K∑
i=1

zi

subject to x′ Tr = rp; x′e = 1;

t∑
i=1

zi6
∑
i∈S

r′ix; S: |S|= t; t = 1; : : : ; T:

(19)

The linear optimization problem (19) has T new variables zi; i=1; : : : ; T , but 2T con-
straints. We will reformulate Problem (19) with only a linear number of variables and
constraints. Uryasev and Rockafellar (1999), in the context of the conditional-Value-
at-Risk, have independently derived the linear optimization problem outlined in Theo-
rem 3, using di-erent methods. Let K = 
�T�.

Theorem 3. Problem (19) is equivalent to the linear optimization problem

Zsample = minimize
x; t;z

x′ Tr − t +
1
K

T∑
i=1

zi

subject to x′ Tr = rp; x′e = 1;

zi¿ t − x′ri ; zi¿ 0; i = 1; : : : ; T:

(20)
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Proof. Given a vector v we :rst observe that the value of the linear optimization
problem

minimize
z

T∑
i=1

vizi

subject to
T∑

i=1

zi = K; 06 zi6 1; i = 1; : : : ; T

(21)

is equal to the sum of the K smallest components of the vector v, i.e., it is equal to∑K
i=1 v(i). By strong duality, the optimal solution values of Problems (21) and (22)

below are equal:

maximize
t;y

Kt +
T∑

i=1

yi

subject to t + yi6 vi; yi6 0; i = 1; : : : ; T:

(22)

Therefore, Problem (19) can be formulated as follows:

Zsample = minimize
x

x′ Tr − 1
K

max
t;y

(
Kt +

T∑
i=1

yi

)

subject to x′ Tr = rp; x′e = 1;

t + yi6 x′ri ; yi6 0; i = 1; : : : ; T:

Using the fact that max(7) =−min(−7), we obtain

Zsample = minimize
x; t;y

x′ Tr − t − 1
K

T∑
i=1

yi

subject to x′ Tr = rp; x′e = 1;

t + yi6 x′ri ; yi6 0; ; i = 1; : : : ; T:

Letting zi =−yi, we obtain Problem (20).

We next observe, as also observed independently by Uryasev and Rockafellar (1999),
that the representation (6) of shortfall also leads to the same reformulation (20).
From (6) and De:nition (3.2) of the function %�(·), we obtain that the sample

mean-shortfall optimization problem (18) is equivalent to

Zsample = minimize
x; t

x′ Tr − t +
1
�T

T∑
i=1

(t − x′ri)+

subject to x′ Tr = rp; x′e = 1;

where (z)+ := max(0; z). This can be rewritten as linear optimization problem For-
mulation (20), which is a linear optimization problem with only n + T + 1 variables
and 2T + 2 constraints and can be solved by classical linear optimization approaches
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(the simplex method and interior point methods) very e7ciently both theoretically (in
polynomial time) as well as practically for large number of variables.

5.1. Solving mean-variance portfolio selection as a linear optimization problem

In this section, we explore the idea of solving a mean-standard deviation optimization
problem as a linear optimization problem.
Consider the mean-standard deviation optimization problem

ZQP =minimize (x′�x)1=2

subject to Ax6 b;
(23)

where the vectors c, b and the matrices A and � (� is positive semi-de:nite) are
given.
In Eq. (2) we have established that when returns are normally distributed, then

(x′�x)1=2 =
�

�(z�)
s�(x):

Suppose we generate T vectors ri ; i = 1; : : : ; T each from a multivariate normal
distribution with mean 0 and covariance matrix �. A non-parametric estimator of s�(x)
[see Eq. (10)] is

ŝ�(x) = x′ Tr − 1
K

K∑
j=1

r(j)(x)

where K = 
�T�. Combining the previous two equations, we obtain that an estimator
of standard deviation is given by

(x′�̂x)1=2 =
�

�(z�)


x′ Tr − 1

K

K∑
j=1

r(j)(x)


 : (24)

In Eq. (20) we expressed shortfall as a linear optimization problem. Translating the
analysis to expression (24), we obtain that Problem (23) can be solved as

ZQP = lim
T→∞

minimize
x; t;z

�
�(z�)

(
x′ Tr − t +

1
K

T∑
i=1

zi

)

subject to Ax6 b; zi¿ t − x′ri ; zi¿ 0; i = 1; : : : ; T:

(25)

Problem (25) is a linear optimization problem. Thus, we are able to solve the mean-
standard deviation non-linear optimization problem by obtaining T samples (each of
dimension N) from a multivariate normal distribution N(0;�), and then solving the
linear optimization problem (25). For :nite T this is of course only an approxima-
tion. We perceive, however, some practical advantages in solving a linear optimization
problem rather than a non-linear one:
(a) The matrix � is estimated from data, which is a non-trivial problem that has an

large literature. The proposed approach eliminates the need to estimate the matrix �
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altogether as it works directly with the data ri, and uni:es the estimation and the opti-
mization problem in a single problem; (b) Given that there are decades of experience
in solving linear optimization problems, the numerical stability of linear optimization
codes is de:nitely stronger compared to quadratic ones; (c) Mean-variance optimiza-
tion problems in the presence of cardinality constraints, like for example the problem
of tracking an index using only a limited number of assets, can be solved using stan-
dard linear mixed integer programming (MIP) methods (see Section 6.4) as opposed to
quadratic mixed integer programming methods. While commercially available quadratic
mixed integer programming codes have been available only recently, there are many
excellent linear MIP codes have been available for decades. Thus, mean-variance opti-
mization problems in the presence of cardinality constraints can be solved using a well
established methodology.

6. Numerical examples

Our goal in this section is to shed light to the questions: (a) How di?erent are
the allocations produced by the mean-variance and mean-shortfall optimization under
varying degree of asymmetry of the distribution of returns? and (b) How viable and
e?ective is the idea that we can solve mean-variance quadratic optimization prob-
lems as linear optimization problems and in particular, in the presence of cardinality
constraints?
We address the :rst question for symmetric return distributions and simulated data

in Section 6.1, asymmetric return distributions and simulated data in Section 6.2, and
real data in an asset allocation context in Section 6.3. We address the second question
in Section 6.4.

6.1. Comparing mean-variance and shortfall optimization under symmetric
distributions

We consider in this section three assets A, B, and C with a multivariate normal distri-
bution having mean vector �=[8%; 9%; 12%]′, standard deviations �=[15%; 20%; 22%]′

and correlation matrix

Cor =



1 0:5 0:7

0:5 1 −0:2

0:7 −0:2 1


 :

We repeat the following experiment 100 times: (a) We generate samples with T =
50; 500, and 2000 observations from the multivariate normal distribution described
above; (b) We apply mean-variance and mean-shortfall optimization on each sample
for values of � varying between 2% and 50%, with a target rate of return rp = 10%,
in the presence of a riskless asset with rate of return rf = 2:5%, and with no fur-
ther constraints on the weights (note that the population optimal portfolio, for both
mean-variance and mean-shortfall, by virtue of the multivariate normality of the assets,
is x∗ = (−1:41; 0:88; 1:00)′.
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Fig. 1. Portfolio weights produced by mean-variance (–) and mean-shortfall (-.) optimization. The median,
10% and 90% percentiles over 100 samples are plotted using the same symbol.

For each value of T , we plot the median weight, over 100 experiments, assigned to
each asset. We also plot the 10% and 90% percentile weights to give intuition about the
variability of the weight estimates in Fig. 1 for T = 50, 500 and 2000. The following
insights emerge from this experiment: (a) As predicted by theory mean-variance and
mean-shortfall optimization yield portfolio weights that are almost indistinguishable
as soon as � is above say 15%. For lower values of �, the mean-shortfall estimates
appear to be more volatile than the mean-variance estimates, a reXection of the fact
that the mean-shortfall portfolio estimator uses only a small fraction of the data, the

�T� lowest order statistics of the sample; (b) As T increases, the variability of both
the mean-variance and mean-shortfall estimates decreases.

6.2. Comparing mean-variance and shortfall optimization under asymmetric
distributions

In this section, we compare the allocations and the risk-sensitivity of portfolios
given by mean-variance and mean-shortfall optimization when return distributions are
asymmetric.
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6.2.1. Data
We generate return data for following three assets. Asset A has a lognormal return

distribution. Asset B consists of a stock with a lognormal distribution, combined with
a call on 75% of the value of the stock, :nanced by borrowing at a riskless rate
rf = 2:5%. Thus, Asset B has a return distribution that is skewed to the left. Asset C
consists of a stock with a lognormal distribution, combined with a put on 75% of the
value of the stock, :nanced by borrowing at a riskless rate rf = 2:5%. Thus, Asset C
has a return distribution that is skewed to the right. The assets are designed to have
the same mean and standard deviation, and to be uncorrelated with each other, which
will make mean-variance optimization blind to their di-erences, so that it leads to an
equiweighted portfolio.
The price of the call and put options, used to calculate the returns of those options,

were determined using the classical Black–Scholes formula, assuming a maturity of
one period, and a strike price equal to the price of the asset. In each sample that we
use in our experiments, the mean and standard deviation of each asset are standardized
to be 8% and 20% respectively.

6.2.2. Shortfall and shortfall beta of 6xed weight portfolios
In order to obtain some insight on how shortfall can be inXuenced by di-erent

portfolios, we examine the shortfall of three di-erent :xed weight portfolios: x1 =
(1=3; 1=3; 1=3)′, x2=(0:1; 0:8; 0:1)′ and x3=(0:1; 0:1; 0:8)′ for di-erent values of �. We
repeat the following experiment 100 times: (a) We generate a sample of T = 2000
observations from the asymmetric multivariate distribution described above; (b) We
calculate the shortfall of each portfolio x1, x2, and x3, and the shortfall beta coe7cient
of each asset with respect to each portfolio.
In Fig. 2, we plot the median shortfall, over the 100 experiments, as a function of �

between 2% and 50%, for each of the three portfolios. We also plot the 10% and 90%
quantiles, over the 100 experiments, to give an idea about the variability of the shortfall
estimates. As expected, portfolio x2 has a higher shortfall than portfolio x3 for values
of � below 40%, reXecting that fact that portfolio x2 is highly loaded on the negatively
skewed asset B, whereas portfolio x3 is heavily loaded on the positively skewed asset
C. Note that portfolio x1, the equally weighted portfolio, has the lowest shortfall of all
portfolios, at every value of �, a clear reXection of the power of diversi:cation.
In Fig. 3, we report the shortfall beta of each asset with respect to portfolio x1. For

portfolio x1 and low values of �, Asset B has the highest shortfall beta, indicating asset
B is responsible for most of the shortfall of the portfolio. Asset C has the smallest
shortfall beta. For portfolio x1 and high values of �, all assets have shortfall beta about
one, indicating comparable contributions to the portfolio’s shortfall. The message is that
contrary to the standard beta, the shortfall beta can vary with �, indicating that an asset
can have di-erent contributions to the risk of a portfolios at di-erent values of �.

6.2.3. Weights given by mean-variance and mean-shortfall optimization
We next compare the portfolio weights obtained via mean-variance and mean-

shortfall optimization on samples from an asymmetric distribution. We repeat the fol-
lowing experiment 100 times: (a) We generate a sample of T=2000 observations from
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Fig. 2. Shortfall of portfolios x1 (—), x2 (· · ·), and x3 (-.-.). For each portfolio and �-level combination,
the 10%, 50%, and 90% quantiles over 100 samples are represented.

the asymmetric multivariate distribution described above; (b) We apply mean-variance
optimization and mean-shortfall optimization for values of � between 2% and 50%.
We use a target rate of return of rp = 8%, and constrain the weights to be non-
negative.
Fig. 4 shows the cumulative distribution function of returns for the optimal mean-

variance (MV) portfolio, the optimal mean-shortfall (s0:01) at �= 1%, and the optimal
mean-shortfall (s0:10) at � = 10% on one sample with 2000 observations. It is clear
that the shortfall portfolios dominate in the tails, as expected, but the MV portfolio
dominate in the mid-range (+= − 10%).
Fig. 5 gives the weights assigned to each asset, for � ranging from 2% to 50%. We

see that mean-variance optimization (which is independent of �) gives equal weight
to each asset, as expected. Mean-shortfall optimization, especially for low levels of
�, puts less weight on asset B, and extra weight on asset C, also as expected. The
weight assigned to asset A seems to be roughly the same for both mean-variance and
mean-shortfall optimization.
In summary, the example in this section clearly indicates that allocations based

on mean-shortfall optimization di-er and often signi:cantly from those based on the
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Fig. 3. Shortfall beta of each asset with respect to portfolio x1. For each asset, and �-level combination, the
10%, 50%, and 90% quantiles over 100 samples are represented.

mean-variance paradigm and may depend on the risk level �. Furthermore, the risk-
sensitivity of any given portfolio may signi:cantly vary with the risk level �.

6.3. Comparing mean-variance and shortfall optimization in asset allocation

In this section, we compare asset allocations computed using mean-variance and
mean-shortfall optimization. The data consist of monthly returns on seventeen asset
classes: six indices involving US equities (large cap, large cap value companies, large
cap growth companies, small cap, small cap value companies, small cap growth com-
panies), the corresponding six indices involving international equities in developed
markets, emerging equities, US government bonds, international government bonds,
US treasury, and the US real estate index trust (REIT). The time period under consid-
eration is January, 1994–September, 2001.
We estimate the historical covariance matrix and use it to solve Problem (12) with

non-negativity constraints on the allocations in order to :nd the e7cient frontier of the
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Fig. 4. Cumulative distribution of MV (—), s0:10 (· · ·), and s0:01 (–.), sample of 2000 observations.

mean-variance portfolio. We record the shortfall that this portfolio produces as well. We
solve Problem (11) with non-negativity constraints on the allocations in order to :nd
the e7cient frontier of the mean-shortfall portfolio. We record the standard deviation
of this portfolio as well.
In Figs. 6, and 7 we present the e7cient frontiers in mean annual return-annual

standard deviation and mean annual return-annual shortfall space for both methods for
� = 16:7% and 2.5%. It is clear that for � = 16:7%, the two methods provide almost
identical e7cient frontiers. As expected, for � = 2:5%, minimizing variance produces
a slightly better frontier in mean-variance space and slightly worse in mean-shortfall
space than minimizing shortfall. Moreover, it turns out that the allocations of the two
portfolios are quite similar. We feel that the closeness of the two optimal portfolios
is an indication that the joint return of these asset classes obeys a joint multivariate
normal distribution.

6.4. Solving mean-variance portfolio selection with cardinality constraints

In this section, we consider a universe of n di-erent assets. We would like to
construct a portfolio of at most M¡n assets that “is close to” a given benchmark.
Let R be the vector of returns, which has a multivariate normal distribution with mean
� and covariance �. We consider an equally weighted benchmark, i.e., the allocation
xB = e=n, where e is the vector of all ones.

The tracking error of a portfolio x is given by E[(x′R−x′BR)2]=(x−xB)′�∗(x−xB),
where �∗ = ��′ + �. We are interested in selecting a portfolio x of at most M assets
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Fig. 5. Weights for each asset: MV (—), s� (· · ·). For each portfolio, asset, and �-level combination, the
10%, 50%, and 90% quantiles over 100 samples are plotted.

that minimizes the tracking error. Moreover, the non-zero weights of all assets in the
portfolio x are constrained to be in the interval [a; b].
We introduce decision variables yi, which is equal to one, if asset i is in the portfolio,

and zero, otherwise. The problem of minimizing the tracking error under the cardinality
constraint is

minimize (x− xB)′�∗(x− xB)
subject to e′x = 1; e′y6M; x¿ 0;

ayi6 xi6 byi; yi ∈{0; 1}; i = 1; : : : ; n:

(26)

Problem (26) is a mixed integer quadratic program, for which commercially avail-
able software packages have appeared very recently. Note, however, that by using the
equivalence between shortfall and standard deviation when the underlying return distri-
butions are multivariate normal, we can rewrite the tracking error (or rather its square
root) as

√
(x− xB)′�∗(x− xB)=�=�(z�)s�((x−xB)′R). This last fact suggests a new
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Fig. 6. E7cient frontiers for optimal portfolios obtained by minimizing variance and minimizing shortfall
for � = 16:7%.

approach to solving Problem (26): generate samples rj; j = 1; : : : ; T from the distri-
bution N (�;�), and solve Problem (26) (see also Eq. (25)) as the following linear
mixed integer programming problem:

minimize
�

�(z�)


−t +

1
K

T∑
j=1

zj




subject to e′x = 1; e′y6M; x; z¿ 0;

ayi6 xi6 byi; yi ∈{0; 1}; i = 1; : : : ; n;

zj¿ t − (x− xB)′rj; j = 1; : : : ; T:

(27)

Problem (27) is a mixed linear integer programming problem for which there is a
large literature as well as several commercially available codes. In order to illustrate
this method we used an example of tracking the equally weighted SP100 index with
M stocks for M = 96; 90; 80; : : : ; 40.

6.4.1. Data
For our experiment, we calculated a mean vector Tr and a covariance matrix � by

using the daily return data on 96 stocks, for the period January 02, 1996–December
31, 1999. The 96 stocks were selected using the following criteria: they were in the
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Fig. 7. E7cient frontiers for optimal portfolios obtained by minimizing variance and minimizing shortfall
for � = 2:5%.

SP100 on December 31, 1999, and had daily return data for the whole four year period
under consideration. Out of the 100 stocks in the SP100 on December 31, 1999, the
following four stocks did not have daily return data for the entire four year period under
consideration: Honeywell Inc. (CRSP Permanent Number 18374), Lucent Technologies
Inc. (83332), Rockwell International Corp. (84381), and Raytheon Corp. (85658). The
data come from the CRSP database, and were obtained using the Wharton Research
Database Service (WRDS). The daily mean vector and covariance matrix calculated
from the daily data were each multiplied by 21 to obtain an estimate r of the monthly
mean vector and an estimate � of the covariance matrix of the 96 stocks.

6.4.2. Results
We generated a random sample of size T for T = 100, 200, 500, 1000 using

the historical mean vector Tr and covariance matrix � described previously. We
chose a = 0:3% and b = 10%. We solved Problem (27) using a state of the art
optimization software CPLEX, and we report in Table 3 the tracking error and in
Table 4 the running time as a function of M for T . We run the integer program-
ming algorithm until :ve feasible solutions have been generated. The reason for this is
that running times for exact optimality can be excessive. Moreover, the best solution
found among the :rst :ve solutions found is either the best or very close to the best
solution.
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Table 3
Tracking error (per month) (in %) as a function of M and T

M 96 90 80 70 60 50 40

T = 100 0.0 0.46 0.54 0.66 0.81 0.90 1.1
T = 200 0.0 0.38 0.48 0.63 0.72 0.93 1.1
T = 500 0.0 0.29 0.46 0.59 0.73 0.79 1.0
T = 1000 0.0 0.27 0.37 0.54 0.60 0.78 0.90

Table 4
Running time (in s) as a function of M and T

M 96 90 80 70 60 50 40

T = 100 0.7 1.7 3.2 5.0 7.4 9.3 12.5
T = 200 0.8 7.0 11.7 18.0 21.8 27.1 32.4
T = 500 0.9 32.8 59.5 81.6 102.7 121.9 135.8
T = 1000 1.2 128.2 206.6 313.3 372.9 436.4 519.3

The following insights emerge from this experiment: (a) The proposed approach
successfully solves the problem of minimizing the tracking error with cardinality con-
straints within reasonable computational times. As expected the tracking error increases
as M decreases, since it becomes increasingly more di7cult to track the index with
a smaller number of stocks; (b) The tracking error converges to the solution of the
mean-variance optimization with cardinality constraints as T increases; (c) The running
times are monotonically increasing as M decreases and T increases. This is expected
as problems with smaller M are harder, while problems with larger T have simply
more variables.

7. Conclusions

We have shown that shortfall naturally arises as a measure of risk by considering
distributional conditions for second-order stochastic dominance. We examined its prop-
erties and its connections with other risk measures. We showed that optimization of
shortfall leads to a tractable convex optimization problem and to a linear optimiza-
tion problem in its sample version. Interestingly, portfolio separation theorems as well
natural de:nitions of beta can be derived in direct analogy to standard mean-variance
portfolio optimization theory. We showed computationally that the mean-shortfall ap-
proach generates portfolios that can outperform those generated by the mean-variance
approach. Finally, we showed that the mean-shortfall approach can readily address
portfolio optimization problems with cardinality constraints. All these considerations
convince us that we should consider more closely the notion of shortfall in real world
environments.
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