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Abstract

We explicitly characterize the robust counterpart of a linear programming problem with uncertainty set described by an
arbitrary norm. Our approach encompasses several approaches from the literature and provides guarantees for constraint
violation under probabilistic models that allow arbitrary dependencies in the distribution of the uncertain coe2cients.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Robust optimization is emerging as a leading
methodology to address optimization problems un-
der uncertainty. Applied to the linear programming
problem

max{c′x|Ãx6 b; x ∈Px} (1)

with x ∈Rn×1, Ã ∈Rm×n a matrix of uncertain co-
e2cients belonging to a known uncertainty set U,
c ∈Rn×1 and Px a given set representing the con-
straints involving certain coe2cients, the robust coun-
terpart of Problem (1) is

max{c′x | Ãx6 b; x ∈Px;∀Ã ∈U}: (2)
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An optimal solution x∗ is robust with respect to any
realization of the data, that is, it satis=es the constraints
for any Ã ∈U.
The =rst approach to modeling coe2cient uncer-

tainty in the optimization literature was proposed by
Soyster [12]. He considers problems of the kind

max
c′x

∣∣∣∣∣∣
n∑

j=1

Ãjxj6b;∀Ãj∈Kj; j=1; : : :; n; x¿0


 ;

where x ∈Rn×1, c ∈Rn×1 and b ∈Rm×1 are data, and
each column Ãj of the matrix Ã belongs to a convex
set Kj. Soyster shows that the problem is equivalent
to a problem with linear constraints

max


c′x

∣∣∣∣∣∣
n∑

j=1

CAjxj6 b; x¿ 0


 ;
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where the entries of the matrix CA, Caij, satisfy Caij =
sup CAj∈Kj

(ãij). Some work followed Soyster’s note
(see, for example, [8]). However, the approaches sug-
gested in this early literature solve a limited range
of problems, are not easy to generalize, and are very
conservative in the sense that they protect against the
worst-case scenario.
The interest in robust formulations in the optimiza-

tion community was revived in the 1990s. Ben-Tal
and Nemirovski [1–4] introduced a number of impor-
tant formulations and applications, and provided a de-
tailed analysis of the robust optimization framework
in linear programming and general convex program-
ming. Independently, El Ghaoui et al. [9,10] derived
similar results, and dealt with robust formulations
of optimization problems by adapting robust control
techniques. They showed that under the assumption
that the coe2cient matrix data vary in ellipsoidal
uncertainty sets, the robust counterparts of some
important generic convex optimization problems (lin-
ear programming problems (LP), second-order cone
problems (SOCP), semide=nite programming prob-
lems (SDP)) are either exactly, or approximately
tractable problems that are e2ciently solvable via
interior point methods. However, under ellipsoidal
uncertainty sets, the robust counterpart of an LP be-
comes an SOCP, of an SOCP becomes an SDP, while
the robust counterpart of an SDP is NP-hard to solve.
In other words, the di2culty of the robust problem in-
creases, as SDPs are numerically harder to solve than
SOCPs, which in turn are harder to solve than LPs.
Bertsimas and Sim [7] consider LPs such that each

entry ãij of Ã ∈Rm×n is assumed to take values in the
interval [ Jaij−�ij; Jaij+�ij] and protect for the case that
up to �i of the uncertain coe2cients in constraint i, i=
1; : : : ; m, can take their worst-case values at the same
time. The parameter �i controls the tradeoL between
robustness and optimality. Bertsimas and Sim show
that the robust counterpart is still an LP.
In this paper, we propose a framework for robust

modeling of linear programming problems using un-
certainty sets described by an arbitrary norm. We
explicitly characterize the robust counterpart as a con-
vex optimization problem that involves the dual norm
of the given norm. Under a Euclidean norm we re-
cover the second order cone formulation in [1,2,9,10],
while under a particular D-norm we introduce we re-
cover the linear programming formulation proposed

in [7]. In this way, we shed some new light to the na-
ture and structure of the robust counterpart of an LP.
The paper is structured as follows. In Section 2, we

review from [5] the robust counterpart of a linear pro-
gramming problem when the deviations of the uncer-
tain coe2cients lie in a convex set and characterize
the robust counterpart of an LP when the uncertainty
set is described by a general norm, as a convex opti-
mization problem that involves the dual norm of the
given norm. In Section 3, we show that by varying the
norm used to de=ne the uncertainty set, we recover
the second order cone formulation in [1,2,9,10], while
under a particular D-norm we introduce we recover
the linear programming formulation proposed in [7].
In Section 4, we provide guarantees for constraint vi-
olation under general probabilistic models that allow
arbitrary dependencies in the distribution of the un-
certain coe2cients.

Notation. In this paper, lowercase boldface will be
used to denote vectors, while uppercase boldface will
denote matrices. Tilde (ã) will denote uncertain coef-
=cients, while check ( Ja) will be used for nominal val-
ues. Ã ∈Rm×n will usually be the matrix of uncertain
coe2cients in the linear programming problem, and
vec(Ã)∈R(m·n)×1 will denote the vector obtained by
stacking its rows on top of one another.

2. Uncertainty sets de�ned by a norm

In this section, we review from [5] the structure
of the robust counterpart for uncertainty sets de=ned
by general norms. These characterizations are used to
develop the new characterizations in Section 3.
Let S be a closed, bounded convex set and consider

an uncertainty set in which the uncertain coe2cients
are allowed to vary in such a way that the deviations
from their nominal values fall in a convex set S

U= {Ã|(vec(Ã) − vec(A))∈ S}:
The next theorem characterizes the robust counterpart.

Theorem 1. Problem
max c′x

s:t: Ãx6 b

x ∈Px

∀Ã∈Rm×n such that (vec(Ã)−vec ( JA))∈S

(3)



512 D. Bertsimas et al. / Operations Research Letters 32 (2004) 510–516

can be formulated as

max c′x

s:t: Jaix +max
y∈S

{y′x}6 bi ; i = 1; : : : ; m

x ∈Px:

(4)

Proof. Clearly since S is compact, for each constraint
i, ã′

ix6 bi for all vec(Ã) − vec( JA)∈ S if and only if

max
{vec(Ã)−vec( JA)∈S}

{ã′
ix}6 bi:

Since

max
{vec(Ã)−vec( JA)∈S}

{ã′
ix}= max

{vec(Ã)−vec( JA)∈S}
{(vec(Ã))′xi}

= (vec( JA))′xi + max
{y∈S}

{y′x};

the theorem follows.

We next consider uncertainty sets that arise from
the requirement that the distance (as measured by an
arbitrary norm) between uncertain coe2cients and
their nominal values is bounded. Speci=cally, we
consider an uncertainty set U given by

U= {Ã | ‖M(vec(Ã) − vec( JA))‖6�}; (5)

where M is an invertible matrix, �¿ 0 and ‖ · ‖ a
general norm.
Given a norm ‖x‖ for a real space of vectors x,

its dual norm induced over the dual space of linear
functionals s is de=ned as follows:

De�nition 1 (Dual Norm).

‖s‖∗ := max
{‖x‖61}

s′x: (6)

The next result is well known (see, for example, [11]).

Proposition 1. (a) The dual norm of the dual norm
is the original norm.
(b) The dual norm of the Lp norm

‖x‖p :=


 n∑

j=1

|xj|p



1=p

(7)

is the Lq norm ‖s‖q with q= 1 + 1=(p− 1).

The next theorem derives the form of the robust
counterpart, when the uncertainty set is given by
Eq. (5).

Theorem 2. Problem

max c′x

s:t: Ãx6 b

x ∈Px

∀Ã ∈U= {Ã | ‖M(vec(Ã)

−vec( JA))‖6�};

(8)

where M is an invertible matrix, can be formulated
as

max c′x

s:t: Jaix + �‖M′−1xi‖∗6 bi ; i = 1; : : : ; m

x ∈Px;

(9)

where xi ∈R(m·n)×1 is a vector that contains x ∈Rn×1

in entries (i−1) ·n+1 through i ·n, and 0 everywhere
else.

Proof. Introducing y=(M(vec(Ã)−vec( JA)))=�, we
can write U as U= {y‖|y‖6 1} and obtain

max
{vec(Ã)∈U}

{ã′
ix}

= max
{vec(Ã)∈U}

{(vec(Ã))′xi}

= max
{y‖|y‖61}

{(vec( JA))′xi + �(M−1y)′x}

= Ja′x + � max
{y ‖|y‖61}

{y′(M′−1x)}:

By De=nition 1, the second term in the last expres-
sion is �‖M−1x‖∗. The theorem follows by applying
Theorem 1.

In applications, [1,2,9,10] work with uncertainty
sets given by the Euclidean norm, i.e.,

U= {Ã ‖|M(vec(Ã) − vec( JA))‖26�};
where ‖ · ‖2 denotes the Euclidean norm. Since the
Euclidean norm is self dual, it follows that the robust
counterpart is a second order cone problem. If the
uncertainty set is described by either ‖ · ‖1 or ‖ · ‖∞
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(these norms are dual to each other), then the resulting
robust counterpart can be formulated as an LP.

3. The D-norm and its dual

In this section, we show that the approach of [7]
follows also from Theorem 2 by simply considering a
diLerent norm, called the D-norm and its dual as op-
posed to the Euclidean norm considered in [1,2,9,10].
Furthermore, we show worst case bounds on the prox-
imity of the D-norm to the Euclidean norm.
Bertsimas and Sim [7] consider uncertainty sets

given by

&M(vec(Ã) − vec( JA))&p6�

with p∈ [1; n] and for y ∈Rn×1

&y&p = max
{S∪{t}|S⊆N;|S|6�p�; t∈N\S}

×


∑
j∈S

|yj| + (p− 
p�)|yt |

 :

The fact that &y&p is indeed a norm, i.e.,

&y&p¿ 0, &cy&p = |c| · &y&p, &y&p = 0
if and only y = 0, and &x + y&p6&x&p +

&y&p follows easily. Speci=cally [7] considers
constraint-wise uncertainty sets, M a diagonal matrix
containing the inverses of the ranges of coe2cient
variation, and �= 1. We next derive the dual norm.

Proposition 2. The dual norm of the norm &·&p
is given by

&s&
∗
p =max(‖s‖∞; ‖s‖1=p):

Proof. The norm &y&p can be written as

&y&p =max
n∑

j=1

ujyj

s:t:
n∑

j=1

uj6p; 06 uj6 1

=min pr +
n∑

j=1

tj

s:t: r + tj¿ |yj|; tj¿ 0;

j = 1; : : : ; n; r¿ 0;

where the second equality follows by linear program-
ming strong duality. Thus, &y&p6 1 if and only if

pr +
n∑

j=1

tj6 1; r + tj¿ |yj|; tj¿ 0;

j = 1; : : : ; n; r¿ 0 (10)

is feasible. The dual norm &s&
∗
p is given by

&s&
∗
p = max
&y&p

61

s′y:

From Eq. (10) we have that

&s&
∗
p =max s′y

s:t: pr +
n∑

j=1

tj6 1;

yj − tj − r6 0; j = 1; : : : ; n;

−yj − tj − r6 0; j = 1; : : : ; n;

r¿ 0; tj¿ 0; j = 1; : : : ; n:

Applying LP duality again we obtain

&s&
∗
p =min �

s:t: p� −
n∑

j=1

uj −
n∑

j=1

vj¿ 0;

� − uj − vj¿ 0; j = 1; : : : ; n;

uj − vj = sj; j = 1; : : : ; n;

�¿ 0; uj; vj¿ 0; j = 1; : : : ; n:

Thus,

&s&
∗
p =min �

s:t: �¿ |sj|; j = 1; : : : ; n;

�¿
n∑

j=1

|sj|=p;

and hence,

&s&
∗
p =max(‖s‖∞; ‖s‖1=p):

Combining Theorem 2 and Proposition 2 leads to
an LP formulation of the robust counterpart of the
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uncertainty set in [7]. We thus observe that Theorem 2
provides a uni=ed treatment of the approaches in
[1,2,7,9,10].

3.1. Comparison with the Euclidean norm

Since uncertainty sets in the literature have been
described using the Euclidean and the D-norm it is
of interest to understand the proximity between these
two norms.

Proposition 3. For every y ∈Rn

min
{
1;

p√
n

}
6
&y&p

‖y‖2 6
√


p� + (p− 
p�)2

min
{
1
p
;
1√
n

}
6
&y&

∗
p

‖y‖2 6max
{√

n
p
; 1
}
:

Proof. We =nd a lower bound on &y&p=‖y‖2 by
solving the following nonlinear optimization problem:

max
∑
j∈N

x2j (11)

s:t: &x&p = 1:

Let S = {1; : : : ; 
p�}, t = 
p� + 1. We can impose
nonnegativity constraints on x and the constraints that
xj¿ xt ;∀j∈ S and xj6 xt ;∀j∈N \ S, without aLect-
ing the objective value of the Problem (11). Observ-
ing that the objective can never decrease if we let
xj = xt ;∀j∈N\S, we reduce (11) to the following
problem:

max
∑
j∈S

x2j + (n− 
p�)x2t

s:t:
∑
j∈S

xj + (p− 
p�)xt = 1;

xj¿ xt ∀j∈ S;

xt¿ 0:

(12)

Since we are maximizing a convex function over a
polytope, there exist an extreme point optimal solu-
tion to Problem (12). There are |S|+1 inequality con-
straints. Out of those, |S| need to be tight to establish
an extreme point solution. The |S|+1 extreme points

can be found to be

xk = ek ∀k ∈ S; (13)

x|S|+1 =
1
p

e; (14)

where e is the vector of ones and ek is the unit vec-
tor with the kth element equals one, and the rest
equal zero. Clearly, substituting all possible solu-
tions, Problem (12) yields the optimum value of
max{1; n=p2}. Taking the square root, the inequality
‖y‖26max{1;√n=p}&y&p follows.
Similarly, in order to derive an upper bound of
&y&p=‖y‖2, we solve the following problem:

min
∑
j∈N

x2j

s:t: &x&p = 1:

(15)

Using the same partition of the solution an before, and
observing that the objective can never increase with
xj = 0;∀j∈N \ S \ {t}, we reduce Problem (15) to
the following problem:

min
∑
j∈S

x2j + x2t

s:t:
∑
j∈S

xj + (p− 
p�)xt = 1;

xj¿ xt ∀j∈ S;

xt¿ 0:

(16)

An optimal solution of Problem (16) can be found
using the KKT conditions:

xj =




1

p� + (p− 
p�)2 if j∈ S;

p− 
p�

p� + (p− 
p�)2 if j = t;

0 otherwise:

Substituting, the optimal objective value of Prob-
lem (16) is (
p� + (p − 
p�)2)−1. Hence, tak-
ing the square root, we establish the inequality
&y&p6

√
p� + (p− 
p�)2‖y‖2.
Since

16
‖y‖1
‖y‖2 6

√
n;

1√
n
6

‖y‖∞
‖y‖2 6 1;
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and

&y&
∗
p =max

{‖y‖1
p

; ‖y‖∞

}
the bounds follow.

4. Probabilistic guarantees

In this section, we derive probabilistic guarantees
on the feasibility of an optimal robust solution when
the uncertainty set U is described by a general norm
‖ · ‖ with a dual norm ‖ · ‖∗.
We assume that the matrix Ã has an arbitrary

(and unknown) distribution, but with known ex-
pected value JA ∈Rm·n and known covariance matrix
% ∈R(m·n)×(m·n). Note that we allow arbitrary de-
pendencies on Ã. We de=ne M = %−1=2, which is a
symmetric matrix.
Let x∗ ∈Rn×1 be an optimal solution to Problem

(9). Recall that x∗
i ∈R(m·n)×1 denotes the vector con-

taining x∗ in entries (i − 1) · n through i · n, and 0
everywhere else.

Theorem 3. (a) The probability that x∗ satis:es con-
straint i for any realization of the uncertain matrix
Ã is

P(ã′
ix

∗6 bi)

=P((vec(Ã))′x∗
i 6 bi)

¿ 1 − 1

1 + �2(‖%1=2x∗
i ‖∗=‖%1=2x∗

i ‖2)2
: (17)

(b) If the norm used in U is the D-norm &· &p,
then

P(ã′
ix

∗6 bi)¿ 1 − 1

1 + �2 min
{

1
p2 ; 1n

} : (18)

(c) If the norm used in U is the dual D-norm &·
&

∗
p, then

P(ã′
ix

∗6 bi)¿ 1 − 1

1 + �2 min
{
1; p

2

n

} : (19)

(d) If the norm used in U is the Euclidean norm,
then

P(ã′
ix

∗6 bi)¿ 1 − 1
1 + �2 : (20)

Proof. Since an optimal robust solution satis=es

(vec( JA))′x∗
i + �‖%1=2 x∗

i ‖∗6 bi;

we obtain that

P((vec(Ã))′x∗
i ¿bi)6P((vec(Ã))′x∗

i¿(vec( JA))′x∗
i

+‖%1=2x∗
i ‖∗): (21)

Bertsimas and Popescu [6] show that if S is a convex
set, and X̃ is a vector of random variables with mean
JX and covariance matrix %, then

P(X̃ ∈ S)6
1

1 + d2
; (22)

where

d2 = inf
X̃∈S

(X̃ − JX)′%−1(X̃ − JX):

We consider the convex set Si={vec(Ã)|(vec(Ã))′x∗
i

¿ (vec( JA))′x∗
i + �‖%1=2x∗

i ‖∗}. In our case,

d2i = inf
vec(Ã)∈Si

(vec(Ã) − vec( JA))′%−1(vec(Ã)

−vec( JA)):

Applying the KKT conditions for this optimization
problem we obtain an optimal solution

vec( JA) + �

(
‖%1=2x∗

i ‖∗

‖%1=2x∗
i ‖2

)2
%x∗

i

with

d2 = �2

(
‖%1=2 x∗

i ‖∗

‖%1=2x∗
i ‖2

)2
:

Applying (22), Eq. (17) follows.
(b) If the norm used in the uncertainty set U is the

D-norm, then by applying Proposition 3, we obtain
Eq. (18).
(c) If the norm used in the uncertainty set U is

the dual D-norm, then by applying Proposition 3, we
obtain Eq. (19).
(d) If the norm used in the uncertainty set U is the

Euclidean norm, then Eq. (20) follows immediately
from Eq. (17).

Under the stronger assumption that the data in each
constraint are independently distributed according to
a symmetric distribution [7] proves stronger bounds.
In contrast the bounds in Theorem 3 are weaker, but
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have wider applicability as they include arbitrary
dependencies.
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