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DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUXDORIAN CROITORUAbstra
t. We study ve
tors formed by entries on the diagonal of standardYoung tableaux of shifted shapes. Su
h ve
tors are in bije
tion with inte-ger latti
e points of 
ertain integral polytopes, whi
h are Minkowski sums ofsimpli
es. We also des
ribe verti
es of these polytopes, and 
onstru
t 
orre-sponding shifted Young tableaux.1. Shifted Young Diagrams And TableaxDe�nition 1. Let λ = (λ1, . . . , λn) be a partition with at most n parts. The shiftedYoung diagram of shape λ (or just λ-shifted diagram) is the set
Dλ =

{

(i, j) ∈ R
2| 1 ≤ j ≤ n, j ≤ i ≤ n + λj

}

.We think of Dλ as a 
olle
tion of boxes with n+1−i+λi boxes in row i, and su
h thatthe leftmost box of the ith row is also in the ith 
olumn. A shifted standard Youngtableau shape λ (or just λ-shifted tableau) is a bije
tive map T : Dλ → {1, . . . , |Dλ|}whi
h is in
reasing along rows and down 
olumns, i.e. T (i, j) < T (i, j + 1) and
T (i, j) < T (i + 1, j) (|Dλ| =

(

n+1
2

)

+ λ1 + · · · + λn is the number of boxes in Dλ).The diagonal ve
tor of su
h a tableau T is diag(T ) = (T (1, 1), T (2, 2), . . . , T (n, n)).Example 1. The following is a shifted standard Young tableau for n = 4, λ =
(4, 2, 1, 0). Its diagonal ve
tor is (1, 4, 7, 17).
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17We are interested in des
ribing the possible diagonal ve
tors appearing in λ-shifted Young tableaux. The problem was solved in the 
ase λ = (0, 0, . . . , 0) (theempty partition) by A. Postnikov, in [Pos, Se
tion 15℄. Spe
i�
ally, it was shownthat diagonal ve
tors of the shifted triangular shape D∅ are in bije
tion with latti
epoints of the (n − 1)-dimensional asso
iahedron Assn−1(to be de�ned in se
tion2). Moreover, a simple expli
it 
onstru
tion was given for the �extreme� diagonalve
tors, i.e. the ones 
orresponding to the verti
es of Assn−1.In this arti
le, we aim to generalize Postnikov's results to arbitrary shiftedshapes. Spe
i�
ally, in se
tion 2 we will prove that diagonal ve
tors of shiftedKey words and phrases. Young Tableaux, S
hur Fun
tions, Minkowski Sum, GeneralizedPermutohedron. 1
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λ-tableaux are in bije
tion with latti
e points of a 
ertain polytope Pλ. This poly-tope is a Minkowski sum of simpli
es in Rn and its 
ombinatorial stru
ture onlydepends on the length of the partition λ. In parti
ular, if the length is n, Pλturns out to be 
ombinatorially equivalent to Assn. In se
tion 3 we shall give anexlpi
it 
onstru
tion of λ-shifted tableaux whose diagonal ve
tors 
oorespond tothe verti
es of Pλ.For a non-negative integer ve
tor (a1, ..., an), let Nλ(a1, . . . , an) be the numberof standard λ-shifted tableaux T su
h that T (i + 1, i + 1) − T (i, i) − 1 = ai for
i = 1, . . . , n, where we set T (n + 1, n + 1) =

(

n+1
2

)

+ λ1 + · · · + λn + 1 .Theorem 1. We have the following identity:
∑

a1,...,an≥0

Nλ(a1, . . . , an)
ta1

1

a1!
· · ·

tan
n

an!
=

=
1

∏n

i=1(λi + n − i)!
·

∏

1≤i<j≤n

(ti + · · ·+ tj−1) · sλ(t1 + · · ·+ tn, t2 + · · ·+ tn, . . . , tn)where sλ denotes the S
hur symmetri
 polynomial asso
iated to λ.Proof. Consider a ve
tor x = (x1 > x2 > · · · > xn). De�ne the polytope
Pλ(x) = {(pij)(i,j)∈Dλ

| 0 ≤ pij ≥ pi(j+1), pij ≥ p(i+1)j , pii = xi}.Thus Pλ(x) is the se
tion of the order polytope of shape Dλ where the valuesalong the main diagonal are x1, ..., xn. If λ = ∅, this polytope is known as theGelfand-Tsetlin polytope, whi
h has important 
onne
tions to �nite-dimensionalrepresentations of glnC (see [GT℄). Our proof strategy is to 
ompare two di�erentformulas for the volume of Pλ(x), one of whi
h is more dire
t and the other is asummation over standard λ-shifted Young tableaux. By [BR, Proposition 12℄,
vol(Pλ(x)) =

1
∏n

i=1(λi + n − i)!
·

∏

1≤i<j≤n

(xi − xj) · sλ(x).(1)On the other hand, there is a natural map φ from Pλ(x) (de�ned ex
ept on a set ofmeasure 0), to the set of standard λ-shifted Young tableaux, given as follows: Let
p =(pij)(i, j)∈Dλ

∈ Pλ(x) be a point with distin
t 
oordinates. Arrange the pij 's inde
reasing order and de�ne the tableau T = φ(p) by writing k in box (i, j) if pijis the kth element in the above list. By the de�nition of Pλ(x), it is 
lear that Tis a standard λ-shifted Young tableau. Given a standard λ-shifted tableau T withdiagonal ve
tor diag(T ) = {d1, . . . , dn}, it is easy to see that φ−1(T ) is isomorphi
to the set
{(yi) ∈ R

|T || y1 > y2 > · · · > y|T | > 0, ydi
= xi}whi
h is a dire
t produ
t of (in�ated) simpli
es

{x1 = y1 > y2 · · · > yd2−1 > x2} × · · · × {xn = ydn
> ydn+1 · · · > y|T | > 0}Therefore,
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vol(φ−1(T )) =

(x1 − x2)
a1

a1!
· · · · ·

(xn−1 − xn)an−1

an−1!
·
xan

n

an!
.Summing over all T , we obtain

vol(Pλ(x)) =
∑

T

vol(φ−1(T ))

=
∑

a1,...,an≥0

Nλ(a1, . . . , an)
(x1 − x2)

a1

a1!
· · · · ·

(xn−1 − xn)an−1

an−1!
·
xan

n

an!
.Comparing the last formula to (1), and making the substitutions

t1 = x1 − x2, . . . , tn−1 = xn−1 − xn, tn = xn, we obtain the identity in thetheorem. �2. Generalized PermutohedraIn this se
tion we re
all the setup from [Pos, Se
tion 6℄. Let n ∈ N and let
e1, . . . , en denote the standard basis of Rn. For a subset I ∈ {1, 2, . . . , n}, let
∆I = Conv{ei| i ∈ I}, whi
h is an |I|-dimensional simplex. A large 
lass ofgeneralized permutohedra (
f. [Pos, Se
tion 6℄) is given by subsets of Rn of theform

P y
n ({yI}) =

∑

∅6=I⊆{1,...,n}

yI∆Ii.e. P y
n ({yI}) is the Minkowski sum of the simpli
es ∆I s
aled by yI ≥ 0. It'snot hard to see that if yI = yJ , whenever |I| = |J |, then P y

n ({yI}) is the usualpermutohedron obtained by taking the 
onvex hull of points (x1, . . . , xn) su
h that
x1, . . . , xn is a permutation of the numbers

z[n] =
∑

I⊆[n]

yI , z[n−1] =
∑

I⊆[n−1]

yI , . . . , z{1} = y{1}.Generalized permutohedra have been studied extensively in [Pos℄. One parti
ularexample of a generalized permutohedron, the asso
iahedron , is de�ned as Assn =
∑

1≤i≤j≤n ∆[i, j]. It is also known as the Stashe� polytope and it �rst appeared inthe work of Stashe� (
f. [Sta℄.)Proposition 1. For any subsets I1, . . . , Ik ⊆ [n], and any non-negative integers
a1, . . . , an, the 
oe�
ient of ta1

1 · · · tan
n in(2) k
∏

j=1





∑

i∈Ij

ti



is non-zero if and only if (a1, . . . , an) is an integer latti
e point of the polytope
∑k

j=1 ∆Ij
.Proof. It's easy to see that the 
oe�
ient of ta1

1 · · · tan
n in (2) is non-zero if and onlyif (a1, . . . , an) 
an be written as a sum of verti
es of the simpli
es ∆I1 , . . . , ∆Ik

.By [Pos, Proposition 14.12℄, this happens if and only if (a1, . . . , an) is a latti
epoint of ∑k

j=1 ∆Ij
. �
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oe�
ient of ta1

1 · · · tan
n in sλ(t1+· · ·+tn, t2+· · ·+tn, . . . , tn)is non-zero if and only if (a1, . . . , an) is a latti
e point of the polytope λ1∆[1,n] +

λ2∆[2,n] + · · · + λn∆{n}.Proof. Re
all that
sλ(t1 + · · · + tn, t2 + · · · + tn, . . . , tn) =

∑

T

(t1 + · · · + tn)w1 · · · twn
n ,(3)where the sum ranges over all semi-standard Young tableaux T of shape λ andweight w = (w1, . . . , wn), i.e. wi is the number of i's appearing in T (see [St℄). Let

T be a SSYT of shape λ and weightw. Then w1+· · ·+wi ≤ λ1+· · ·+λi, ∀i = 1 . . . n.Indeed, if we 
onsider the boxes 
ontaining the numbers 1, 2, . . . , i in T , there 
anbe no more than i of them in the same 
olumn. Hen
e the number of su
h boxes isat most the size of the �rst i rows of λ, whi
h is λ1 + · · · + λi.It follows that any monomial ta1

1 · · · tan
n appearing in (t1 + · · ·+ tn)w1 · · · twn

n alsoappears in (t1 + · · · + tn)λ1 · · · tλn
n . On the other hand, (t1 + · · ·+ tn)λ1 · · · tλn

n doesappear in the right side of (3) as the term 
orresponding to the tableau T with 1'sin the �rst row, 2's in the se
ond row, et
. Therefore, the 
oe�
ient of ta1

1 · · · tan
nin sλ(t1 + · · ·+ tn, t2 + · · · + tn, . . . , tn) is non-zero if and only if it is non-zero in

(t1+· · ·+tn)λ1 · · · tλn
n , whi
h by Proposition 1, is non-zero if and only if (a1, . . . , an)is a latti
e point of λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}. �Theorem 2. The number of (distin
t) diagonal ve
tors of λ-shifted Young tableauxis equal to the number of latti
e points of the polytope

Pλ :=
∑

1≤i≤j≤n−1

∆[i,j] + λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}.Proof. By Theorem 1, and Propositions 1, 2 it follows that Nλ(a1, . . . , an) 6= 0 ifand only if (a1, . . . , an) is an integer latti
e point of the polytope
∑

1≤i≤j≤n−1

∆[i,j] + λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}.

�In parti
ular, if λ has n parts (i.e. λn > 0), we see that Pλ is 
ombinatoriallyequivalent to Assn. 3. Verti
es of PλIn what follows we des
ribe the verti
es Pλ by using te
hniques developed in[Pos℄. Given a generalized permutohedron P y
n ({yI}) =

∑

∅6=I⊆{1,..., n} yI∆I , as-sume that its building set B = {I ⊆ [n]| yI > 0} satis�es the following 
onditions:(1) If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.(2) B 
ontains all singletons {i}, for i ∈ [n].A B-forest is a rooted forest F on the vertex set [n] su
h that(1) For any i, desc(i, F ) ∈ B (desc(i, F ) is the set of des
endants of i in F ).(2) There are no k ≥ 2 distin
t in
omparable nodes i1, . . . , ik in F su
h that
⋃k

j=1 desc(ij , F ) ∈ B.(3) {desc(i, F )| i- root of F} = {I ∈ B| I−maximal}.We will need the following result of Postnikov:



DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUX 5Proposition 3. [Pos, Proposition 7.9℄ Verti
es of P y
n ({yI}) are in bije
tion with

B-forests. More pre
isely, the vertex vF = (t1, . . . , tn) of P y
n ({yI}) asso
iated witha B-forest F is given by ti =

∑

J∈B: i∈J⊆desc(i,F ) yJ , for i ∈ [n].Remark. It's not hard to see that Proposition 3 remains true even if we allow thebuilding set B not to 
ontain the singletons {i}. We will make use of this later on.The 
ombinatorial stru
ture of Pλ 
learly depends only on its building set, i.e.the number of non-zero parts of the partition λ. Assume λ1, . . . , λk > 0, λk+1 =
· · · = λn = 0, so that the building set of Pλ is

Bk = {[i, j]| 1 ≤ i ≤ j ≤ n − 1} ∪ {[i, n]| 1 ≤ i ≤ k}.We �rst deal with the 
ase k = n. Let T be a plane binary tree on n nodes. Fora node v of T , denote by Lv, Rv the left and right bran
hes at v. There is a uniqueway to label the nodes of T su
h that for any node v, its label is greater than alllabels in Lv and smaller than all labels in Rv. This labelling is 
alled the binarysear
h labelling of T .Proposition 4. [Pos, Proposition 8.1℄The Bn-forests are exa
tly plane binary treeson n nodes with the binary sear
h labeling.Let T be a Bn-forest. It's easy to see that desc(x, T ) has form [a, n] if and onlyif the path from the root to x always goes to the right. In this 
ase, desc(x, T ) =
[n−|Lx|, n] and n−|Lx| is maximal when x is the right-most node in T , i.e. x = n.It follows that {desc(x, T )| x ∈ [n]} ⊆ Bk ⊆ Bn ⇔ |Ln| ≥ n − k. This argumenttogether with Proposition 4 impliesProposition 5. The Bk-forests are exa
tly plane binary trees on n nodes with thebinary sear
h labeling and su
h that |Ln| ≥ n − k, i.e. su
h that the (left) subtreeof the right-most node in T has size at least n − k.Corollary 1. The number of verti
es of Pλ is

C1Cn−1 + C2Cn−2 + · · · + CkCn−kwhere Cn = 1
n+1

(

2n
n

) denotes the nth Catalan number.Proof. By Propositions 3 and 5, the number of verti
es of Pλ is equal to the numberof plane binary trees T on n nodes su
h that left subtree L of the right-most nodein T has size at least n − k. If |L| = n − i, then there are Cn−i ways to 
hoose Land Ci ways to 
hoose the tree T \L. Summing over i = 1, . . . , k yields the desiredformula. �To des
ribe the verti
es of Pλ, re
all that plane binary trees T on n nodes arein bije
tive 
orresponden
e with the Cn subdivisions of the shifted Young diagram
D∅ into n re
tangles. This 
an be de�ned indu
tively as follows: Let i be the rootof T (in the binary sear
h labeling). Then draw an (|Li|+ 1)× (|Ri|+ 1) re
tangle.Then atta
h the subdivisions 
orresponding to the binary trees Li, Ri to the leftand, respe
tively, bottom of the re
tangle.For a subdivision Ξ of D∅ into n re
tangles, the ith re
tangle is the re
tangle
ontaining the ith diagonal box of D∅. If T is the binary tree 
orresponding to Ξ,then the ith re
tangle of Ξ has size (|Li|+ 1)× (|Ri|+ 1). In parti
ular, |Ln|+ 1 isthe length of the (bottom-right) verti
al strip of the subdivision Ξ.



DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUX 6Example 2. Here is a subdivision of D∅ and the 
orresponding binary tree withthe binary sear
h labeling when n = 4.
1

2

3

4

5

6

4

2

1 3

6

5We are �nally in a position to prove the main result of this paper.Theorem 3. Verti
es of Pλ are in bije
tion with subdivisions of the shifted diagram
D∅ into n re
tangles su
h that the bottom-right verti
al strip of the subdivision hasat least n − k + 1 boxes. Spe
i�
ally, let Ξ be su
h a subdivision. Then we 
anget a subdivision Ξ∗ of Dλ−〈1k〉 by merging the re
tangles in Ξ with the rows of theYoung diagram of λ − 〈1k〉 that they border. Then the 
orresponding vertex of Pλis vΞ = (t1, . . . , tn), where ti is the number of boxes in the ith region of Ξ∗.Proof. The �rst part of the theorem follows from Proposition 5 and the dis
ussionpre
eeding the theorem. To prove the se
ond part, we use Proposition 3. Re
allthat the building set of Pλ is Bk = {[i, j]| 1 ≤ i ≤ j ≤ n} ∪ {[i, n]| 1 ≤ i ≤ k}, and
Pλ =

∑

[i,j]∈Bk
yij∆[i,j] where yij = 1 if j 6= 1 and yin = λi . Let T be a Bk-forest,i.e. a binary tree on n nodes with the binary sear
h labeling su
h that |Ln| ≥ n−k(
f. Proposition 5.) Note that desc(i, T ) = [i − |Li|, i + |Ri|]. Now Proposition 3implies that the 
orreponding vertex vT = (t1, . . . , tn) of Pλ is given by

ti =
∑

J∈Bk, i∈J⊆desc(i,F )

yJ =
∑

[k,l]∈Bk, i−|Li|≤k≤i≤l≤i+|Ri|

ykl

= (|Li| + 1) · |Ri| +
i

∑

k=i−|Li|

yk(i+|Ri|).If the ith re
tangle of Ξ borders the right edge of D∅ (i.e. n ∈ desc(i, T )), then
ti = (|Li|+ 1) · |Ri|+

∑i

k=i−|Li|
λk. Otherwise, ti = (|Li|+ 1) · (|Ri|+ 1) . In ea
h
ase, ti is the number boxes in the ith region of Ξ∗. �Example 3. Let n = 4, λ = (4, 2, 1, 0), k = 3. The �gure shows how a subdivision

Ξ of D∅ yields the subdivision Ξ∗ of Dλ−〈1k〉 = D(3,1,0). The 
orresponding vertexof Pλ is given by 
ounting boxes in the regions of Ξ∗: vΞ∗ = (1, 10, 1, 2). It followsthat there is a (4,2,1,0)-shifted Young tableau T whose diagonal ve
tor is diag(T ) =
(1, 1 + 1 + 1, 1 + 1 + 1 + 10 + 1, 1 + 1 + 1 + 10 + 1 + 2) = (1, 3, 14, 16).
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1

2

3

4

1

2

3

4On the other hand, one 
an dire
tly 
onstru
t λ-shifted Young tableaux withdiagonal ve
tor vΞ∗ = (c1, c2, . . . , cn) by using the subdivision Ξ∗. Indeed, we knowwhat the diagonal ve
tor of the tableau (a1, . . . , an) should be. Consider again thesubdivision Ξ∗ of Dλ−〈1k〉. We 
an extend the diagram Dλ−〈1k〉 to Dλ by �rstadding a box to the left of ea
h row of Dλ−〈1k〉, and then, by deleting the last
n − k boxes in the nth 
olumn of Dλ−〈1k〉. Now, we start by putting a1, . . . , an inthe diagonal boxes of Dλ. The remaining part of Dλ is divided into n regions by
Ξ∗. Finaly, for ea
h i = 1, . . . , n, put the ci numbers ai + 1, . . . , ai+1 − 1 in the ithregion of Ξ∗ in a standard way, i.e. su
h that entries in
rease along rows and down
olumns (as before, we set an+1 = |Dλ| + 1.) In this way we obtain a λ-shiftedtableau T su
h that diag(T ) = (a1, . . . , an).We illustrate the above pro
edure for the subdivision in Example 3.
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