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DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUXDORIAN CROITORUAbstrat. We study vetors formed by entries on the diagonal of standardYoung tableaux of shifted shapes. Suh vetors are in bijetion with inte-ger lattie points of ertain integral polytopes, whih are Minkowski sums ofsimplies. We also desribe verties of these polytopes, and onstrut orre-sponding shifted Young tableaux.1. Shifted Young Diagrams And TableaxDe�nition 1. Let λ = (λ1, . . . , λn) be a partition with at most n parts. The shiftedYoung diagram of shape λ (or just λ-shifted diagram) is the set
Dλ =

{

(i, j) ∈ R
2| 1 ≤ j ≤ n, j ≤ i ≤ n + λj

}

.We think of Dλ as a olletion of boxes with n+1−i+λi boxes in row i, and suh thatthe leftmost box of the ith row is also in the ith olumn. A shifted standard Youngtableau shape λ (or just λ-shifted tableau) is a bijetive map T : Dλ → {1, . . . , |Dλ|}whih is inreasing along rows and down olumns, i.e. T (i, j) < T (i, j + 1) and
T (i, j) < T (i + 1, j) (|Dλ| =

(

n+1
2

)

+ λ1 + · · · + λn is the number of boxes in Dλ).The diagonal vetor of suh a tableau T is diag(T ) = (T (1, 1), T (2, 2), . . . , T (n, n)).Example 1. The following is a shifted standard Young tableau for n = 4, λ =
(4, 2, 1, 0). Its diagonal vetor is (1, 4, 7, 17).
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17We are interested in desribing the possible diagonal vetors appearing in λ-shifted Young tableaux. The problem was solved in the ase λ = (0, 0, . . . , 0) (theempty partition) by A. Postnikov, in [Pos, Setion 15℄. Spei�ally, it was shownthat diagonal vetors of the shifted triangular shape D∅ are in bijetion with lattiepoints of the (n − 1)-dimensional assoiahedron Assn−1(to be de�ned in setion2). Moreover, a simple expliit onstrution was given for the �extreme� diagonalvetors, i.e. the ones orresponding to the verties of Assn−1.In this artile, we aim to generalize Postnikov's results to arbitrary shiftedshapes. Spei�ally, in setion 2 we will prove that diagonal vetors of shiftedKey words and phrases. Young Tableaux, Shur Funtions, Minkowski Sum, GeneralizedPermutohedron. 1
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λ-tableaux are in bijetion with lattie points of a ertain polytope Pλ. This poly-tope is a Minkowski sum of simplies in Rn and its ombinatorial struture onlydepends on the length of the partition λ. In partiular, if the length is n, Pλturns out to be ombinatorially equivalent to Assn. In setion 3 we shall give anexlpiit onstrution of λ-shifted tableaux whose diagonal vetors oorespond tothe verties of Pλ.For a non-negative integer vetor (a1, ..., an), let Nλ(a1, . . . , an) be the numberof standard λ-shifted tableaux T suh that T (i + 1, i + 1) − T (i, i) − 1 = ai for
i = 1, . . . , n, where we set T (n + 1, n + 1) =

(

n+1
2

)

+ λ1 + · · · + λn + 1 .Theorem 1. We have the following identity:
∑

a1,...,an≥0

Nλ(a1, . . . , an)
ta1

1

a1!
· · ·

tan
n

an!
=

=
1

∏n

i=1(λi + n − i)!
·

∏

1≤i<j≤n

(ti + · · ·+ tj−1) · sλ(t1 + · · ·+ tn, t2 + · · ·+ tn, . . . , tn)where sλ denotes the Shur symmetri polynomial assoiated to λ.Proof. Consider a vetor x = (x1 > x2 > · · · > xn). De�ne the polytope
Pλ(x) = {(pij)(i,j)∈Dλ

| 0 ≤ pij ≥ pi(j+1), pij ≥ p(i+1)j , pii = xi}.Thus Pλ(x) is the setion of the order polytope of shape Dλ where the valuesalong the main diagonal are x1, ..., xn. If λ = ∅, this polytope is known as theGelfand-Tsetlin polytope, whih has important onnetions to �nite-dimensionalrepresentations of glnC (see [GT℄). Our proof strategy is to ompare two di�erentformulas for the volume of Pλ(x), one of whih is more diret and the other is asummation over standard λ-shifted Young tableaux. By [BR, Proposition 12℄,
vol(Pλ(x)) =

1
∏n

i=1(λi + n − i)!
·

∏

1≤i<j≤n

(xi − xj) · sλ(x).(1)On the other hand, there is a natural map φ from Pλ(x) (de�ned exept on a set ofmeasure 0), to the set of standard λ-shifted Young tableaux, given as follows: Let
p =(pij)(i, j)∈Dλ

∈ Pλ(x) be a point with distint oordinates. Arrange the pij 's indereasing order and de�ne the tableau T = φ(p) by writing k in box (i, j) if pijis the kth element in the above list. By the de�nition of Pλ(x), it is lear that Tis a standard λ-shifted Young tableau. Given a standard λ-shifted tableau T withdiagonal vetor diag(T ) = {d1, . . . , dn}, it is easy to see that φ−1(T ) is isomorphito the set
{(yi) ∈ R

|T || y1 > y2 > · · · > y|T | > 0, ydi
= xi}whih is a diret produt of (in�ated) simplies

{x1 = y1 > y2 · · · > yd2−1 > x2} × · · · × {xn = ydn
> ydn+1 · · · > y|T | > 0}Therefore,
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vol(φ−1(T )) =

(x1 − x2)
a1

a1!
· · · · ·

(xn−1 − xn)an−1

an−1!
·
xan

n

an!
.Summing over all T , we obtain

vol(Pλ(x)) =
∑

T

vol(φ−1(T ))

=
∑

a1,...,an≥0

Nλ(a1, . . . , an)
(x1 − x2)

a1

a1!
· · · · ·

(xn−1 − xn)an−1

an−1!
·
xan

n

an!
.Comparing the last formula to (1), and making the substitutions

t1 = x1 − x2, . . . , tn−1 = xn−1 − xn, tn = xn, we obtain the identity in thetheorem. �2. Generalized PermutohedraIn this setion we reall the setup from [Pos, Setion 6℄. Let n ∈ N and let
e1, . . . , en denote the standard basis of Rn. For a subset I ∈ {1, 2, . . . , n}, let
∆I = Conv{ei| i ∈ I}, whih is an |I|-dimensional simplex. A large lass ofgeneralized permutohedra (f. [Pos, Setion 6℄) is given by subsets of Rn of theform

P y
n ({yI}) =

∑

∅6=I⊆{1,...,n}

yI∆Ii.e. P y
n ({yI}) is the Minkowski sum of the simplies ∆I saled by yI ≥ 0. It'snot hard to see that if yI = yJ , whenever |I| = |J |, then P y

n ({yI}) is the usualpermutohedron obtained by taking the onvex hull of points (x1, . . . , xn) suh that
x1, . . . , xn is a permutation of the numbers

z[n] =
∑

I⊆[n]

yI , z[n−1] =
∑

I⊆[n−1]

yI , . . . , z{1} = y{1}.Generalized permutohedra have been studied extensively in [Pos℄. One partiularexample of a generalized permutohedron, the assoiahedron , is de�ned as Assn =
∑

1≤i≤j≤n ∆[i, j]. It is also known as the Stashe� polytope and it �rst appeared inthe work of Stashe� (f. [Sta℄.)Proposition 1. For any subsets I1, . . . , Ik ⊆ [n], and any non-negative integers
a1, . . . , an, the oe�ient of ta1

1 · · · tan
n in(2) k
∏

j=1





∑

i∈Ij

ti



is non-zero if and only if (a1, . . . , an) is an integer lattie point of the polytope
∑k

j=1 ∆Ij
.Proof. It's easy to see that the oe�ient of ta1

1 · · · tan
n in (2) is non-zero if and onlyif (a1, . . . , an) an be written as a sum of verties of the simplies ∆I1 , . . . , ∆Ik

.By [Pos, Proposition 14.12℄, this happens if and only if (a1, . . . , an) is a lattiepoint of ∑k

j=1 ∆Ij
. �
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1 · · · tan
n in sλ(t1+· · ·+tn, t2+· · ·+tn, . . . , tn)is non-zero if and only if (a1, . . . , an) is a lattie point of the polytope λ1∆[1,n] +

λ2∆[2,n] + · · · + λn∆{n}.Proof. Reall that
sλ(t1 + · · · + tn, t2 + · · · + tn, . . . , tn) =

∑

T

(t1 + · · · + tn)w1 · · · twn
n ,(3)where the sum ranges over all semi-standard Young tableaux T of shape λ andweight w = (w1, . . . , wn), i.e. wi is the number of i's appearing in T (see [St℄). Let

T be a SSYT of shape λ and weightw. Then w1+· · ·+wi ≤ λ1+· · ·+λi, ∀i = 1 . . . n.Indeed, if we onsider the boxes ontaining the numbers 1, 2, . . . , i in T , there anbe no more than i of them in the same olumn. Hene the number of suh boxes isat most the size of the �rst i rows of λ, whih is λ1 + · · · + λi.It follows that any monomial ta1

1 · · · tan
n appearing in (t1 + · · ·+ tn)w1 · · · twn

n alsoappears in (t1 + · · · + tn)λ1 · · · tλn
n . On the other hand, (t1 + · · ·+ tn)λ1 · · · tλn

n doesappear in the right side of (3) as the term orresponding to the tableau T with 1'sin the �rst row, 2's in the seond row, et. Therefore, the oe�ient of ta1

1 · · · tan
nin sλ(t1 + · · ·+ tn, t2 + · · · + tn, . . . , tn) is non-zero if and only if it is non-zero in

(t1+· · ·+tn)λ1 · · · tλn
n , whih by Proposition 1, is non-zero if and only if (a1, . . . , an)is a lattie point of λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}. �Theorem 2. The number of (distint) diagonal vetors of λ-shifted Young tableauxis equal to the number of lattie points of the polytope

Pλ :=
∑

1≤i≤j≤n−1

∆[i,j] + λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}.Proof. By Theorem 1, and Propositions 1, 2 it follows that Nλ(a1, . . . , an) 6= 0 ifand only if (a1, . . . , an) is an integer lattie point of the polytope
∑

1≤i≤j≤n−1

∆[i,j] + λ1∆[1,n] + λ2∆[2,n] + · · · + λn∆{n}.

�In partiular, if λ has n parts (i.e. λn > 0), we see that Pλ is ombinatoriallyequivalent to Assn. 3. Verties of PλIn what follows we desribe the verties Pλ by using tehniques developed in[Pos℄. Given a generalized permutohedron P y
n ({yI}) =

∑

∅6=I⊆{1,..., n} yI∆I , as-sume that its building set B = {I ⊆ [n]| yI > 0} satis�es the following onditions:(1) If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.(2) B ontains all singletons {i}, for i ∈ [n].A B-forest is a rooted forest F on the vertex set [n] suh that(1) For any i, desc(i, F ) ∈ B (desc(i, F ) is the set of desendants of i in F ).(2) There are no k ≥ 2 distint inomparable nodes i1, . . . , ik in F suh that
⋃k

j=1 desc(ij , F ) ∈ B.(3) {desc(i, F )| i- root of F} = {I ∈ B| I−maximal}.We will need the following result of Postnikov:



DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUX 5Proposition 3. [Pos, Proposition 7.9℄ Verties of P y
n ({yI}) are in bijetion with

B-forests. More preisely, the vertex vF = (t1, . . . , tn) of P y
n ({yI}) assoiated witha B-forest F is given by ti =

∑

J∈B: i∈J⊆desc(i,F ) yJ , for i ∈ [n].Remark. It's not hard to see that Proposition 3 remains true even if we allow thebuilding set B not to ontain the singletons {i}. We will make use of this later on.The ombinatorial struture of Pλ learly depends only on its building set, i.e.the number of non-zero parts of the partition λ. Assume λ1, . . . , λk > 0, λk+1 =
· · · = λn = 0, so that the building set of Pλ is

Bk = {[i, j]| 1 ≤ i ≤ j ≤ n − 1} ∪ {[i, n]| 1 ≤ i ≤ k}.We �rst deal with the ase k = n. Let T be a plane binary tree on n nodes. Fora node v of T , denote by Lv, Rv the left and right branhes at v. There is a uniqueway to label the nodes of T suh that for any node v, its label is greater than alllabels in Lv and smaller than all labels in Rv. This labelling is alled the binarysearh labelling of T .Proposition 4. [Pos, Proposition 8.1℄The Bn-forests are exatly plane binary treeson n nodes with the binary searh labeling.Let T be a Bn-forest. It's easy to see that desc(x, T ) has form [a, n] if and onlyif the path from the root to x always goes to the right. In this ase, desc(x, T ) =
[n−|Lx|, n] and n−|Lx| is maximal when x is the right-most node in T , i.e. x = n.It follows that {desc(x, T )| x ∈ [n]} ⊆ Bk ⊆ Bn ⇔ |Ln| ≥ n − k. This argumenttogether with Proposition 4 impliesProposition 5. The Bk-forests are exatly plane binary trees on n nodes with thebinary searh labeling and suh that |Ln| ≥ n − k, i.e. suh that the (left) subtreeof the right-most node in T has size at least n − k.Corollary 1. The number of verties of Pλ is

C1Cn−1 + C2Cn−2 + · · · + CkCn−kwhere Cn = 1
n+1

(

2n
n

) denotes the nth Catalan number.Proof. By Propositions 3 and 5, the number of verties of Pλ is equal to the numberof plane binary trees T on n nodes suh that left subtree L of the right-most nodein T has size at least n − k. If |L| = n − i, then there are Cn−i ways to hoose Land Ci ways to hoose the tree T \L. Summing over i = 1, . . . , k yields the desiredformula. �To desribe the verties of Pλ, reall that plane binary trees T on n nodes arein bijetive orrespondene with the Cn subdivisions of the shifted Young diagram
D∅ into n retangles. This an be de�ned indutively as follows: Let i be the rootof T (in the binary searh labeling). Then draw an (|Li|+ 1)× (|Ri|+ 1) retangle.Then attah the subdivisions orresponding to the binary trees Li, Ri to the leftand, respetively, bottom of the retangle.For a subdivision Ξ of D∅ into n retangles, the ith retangle is the retangleontaining the ith diagonal box of D∅. If T is the binary tree orresponding to Ξ,then the ith retangle of Ξ has size (|Li|+ 1)× (|Ri|+ 1). In partiular, |Ln|+ 1 isthe length of the (bottom-right) vertial strip of the subdivision Ξ.



DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUX 6Example 2. Here is a subdivision of D∅ and the orresponding binary tree withthe binary searh labeling when n = 4.
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5We are �nally in a position to prove the main result of this paper.Theorem 3. Verties of Pλ are in bijetion with subdivisions of the shifted diagram
D∅ into n retangles suh that the bottom-right vertial strip of the subdivision hasat least n − k + 1 boxes. Spei�ally, let Ξ be suh a subdivision. Then we anget a subdivision Ξ∗ of Dλ−〈1k〉 by merging the retangles in Ξ with the rows of theYoung diagram of λ − 〈1k〉 that they border. Then the orresponding vertex of Pλis vΞ = (t1, . . . , tn), where ti is the number of boxes in the ith region of Ξ∗.Proof. The �rst part of the theorem follows from Proposition 5 and the disussionpreeeding the theorem. To prove the seond part, we use Proposition 3. Reallthat the building set of Pλ is Bk = {[i, j]| 1 ≤ i ≤ j ≤ n} ∪ {[i, n]| 1 ≤ i ≤ k}, and
Pλ =

∑

[i,j]∈Bk
yij∆[i,j] where yij = 1 if j 6= 1 and yin = λi . Let T be a Bk-forest,i.e. a binary tree on n nodes with the binary searh labeling suh that |Ln| ≥ n−k(f. Proposition 5.) Note that desc(i, T ) = [i − |Li|, i + |Ri|]. Now Proposition 3implies that the orreponding vertex vT = (t1, . . . , tn) of Pλ is given by

ti =
∑

J∈Bk, i∈J⊆desc(i,F )

yJ =
∑

[k,l]∈Bk, i−|Li|≤k≤i≤l≤i+|Ri|

ykl

= (|Li| + 1) · |Ri| +
i

∑

k=i−|Li|

yk(i+|Ri|).If the ith retangle of Ξ borders the right edge of D∅ (i.e. n ∈ desc(i, T )), then
ti = (|Li|+ 1) · |Ri|+

∑i

k=i−|Li|
λk. Otherwise, ti = (|Li|+ 1) · (|Ri|+ 1) . In eahase, ti is the number boxes in the ith region of Ξ∗. �Example 3. Let n = 4, λ = (4, 2, 1, 0), k = 3. The �gure shows how a subdivision

Ξ of D∅ yields the subdivision Ξ∗ of Dλ−〈1k〉 = D(3,1,0). The orresponding vertexof Pλ is given by ounting boxes in the regions of Ξ∗: vΞ∗ = (1, 10, 1, 2). It followsthat there is a (4,2,1,0)-shifted Young tableau T whose diagonal vetor is diag(T ) =
(1, 1 + 1 + 1, 1 + 1 + 1 + 10 + 1, 1 + 1 + 1 + 10 + 1 + 2) = (1, 3, 14, 16).
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1

2

3

4

1

2

3

4On the other hand, one an diretly onstrut λ-shifted Young tableaux withdiagonal vetor vΞ∗ = (c1, c2, . . . , cn) by using the subdivision Ξ∗. Indeed, we knowwhat the diagonal vetor of the tableau (a1, . . . , an) should be. Consider again thesubdivision Ξ∗ of Dλ−〈1k〉. We an extend the diagram Dλ−〈1k〉 to Dλ by �rstadding a box to the left of eah row of Dλ−〈1k〉, and then, by deleting the last
n − k boxes in the nth olumn of Dλ−〈1k〉. Now, we start by putting a1, . . . , an inthe diagonal boxes of Dλ. The remaining part of Dλ is divided into n regions by
Ξ∗. Finaly, for eah i = 1, . . . , n, put the ci numbers ai + 1, . . . , ai+1 − 1 in the ithregion of Ξ∗ in a standard way, i.e. suh that entries inrease along rows and downolumns (as before, we set an+1 = |Dλ| + 1.) In this way we obtain a λ-shiftedtableau T suh that diag(T ) = (a1, . . . , an).We illustrate the above proedure for the subdivision in Example 3.
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