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Abstract—The Shannon-Hartley theorem bounds the
maximum rate at which information can be transmitted
over a Gaussian channel in terms of the ratio of the signal
to noise power. We show two unexpected applications of this
theorem in computer science: (1) we give a much simpler
proof of an Ω(n1−2/p) bound on the number of linear
measurements required to approximate the p-th frequency
moment in a data stream, and show a new distribution
which is hard for this problem, (2) we show that the
number of measurements needed to solve the k-sparse
recovery problem on an n-dimensional vector x with the
C-approximate `2/`2 guarantee is Ω(k log(n/k)/ logC).
We complement this result with an almost matching
O(k log∗ k log(n/k)/ logC) upper bound.

I. INTRODUCTION

Let S be a real-valued random variable with E[S2] =
τ2. Consider the random variable S + T , where T ∼
N(0, σ2) is additive white Gaussian noise of variance
σ2. The Shannon-Hartley theorem states that

I(S;S + T ) ≤ 1

2
log

(
1 +

τ2

σ2

)
,

where I(X;Y ) = h(X) − h(X|Y ) is the mu-
tual information between X and Y , and h(X) =
−
∫
X f(x) log f(x)dx is the differential entropy of a

random variable X with probability density function f .
We show two unexpected applications of the Shannon-

Hartley theorem in computer science, the first to estimat-
ing frequency moments in a data stream, and the second
to approximating a vector by a sparse vector.

A. Sketching Frequency Moments

In the data stream literature, a line of work has consid-
ered the problem of estimating the frequency moments
Fp(x) = ‖x‖pp =

∑n
i=1 |xi|p, where x ∈ Rn and p ≥ 2.

One usually wants a linear sketch, that is, we choose a
random matrix A ∈ Rm×n from a certain distribution,
for m � n, and compute Ax, from which one can
output a constant-factor approximation to Fp(x) with
high probability. Linearity is crucial for distributed com-
putation, formalized in the MUD (Massive Unordered
Distributed) model [9]. In this model the vector x is
split into pieces x1, . . . , xr, each of which is handled by
a different machine. The machines individually compute
Ax1, . . . , Axr, and an aggregation function combines
these to compute Ax and estimate Fp(x). Linearity

is also needed for network aggregation, which usually
follows a bottom-up approach [18]: given a routing tree
where the nodes represent sensors, starting from the
leaves the aggregation propagates upwards to the root.
We refer to the rows of A as measurements.

Alon, Matias, and Szegedy [2] initiated the line of
work on frequency moments. There is a long line of
upper bounds on the number of linear measurements; we
refer the reader to the most recent works [3], [11] and the
references therein. Similarly, we refer the reader to the
most recent lower bounds [16], [22] and the references
therein. The best upper and lower bounds for obtaining
a (1 + ε)-approximation with probability at least 1 − δ
have the form n1−2/p · poly(ε−1 log(nδ−1).

The existing lower bounds are rather involved, using
the direct sum paradigm for information complexity
[5]. Moreover, they apply to the number of bits rather
than the number of linear measurements, and typically
do not provide an explicit distribution which is hard.
These issues can be resolved using techniques from [4],
[20] and [15]. The resulting hard distribution is: choose
x ∈ {−1, 0, 1}n uniformly at random, and then with
probability 1/2, replace a random coordinate xi of x
with a value in Θ(n1/p). Fp(x) changes by a constant
factor in the two cases, and so the approximation algo-
rithm must determine which case we are in.

We instead consider the following continuous dis-
tribution: choose x to be a random N(0, In) vector,
i.e., a vector whose coordinates are independent stan-
dard normal random variables. With probability 1/2,
replace a random coordinate xi of x with a value
in Θ(n1/p). The use of Gaussians instead of signs
allows us to derive our lower bound almost immedi-
ately from the Shannon-Hartley theorem. We obtain an
Ω(n1−2/p) bound on the number of linear measurements
required for estimating Fp, matching known bounds up
to poly(ε−1 log(Mnδ−1) factors. Our proof is much
simpler than previous proofs.

Our new hard distribution may also more accurately
model those signals x arising in practice, since it corre-
sponds to a signal with support 1 which is corrupted by
independent Gaussian noise in each coordinate. Identify-
ing natural hard distributions has been studied for other
data stream problems, see, e.g., [19] and [17].



B. Sparse Recovery

In the field of compressed sensing, a standard problem
is that of stable sparse recovery: we want a distribution
A of matrices A ∈ Rm×n such that, for any x ∈ Rn and
with probability 1 − δ > 2/3 over A ∈ A, there is an
algorithm to recover x̂ from Ax with

‖x̂− x‖p ≤ (1 + ε) min
k−sparse x′

‖x− x′‖p

for some ε > 0 and norm p. We call this a (1 + ε)-
approximate `p/`p recovery scheme with failure proba-
bility δ. We will focus on the popular case of p = 2.

For any constant δ > 0 and any ε satisfying ε = O(1)
and ε = Ω(n−1/2), the optimal number of measurements
is Θ(k log(n/k)/ε). The upper bound is in [12], and the
lower bound is given by [1], [6], [14], [20]; see [20] for
a comparison of these works.

One question is if the number of measurements can
be improved when the approximation factor C = 1 + ε
is very large (i.e. ω(1)). In the limiting case of C =∞,
corresponding to sparse recovery in the absence of noise,
it is known that O(k) measurements are sufficient [7].
However, the intermediate regime has not been well
studied.

Using the Shannon-Hartley theorem, we prove an
Ω(k log(n/k)/ logC) lower bound on the number of
measurements. We complement this with a novel sparse
recovery algorithm, which builds upon [12] and [13],
but is the first to obtain an improved bound for C > 1.
Our bound is O(k + k log(n/k) log∗ k/ logC), which
matches our lower bound up to a log∗ k factor. Because
log(1 + ε) ≈ ε, these results match the Θ( 1

εk log(n/k))
results for ε� 1.

Related work. Related lower bounds have appeared
in a number of recent works, including [6], [14], [1],
[21], and [10]. See [20] for a comparison.

II. LOWER BOUND FOR FREQUENCY MOMENTS

This section is devoted to proving the following the-
orem:

Theorem 1: Any sketching algorithm for Fp up to a
factor of (1 ± ε) for ε < 1/2, which succeeds with
probability 1− δ for a sufficiently small constant δ > 0,
requires m = Ω(n1−2/p).

Let Gp = E[|X|p] where X ∼ N(0, 1). For constant
p, Gp is Θ(1).

Consider the following communication game between
two players, Alice and Bob. Alice chooses a random
` ∈ [n] and associated standard unit vector e` =
(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn. She also chooses w ∼
N(0, In). Then she chooses Z ∈ {0, 1} uniformly at
random. If Z = 0, then Alice sets x = w. If Z = 1, then
Alice sets x = (4Gp)

1/p ·n1/pe` +w. She sets y = Ax,
where A is the random matrix used for estimating Fp.
She sends y to Bob, who runs the estimation procedure
associated with A to recover an estimate r to Fp(x). If

r ≥ 2Gpn, then Bob sets Z ′ = 1, else Bob sets Z ′ = 0.
We thus have a Markov chain `, Z → x→ y → Z ′.

If A works for any x with probability 1 − δ, as a
distribution over A, then there is a specific A and random
seed such that A, together with the associated estimation
procedure, succeeds with probability 1−δ over x drawn
from the distribution described above. Let us fix this
choice of A and associated random seed, so that Alice
and Bob run deterministic algorithms. Let m be the
number of rows of A. We can assume the rows of A are
orthonormal since this can be done in post-processing.

Lemma 2: I(Z;Z ′) = O(m/n1−2/p).
Proof: Let the rows of A be denoted v1, . . . , vm.

Then we have that

yi = 〈vi, x〉 = (4Gp)
1/pn1/p · 〈vi, e`〉Z + w′i,

where w′i ∼ N(0, 1). Define zi = (4Gp)
1/pn1/p ·

〈vi, e`〉Z so yi = zi + w′i. Then

EZ,`[z
2
i ] =

1

2
· (4Gpn)2/pE`[(v

i
`)

2]

=
1

2

(4Gpn)2/p

n
=

1

2

(4Gp)
2/p

n1−2/p
= Θ(1/n1−2/p).

Hence, yi = zi + w′i is a Gaussian channel with power
constraint E[z2

i ] = Θ(1/n1−2/p) and noise variance
E[(w′i)

2] = 1. By the Shannon-Hartley theorem,

max
vi

I(zi; yi) ≤
1

2
log

(
1 +

E[z2
i ]

E[(w′i)
2]

)
=

1

2
log
(

1 + Θ(1/n1−2/p)
)

= Θ(1/n1−2/p).

By the data processing inequality for Markov chains and
the chain rule for entropy,

I(Z;Z ′) ≤ I(z; y) = h(y)− h(y|z)
= h(y)− h(y − z|z)
= h(y)−

∑
i

h(w′i|z, w′1, . . . , w′i−1)

= h(y)−
∑
i

h(w′i) ≤
∑
i

h(yi)− h(w′i)

=
∑
i

h(yi)− h(yi|zi) =
∑
i

I(yi; zi)

≤ O(m/n1−2/p).

Proof of Theorem 1: If Z = 1, then ‖x‖pp ≥ 4Gp ·n,
and so any (1 ± ε)-approximation is at least 2Gpn for
ε < 1/2. On the other hand, if Z = 0, then E[‖x‖pp] =
Gp · n, and since the |xi|p are i.i.d. (as we range over
i) with bounded variance, by Bernstein’s inequality, with
probability at least 1−1/n, ‖x‖pp ≤ 4

3 ·Gp ·n. Hence, any
(1±ε)-approximation is less than 2Gpn for ε < 1/2. So
if the algorithm succeeds with probability at least 1− δ,
then Z = Z ′ with probability at least 1− δ − 1/n.



By Fano’s inequality and the fact that Z,Z ′ ∈ {0, 1},
if q = Pr[Z ′ 6= Z] then we have H(Z|Z ′) ≤ H(q) + q.
Hence,

I(Z;Z ′) = H(Z)−H(Z | Z ′) = 1− (H(q) + q) ≥ 1/2

if q is less than a sufficiently small constant, which
follows from δ being a sufficiently small constant. But
by Lemma 2, I(Z;Z ′) = O(m/n1−2/p). Hence m =
Ω(n1−2/p).

III. BOUNDS FOR SPARSE RECOVERY

A. Lower bound for C � 1

For C = 1+ε a lower bound of Ω(k log(n/k)/ε) was
shown in [1], [6], [14], [20] for any constant δ > 0 and ε
satisfying ε = O(1) and ε = Ω(n−1/2). As in the lower
bound of [20], ours uses the Shannon-Hartley theorem,
but this proof is simpler because it can use that C is
large. We explain the approach and our modification,
and refer the reader to [20] for more details.

This section will prove the following theorem:
Theorem 3: Any C-approximate `2/`2 recovery

scheme with failure probability δ < 1/2 requires
m = Ω(k log(n/k)/ logC).

As in [20], let F ⊂ {S ⊂ [n] | |S| = k} be a family
of k-sparse supports such that:
• |S∆S′| ≥ k for S 6= S′ ∈ F ,
• PrS∈F [i ∈ S] = k/n for all i ∈ [n], and
• log |F| = Ω(k log(n/k)).

A random linear code on [n/k]k with relative distance
1/2 has these properties (see discussion in [20]).

Let X = {x ∈ {0,±1}n | supp(x) ∈ F}. Let w ∼
N(0, α knIn) be i.i.d. normal with variance αk/n in each
coordinate. Consider the following process.

Alice chooses S ∈ F uniformly at random, then x ∈
X uniformly at random subject to supp(x) = S, then
w ∼ N(0, α knIn). She sets y = A(x + w) and sends y
to Bob. Bob performs sparse recovery on y to recover
x′ ≈ x, rounds to X by x̂ = arg minx̂∈X ‖x̂− x′‖2,
and sets S′ = supp(x̂). This gives a Markov chain S →
x→ y → x′ → S′.

If sparse recovery works for x + w with probability
1 − δ over A, then there is a fixed A and random seed
such that sparse recovery works with probability 1 − δ
over x+w; choose this A and random seed, so that Alice
and Bob run deterministic algorithms on their inputs.

The next lemma uses the Shannon-Hartley theorem.
Lemma 4: (4.1 of [20]) I(S, S′) = O(m log(1 + 1

α )).
We modify Lemma 4.3 of [20] to obtain our main

lemma and theorem. It is simpler than [20] since when
C is large, the recovery algorithm cannot try to output
many of the Gaussian coordinates in lieu of finding x.

Lemma 5: I(S, S′) = Ω(k log(n/k)) if α = Ω(1/C).
Proof: The claim is that with probability at least

1/2, x̂ = x, and so S = S′. By Fano’s inequality we
will then have H(S|S′) ≤ 1 + Pr[S′ 6= S] log |F|, and

so I(S;S′) = H(S) − H(S|S′) ≥ −1 + 1
2 log |F| =

Ω(k log n/k).
To show the claim, we condition on successful sparse

recovery, which happens with probability 1 − δ ≥ 2/3.
Let z = x + w be the transmitted signal. We also
condition on ‖w‖2∞ ≤ O(αkn log n) and ‖w‖22/(αk) ≤ 2,
which happen with probability at least 1−o(1). So both
events occur with probability at least 2/3− o(1) > 1/2.
Given this conditioning and that α = Ω(1/C), the best
k-sparse approximation to z is x+wS , where wS is the
restriction of w to coordinates in S.

Suppose x̂ 6= x, so ‖x̂ − x′‖2 ≤ ‖x − x′‖2. Then
because sparse recovery was successful, ‖z − x′‖2 ≤
C‖w − wS‖2 ≤ C‖w‖2. Hence

‖x̂− x‖2 ≤ ‖x̂− x′‖2 + ‖x′ − x‖2
≤ 2‖x′ − x‖2
≤ 2(‖x′ − z‖2 + ‖z − x‖2)

≤ 2(C + 1)‖w‖2
≤ 2(C + 1)

√
2αk,

which is less than
√
k for appropriate α = Ω(1/C). This

is a contradiction, and so x̂ = x, as desired.
Proof of Theorem 3: Combining Lemma 4 with

Lemma 5, Ω(k log(n/k)) = I(S, S′) = O(m logC),
from which m = Ω(k log(n/k)/ logC).

B. Upper bound for C � 1

We first focus on recovery of a single heavy coordi-
nate. We then study recovery of 90% of the heavy hitters
for general k. We conclude with recovery of all the heavy
hitters.

1) k=1: We observe 2r measurements, for some
r = O(logC n). Let D = C/16. For i ∈ [r], we choose
pairwise independent hash functions hi : [n]→ [D] and
si : [n]→ {±1}. We then observe

y2i =
∑
j

hi(j)si(j)xj y2i+1 =
∑
j

si(j)xj

procedure IDENTIFYSINGLE(y, h)
αi ← ROUND(y2i/y2i+1) for i ∈ [r].
cj ← |{i ∈ [r] | hi(j) = αi}| for j ∈ [n].
S ← {j ∈ [n] | cj > 5r/8}.
if |S| = 1 then

return j ∈ S
else

return ⊥
end if

end procedure

Algorithm III.1: 1-sparse identification

Define x−j to equal x over [n] \ {j} and 0 at j.
Lemma 6: Suppose there exists a j∗ ∈ [n] such that
|xj∗ | ≥ C ‖x−j∗‖2. Then if C is a sufficiently large
constant, we can choose r = O(logC n + log 1/δ) and



D = C/16 so that IDENTIFYSINGLE returns j∗ with
probability 1− δ.

Proof: The key claim is that, for αi =
ROUND( y2i

y2i+1
), we have

Pr[αi 6= hi(j
∗)] ≤ 1/4. (1)

Straightforward concentration inequalities then give
the result. To get (1), define the “noise” βi =∑
j 6=j∗ hi(j)si(j)xj and γi =

∑
j 6=j∗ si(j)xj . Then

E[γ2
i ] = ‖x−j∗‖22 E[β2

i ] ≤ D2 ‖x−j∗‖22 .

Thus with probability at least 1 − 2/9 > 3/4, γi ≤
3 ‖x−j∗‖2 and βi ≤ 3D ‖x−j∗‖2. But then

y2i

y2i+1
=
hi(j

∗) + si(j
∗)βi/xj

1 + si(j∗)γi/xj
=
hi(j

∗)± 3D/C

1± 3/C∣∣∣∣ y2i

y2i+1
− hi(j∗)

∣∣∣∣ ≤ 3D/C + 3hi(j
∗)/C

1− 3/C
≤ 6D

C − 2

so if D = C/16 < (C − 2)/12, as happens for
sufficiently large C, this is less than 1/2 so αi =
ROUND( y2i

y2i+1
) = hi(j

∗), giving (1).
Then by a Chernoff bound, Pr[j∗ /∈ S] = Pr[cj∗ <

5r/8] = e−Ω(r) < δ/2 for r = Ω(log(1/δ)). Suppose
that j∗ ∈ S. In order for any j 6= j∗ to lie in S, it must
have hi(j) = hi(j

∗) for at least r/4 different i (because
both match α for 5r/8 coordinates). But Pr[hi(j) =
hi(j

∗)] = 1/D independently over i, so

Pr[j ∈ S] ≤
(
r

r/4

)
(1/D)r/4 ≤ (4e/D)r/4 = C−Ω(r)

as long as C is larger than a fixed constant. But for
r = O(logC(n/δ)) this gives Pr[j ∈ S] < δ/(2n), so a
union bound gives that S = {j} with probability 1− δ.

2) General k, finding most coordinates: For general
k, we identify a set L of O(k) coordinates by partitioning
the coordinates into O(k) sets of size Θ(n/k) and
applying IDENTIFYSINGLE. To be specific, we use a
pairwise independent hash function h : [n] → [l] to
partition into l sets.

To analyze how this performs, define the “error”

Err2(x, k) = min
k-sparse x′

‖x− x′‖22

and the “heavy hitters”

S = {i ∈ [n] | |xi|2 >
C2

k
Err2(x, k)}.

Lemma 7: With O(k logC(n/k)) measurements, this
algorithm returns a set L of size O(k) such that each
j ∈ S has j ∈ L with probability at least 3/4.

Proof: For each coordinate j ∈ S, Lemma 6 shows
it will be recovered as long as three events hold: none
of the other elements of the top k coordinates hash to
the same value as j, the `22 norm of the mass that hashes
to the same value as j is no more than a constant factor

times its expectation Err2(x, k)/k, and the algorithm in
Lemma 6 does not fail. All these occur with constant
probability if l = O(k), giving the result.

Corollary 8: With O(k logC(n/k) log(1/δ)) mea-
surements, IDENTIFYMOST returns a set L of size O(k)
such that each j ∈ S has j ∈ L with probability at least
1− δ.

Proof: We repeat the method of Lemma 7
O(log(1/δ)) times, and take all coordinates that are
listed in more than half the sets Li. This at most doubles
the output size, and by a Chernoff bound each j ∈ S lies
in the output with probability at least 1− δ.

Corollary 8 gives a good method for finding the heavy
hitters, but we also need to estimate them.

3) Estimating coordinates: We estimate using Count-
Sketch [8], with R = O(log(1/δ)) hash tables of size
O(k/ε).

procedure IDENTIFYMOST(y)
for r ← [R] do . R = O(log(1/δ))

Lr ← {IDENTIFYSINGLE(y(i)) | i ∈ [k]}
end for
cj ← |{r | j ∈ Lr}| for j ∈ [n].
L← {j | cj > R/2}
return x̂L

end procedure
procedure ESTIMATEMOST(y, L)

for r ← [R] do . R = O(log(1/δ))

x̂
(r)
j ← s(j)yh(j).

end for
x̂j ← medianr x̂

(r)
j

return x̂L
end procedure

Algorithm III.2: Estimating most coordinates well

Lemma 9: Suppose |L| ≤ O(k). With O( 1
εk log( 1

fδ ))
measurements, ESTIMATEMOST returns x̂L so that for
any j, with probability 1− δ we have

Err2(xL − x̂L, fk) ≤ εErr2(x, k)

Proof: The analysis of Count-Sketch [8] gives

Pr[|x̂j − xj |2 >
ε

k
Err2(x, k)] < fδ.

Thus with probability 1 − δ, at most f |L| = O(fk) of
the j have |x̂j − xj |2 > ε

kErr2(x, k). Rescaling f and ε
gives the result.

4) Recovering all the heavy hitters:
Lemma 10: The result x̂L of IDENTIFYMOST fol-

lowed by ESTIMATEMOST satisfies

Err2(x− x̂L, fk) ≤ C2Err2(x, k)

with probability 1−δ, and uses O(k logC(n/k) log( 1
fδ ))

measurements.
Proof: Let T contain the largest k coordinates of x.

By Corollary 8, each j ∈ S has j ∈ L with probability



procedure RECOVERALL(y)
k′ ← k, δ ← 1/16, x̂(0) ← 0
for r ← [R] do

y′ ← y(r) −A(r)x̂(r)

L(r) ← IDENTIFYMOST(y′, k′, δ)
v̂(r) ← ESTIMATEMOST(y′, k′, δ, L)
x̂(r+1) ← x̂(r) + v̂(r)

Decrease k′, ε, δ per Theorem 11
end for

end procedure

Algorithm III.3: Recovering all coordinates

1− δf , so with probability 1− δ we have |S \ L| ≤ fk.
Then

Err2(x− x̂L, 2fk) ≤ Err2(xL − x̂L, fk) +
∥∥x[n]\(S∪L)

∥∥2

2

≤ εErr2(x, k) +
∥∥x[n]\T

∥∥2

2
+
∥∥xT\S∥∥2

2

≤ (ε+ 1 + C2)Err2(x, k)

≤ 2C2Err2(x, k)

with probability 1 − δ by Lemma 9. Rescale f , δ, and
C to get the result.

Theorem 11: RECOVERALL achieves C-approximate
`2/`2 sparse recovery with O(k+ (log∗ k)k logC(n/k))
measurements and 3/4 success probability.

Proof: We will achieve DO(log∗ k)-approximate re-
covery using O(k logD(n/k)) measurements. Substitut-
ing logC = logD log∗ k gives the result.

Define δi = 1
8·2i . Let f0 = 1/16 and fi+1 =

2−1/(4ifi). Let ki = k
∏
j<i fj . Then for R = O(log∗ k),

kR < 1.
We set x̂(0) = 0, and iterate IDENTIFYMOST and

ESTIMATEMOST on x − x̂(r) in each round r with
δr, fr, kr, D as parameters, getting update v̂(r) and set-
ting x̂(r+1) = x̂(r) + v̂(r).

Then Lemma 10 telescopes, giving

Err2(x− x̂(r), kr) ≤ D2rErr2(x, k)

so
∥∥x− x̂(R)

∥∥2

2
≤ D2RErr2(x, k), which is DO(log∗ k)-

approximate recovery.
The total number of measurements is
R∑
i=0

ki logD(n/ki) log(
1

δifi
)

=

R∑
i=0

k(
∏
j<i

fj) logD(
n

k

∏
j<i

(1/fj))
3 + i

4ifi−1

=

R∑
i=0

k
3 + i

4i
(
∏
j<i−1

fj) logD(
n

k

∏
j<i

(1/fj))

=O(k logD
n

k
) +

k

logD

R∑
i=0

3 + i

4i
(
∏
j<i−1

fj)
∑
j<i

1

4jfj−1

=O(k logD
n

k
).
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