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Abstract

The conditions necessary to produce natural hydrogen recombination masers are not fully

understood. To explore the requirements, we simulate the recombination of a plasma cloud,

only tracking the evolution of two bound states. We modify the principle quantum number

and angular momentum of the bound states, as well as the temperature and density of the

cloud, to pin down what effect each has on masing. The angular momentum value primarily

determines when masing occurs, but density, temperature, and principle quantum number

also play a role.



1 Introduction

A decade after lasers had been created in the laboratory—and half a century after they had

been theorized—it was discovered that light of unusual intensity could be emitted by astro-

physical sources. The hydroxyl radical, water, and silicon oxide, amongst other compounds,

were found to frequently produce strong lasing but hydrogen, the most common element and

the simplest to model, was not. The reason for this is not well understood, and this paper

seeks to explore the conditions under which lasing occurs naturally in hydrogen gas.

A simple three level model is simulated with a system of ordinary differential equations.

Using a series of realistic initial conditions, this system is solved to establish conditions that

could theoretically produce a laser.

1.1 Laser Theory

The fundamental component of lasers is the gain medium, in which the light is generated.

When energy—a pulse of light, for example—is applied to the medium, some of the electrons

in the atoms will be promoted to a higher energy level, making the atoms excited.

The excited atom is not stable, so eventually an electron will spontaneously fall back

down to a lower energy state, releasing a photon. This photon travels through the medium,

eventually intercepting another atom. If the atom is excited, the perturbation caused by the

electric field of the wave may knock the electron back to its ground state, causing a wave of

light of equal wavelength and phase to be released in the same direction as the first. This

process is called stimulated emission. Now there are two waves where once there was one,

each of which may intercept another atom to begin the chain reaction.

When the light produced is in the microwave range, the system is called a maser -

microwave amplification by stimulated emission of radiation.

There must be enough excited atoms through which the light can be amplified for the
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system to become a maser. When there are more atoms of a higher energy than there are

those of a lower, a population inversion exists that is sufficient to satisfy this condition. The

models described in this paper are created with the goal of simulating a population inversion,

for the purpose of discovering how it may be achieved in clouds of atomic hydrogen.

If the upper level population is constantly being renewed, the population inversion is

maintained, and lasing can occur continuously. The light produced in this way is called a

continuous wave. The method of replenishing the upper population is called the pumping

mechanism. In astronomical masers, the pumping mechanism is often a nearby star of suffi-

cient energy to excite or ionize the atoms. Once the atoms have been ionized, recombination

can take place.

Hydrogen recombination occurs when an electron is captured by a proton. It favors

changes of greater energy—the greater the energy released, the higher the rate of recom-

bination to that energy level. Relative recombination rates are discussed in more detail

later.

1.2 MWC 349

MWC 349A, part of the binary star MWC 349, is the only known natural hydrogen recom-

bination maser. It produces nine masers, and amplifies weakly at other wavelengths. The

transitions involved in the strong masing include H15α, H12α, and H10α [6]—the number

in the notation is the lower level, and the α indicates that the transition is between adjacent

levels.

The cloud surrounding MWC 349A is ionized and resembles a butterfly in shape [2].

There is evidence to suggest it acts like a Keplerian disk seen edge on [2, 3], which means it

rotates faster at smaller radii. Doppler shifting changes the frequency of the light such that

photons produced in one part of the cloud will not be of the right frequency to stimulate

emission in atoms from another part of the cloud, if they are moving at different speeds.
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Therefore only rings of gas, all moving at the same speed, will be able to lase, and we will

only be able to observe masing that occurs in our direction. So for any given ring there

are two areas of masing—the part of the ring moving away from us produces light that

is red shifted, and the part moving towards us produces blue shifted light, producing a

double-peaked spectrum [2].

It has also been suggested that masing can occur in high enough density clouds of ionized

hydrogen, but this situation has never been observed [4, 6].

2 Creating the Model

The hydrogen model has been simplified to two bound levels, an upper state, indicated by

u with population density Nu, and a lower state, indicated by l with population density

Nl. The population of the continuum, which contains unbound electrons and protons, is also

considered and can be calculated by subtracting the populations of the bound levels from the

total proton number, given by Nt. The proton population of the continuum is represented

by Np.

Np = Nt −Nu −Nl

There are a few things to consider about level choice: the lower state can be the ground

state, but the recombination rate to the ground state is high and does not encourage a

population inversion. On the other hand, the photon released by recombination to the

ground state has enough energy to ionize any atom absorbing it so there is no net change in

the ground state population if the absorption rate is high. Nevertheless, it is expected that

transitions between higher states will more readily produce an inversion. For simplicity’s

sake, this paper will ignore this photoionization factor and instead focus on the case where

the system was ionized to begin with—this is called the pure recombination case.

The model is a system of differential equations, designed to take into account three main
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Figure 1: Example of an inversion

dynamic rates: the change in the population of the lower state, the change in the population

of the upper state, and the change in the intensity of the light the maser is producing. The

latter tracks the population of photons with the energy of the difference between the upper

and lower states. A dramatic increase in this population signals that masing has occurred,

shown in Figure 1. A consistently high intensity indicates that a pumping mechanism is

repopulating the upper state. A momentary spike indicates that the population inversion

could not be maintained.

There are five major radiative processes that change the number of atoms of a particular

excitation state: absorption of a photon, ionization (which we are ignoring), spontaneous

and stimulated emission of a photon, and recombination.

To calculate the number of excited atoms as a function of time, all processes that might

increase or reduce the population must be taken into account. First, absorption of a photon

of sufficient energy by a ground state atom will increase the number of excited atoms. Ab-

sorption of a sufficiently energetic photon by an already excited atom will allow the electron

to escape, thus reducing the number of excited atoms. Spontaneous or stimulated emission

of a photon will reduce the excited population, and recombination will increase it (see Table
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1 for specifics. A is the Einstein A-coefficient between the upper and lower levels. Since in

this simplified model we are ignoring photoionization, nγl and nγu are assumed to be zero.

Name Ground Change Excited Change Factor

absorption - + A gl
gu

Nlnγ

ionization: g - 0 4πσuνu3

c2
Nlnγl

ionization: e 0 - 4πσuνu3

c2
Nunγu

stim emiss + - ANunγ

spont emiss + - ANu

recomb: g + 0 αlN
2
e

recomb: e 0 + αuN
2
e

Table 1: To calculate population change, locate the appropriate column, apply the sign given
to the factor, and sum.

Thus, we produce the equation

dNu

dt
= A

gl

gu

Nlnγ − ANunγ − ANu + αuN
2
e −

4πσuν
3
u

c2
nunγu.

where Nu represents the population density of the upper excited state, Nl represents popu-

lation change for the lower state, and c stands for the continuum. Appendix A contains the

other constant/variable definitions and derivations.

The same type of equation can be formed for Nl

dNl

dt
= −A

gl

gu

nlnγ + ANunγ + ANu + αclN
2
e −

4πσlν
3
l

c2
Nlnγl.

Assuming conservation of protons and electrons, Ne and Np can be calculated. In fact, if

the system is neutral, Ne = Np.

The radiative transfer equation, equation 1, which describes the photon distribution

function f(v, s), takes into account the stimulated emission factor Nu

gu
, the absorption factor

Nl

gl
, and the spontaneous emission factor Nu

gu
. Stimulated emission and absorption both

depend on the current photon distribution, so both are multiplied by f , whereas spontaneous
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emission does not. It should be noted that equation 1 is given in terms of s, or path length,

but can be converted to t using the speed of light as needed.

df

ds
=

c2guA

4πν2
0

φ(v)

((
Nu

gu

− Nl

gl

)
f(v, s) +

Nu

gu

)

)
(1)

Equation 1 can be redefined as

df

ds
= −kνf + jν ,

where kν and jν are defined as:

kν =
c2guA

4πν2
0

φ

(
Nl

gl

− Nu

gu

)

jv =
c2guA

4πν2
0

φ
Nu

gu

.

However, there is a spread to the maser line, which is not taken into account by the

function f(ν, s). One must multiply f(ν, s) by the Lorentzian line shape function φ(ν) 2 and

integrate for all positive ν, to get nγ 3.

φ(ν) =
A/2π

(ν − ν0)2 + (A/2)2
, (2)

nγ =

∫ ∞

0

φ(ν)f(ν, s)dν. (3)

By differentiating, one gets:

dnγ

ds
=

∫ ∞

0

[−kνf + jν ] = −Knγ + J,

where

K =

∫ ∞

0

kνφ(ν)dν =
c2guA

4π
(
Nu

gu

− Nl

gl

)

∫∞
0

φ2(ν)

ν2
0

f(ν, s)dν∫∞
0

f(ν, s)φ(ν)dν
,
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J =

∫ ∞

0

jνφ(ν)dν =
Sc2guA

4π

Nu

gu

∫ ∞

0

φ2(ν)

ν2
0

dν.

In unsaturated masers, whose level populations change slowly, kν and jν are essentially

constant and f(ν, s) can be evaluated exactly. However, to compute K, an approximation

of f(ν, s) can be made to simplify the expression, using the first two terms of the Taylor

polynomial for e on the assumption that kνs is close to 0. This gives

∫
f(ν, s)φ(ν)dν =

sc2guA

4πv2
0

Nu

gu

∫
φ2(ν)dν.

Solving for f(ν, s) exactly gives f(ν, s) = jν

kν
(1− e−kνs) if one assumes f = f0(ν) at s = 0

and f0(ν) = 0. The form can be generalized, assuming f0(ν) = d, to

nγ(s) = nγ(0)e
−ks +

j

kν

(1− e−kνs).

Mathematica was used to find the definite integrals of φ2(v) and φ3(v), which were then

evaluated from 0 to ∞.

∫ ∞

0

φ2(ν)dν =
1

Aπ2
(
π

2
+

2Aν0

A2 + 4v2
0

+ arctan(
2ν0

A
)),

∫ ∞

0

φ3(ν)dν =
1

2A2π3
(
3π

2
+

2A(5A2 + 12(ν0)
2)ν0

(A2 + 4(ν0 − ν)2)2
+ 3 arctan(

2ν0

A
)).

In all cases in which we are concerned, A is small compared to ν0, so when they are

added A disappears. The Taylor expansion of the arctangent term approaches π/2, and the

equations simplify to

J(s) =
c2Nu

4π2v2
0

,
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K(s) =
3c2gu

8π2v2
0

.

However, these terms put our equations in terms of path length, s. To change from

arclength to time in seconds, the terms must be multiplied by ct.

By inputting specific initial values into these equations, the population levels can be

calculated over time using MatLab, and it can be determined whether or not the system

with those values will lase.

2.1 Data Collection

To determine whether a population inversion occurs, we graph kνs over time to see if the

value ever becomes negative. If it never does, the graph was deemed non-masing. If it did,

a population inversion had been created.

Recombination coefficients and spontaneous emission coefficients for each n and l tested

are included in Appendix B.

2.1.1 First variation: l value

The angular momentum quantum number, or l value, of an electron represents the shape of

the orbital it inhabits. The value ranges from 0 to n− 1, where n is the principle quantum

number. When an electron move from one orbital to another, its l value must either increase

or decrease by one.

To test how much l value variance affects results, we looked at the 10 to 11 transition at

104 K with a density of 109m−3. Graphs showing typical inversion and non-inversion results

are shown in figure 2.

For transitions where the l value of the upper state is one lower than the l value of the

lower state, a population inversion occurs. For the other half of transitions, a population

inversion does not occur. The trend also holds for higher transitions (15-16, 20-21, 25-26)

8



(a) Inversion (b) Not an inversion

Figure 2: Example kνs graphs

where the l values chosen are roughly half of the n value.

There are a couple of caveats, though. The first is that we assume our maser is unsatu-

rated, though this may not be the case at all times. Second, in our derivations we assumed

|kνs| to be less than one. Unfortunately, it can be seen that |kνs| exceeds one at some point

in every plot.

However, it is still the case that the spontaneous emission coefficient A, which is not

derived with kνs, is lower for the cases where the upper state l value is one less than the

lower state l value. Spontaneous emission drains the upper level and repopulates the lower

level, so a small A value increases the likelihood of a population inversion and reinforces the

idea that the results we obtained are accurate.

Furthermore, on the whole, the α values—the recombination coefficients—are higher for

the upper level than the lower level only for the l value cases described above. When the

recombination rate is higher for the upper level than the lower, electrons fall more readily

into the upper state and a population inversion is more easily achieved.
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2.1.2 Second variation: n value

For configurations with high n values, the recombination coefficients cannot be calculated

with the program we were using, which limits exploration of this variation.

Nevertheless, as n gets larger, A gets smaller, which, as mentioned above, indicates

population inversion should be more likely. However, if the l value for the upper state is

not one less than the l value for the lower state, the inversion still does not occur. This is

probably because the recombination rate for the upper state is not higher than that of the

lower state, which indicates that recombination rates are more influential in inverting the

population than spontaneous emission rates are.

2.1.3 Temperature and Density

Recombination rates are affected by the temperature of the system, lower being more favor-

able for a population inversion, as well as the density, higher being more favorable. With

this in mind, both temperature and density variation are explored.

103, 104, and 105 K were computed for n = 10, l = 5 to n = 11, l = 4 and n = 10, l = 5

to n = 11, l = 4. Interestingly, only 104 produces a higher recombination rate for the upper

state than for the lower state, though the pattern of l transition states dominates — each

case, no matter the temperature, where the upper state l value was lower than the lower

state l value, produces a population inversion.

For density, because the recombination terms involve the square of the density while the

other terms are only linearly dependent, an increase in density should cause the cases where

the recombination rates of the upper state are higher to more readily experience population

inversion. However, in all such cases, every density produces a population inversion, and a

higher density only causes them to invert more quickly.

A faster inversion, whether the result of a low temperature or a high density, means a

maser of higher intensity, or even a more likely maser in real situations where the size of the
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gain medium is not unlimited.

3 Conclusion

We modeled a pure recombination hydrogen maser using a system of differential equations

to represent the population of an upper excited state, the population of a lower excited

state, and the intensity of the maser light produced. We varied the n and l values as well as

temperature and density to establish the conditions under which masing would occur.

The trend indicates that a maser is produced in every case in which the upper state l

value is one less than the lower state l value. A higher n value decreases the spontaneous

emission rate but does not seem to create a population inversion in and of itself. Similarly,

temperature modifies recombination rates but does not appear to be a deciding factor when

the size of the gain medium is unlimited. Density too changes the rate at which inversion

occurs.

Interestingly, every graph analyzed involved a permanent population inversion, despite

the fact that no pumping mechanism was in place. It is possible that for the higher n

values we could not calculate, a non-permanent increase in intensity would be created. It is

also possible that the permanency of the intensity increase is due to the breakdown of our

assumptions.

Further explorations will involve increasing the number of bound states, increasing the

accuracy of the approximations, incorporating photoionization into the equations, and es-

tablishing a fixed size of the gain medium to determine what temperature and density com-

binations are feasible.
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B Appendix B

lower n lower l upper n lower l Temperature(K) lower α upper α A masing?
10 1 11 0 104 7.81e-22 2.16e-22 1.36e4 y
10 1 11 2 104 7.81e-22 8.27e-22 1.16e4 n
10 5 11 4 104 6.52e-22 7.46e-22 2.00e3 y
10 5 11 6 104 6.52e-22 3.56e-22 3.21e4 n
10 9 11 8 104 1.00e-23 8.21e-23 1.07e2 y
10 9 11 10 104 1.00e-23 3.92e-24 7.30e4 n
15 7 16 8 104 1.54e-22 9.47e-23 4.12e3 n
20 10 21 11 104 3.39e-23 2.17e-23 1.08e3 n
25 12 26 13 104 1.38e-23 9.39e-24 3.45e2 n
15 7 16 6 104 1.54e-22 1.91e-22 3.08e2 y
20 10 21 9 104 3.39e-23 4.64e-23 6.37e1 y
10 5 11 4 100 3.45e-20 2.76e-20 2.00e3 y
10 5 11 6 100 3.45e-20 2.68e-20 3.21e4 n
10 5 11 4 103 7.59e-21 6.78e-21 2.00e3 y
10 5 11 6 103 7.59e-21 5.12e-21 3.21e4 n
10 5 11 4 105 2.60e-23 3.30e-23 2.00e3 y
10 5 11 6 105 2.60e-23 1.31e-23 3.21e4 n
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