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Abstract Graphites are widely used for their high electrical
conductivity and good thermal and chemical stability. In this
work, graphitic carbon-coated lithium titanium (Li4Ti5O12/
GC) was successfully synthesized by a simple one-step
solid-state reaction process with the assistance of sucrose
without elevating sintering temperature. The lattice fringe of
0.208 nm clearly seen from the high-resolution transmission
electronmicroscopy (HRTEM) images was assigned to graph-
ite (010). The average grain size of the as-prepared Li4Ti5O12/
GC was about 100–200 nm, 1 order smaller than that of pure
Li4Ti5O12 prepared similarly. The rate performance and cycle
ability were significantly improved by the hybrid conducting
network formed by graphitic carbon on the grains and amor-
phous carbon between them. The specific capacity retention
rate was 66.7 % when discharged at a rate of 12C compared
with the capacity obtained at 0.5C. After 300 cycles, the
capacity retention was more than 90 % at a high rate of 15C.
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Introduction

Lithium ion batteries offering higher power and higher energy
density have been powering most of the portable electronic
devices [1]. Furthermore, the increasing crisis of traditional
energy resources and serious concerns on global environment
are making lithium ion batteries to enable electric vehicles

(EVs) and hybrid electric vehicles (HEVs) and be a comple-
ment to wind and solar energy [2, 3]. Compared with tradi-
tional carbon-related anodes and alloy anodes, Li4Ti5O12 ex-
hibits excellent reversibility between spinel structure and
rock-salt structure after numerous Li+ insertion and extraction
processes, which contributes to excellent cycling stability [4].
Together with a high operating potential of 1.55 V vs. Li/Li+

avoiding the formation of lithium dendrites [5], Li4Ti5O12 is
proposed as an ideal candidate anode for HEVs and stationary
energy storage [6, 7]. Recently, Li4Ti5O12 was newly reported
as a wonderful Na+ storage material [8]. But the poor rate
performance of pristine Li4Ti5O12 caused by low electronic
conductivity (less than 10−13 S cm−1 [9]) prevents it from
practical use. Many efforts have been made to improve the
electronic conductivity by cation doping (such as K, Al, V,
Nb, etc. [10–13]), surface modification (such as polyacene
[14], carbon [15–18] or N-doped carbon [19–21]), or com-
posites (Li4Ti5O12/TiO2 [22–24], Li4Ti5O12/Ag [25],
Li4Ti5O12/Li2Ti3O7 [26], etc.). Methods to increase Li+ trans-
port ability or shorten Li+ diffusion length [27–30] were also
extensively studied. The carbon coating technique has
attracted much attention due to its simplicity and feasibility,
where a diversity of carbon sources (e.g., pitch [18], ionic
liquid [21], etc.) and fabrication methods (sol-gel method
[17], solid-state reaction [15, 16], etc.) were investigated. It
should be noted that most of the carbon layers are in the
amorphous state [31]. It is well known that the conductivity
of graphite is much better than that of amorphous carbon [32].
Generally, the carbon materials can be graphitized until the
critical temperature is over 1,800 °C with a longer treating
period [33]. In this regard, it is understandable why the graph-
itized carbon layer is rarely applied to coat Li4Ti5O12.

Herein, we proposed an economic and easy to be scaled up
route to synthesize graphitized carbon-coated Li4Ti5O12 com-
posite in a low temperature. Sucrose was used as a carbon
source, which was mixed with lithium salt and titanium
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compound. Then, the mixture was directly sintered by a
simple one-step solid-state reaction. The graphitized carbon
coat ing layer can eff ic ient ly prevent Li4Ti5O12

nanoparticles from aggregation, leading to the feature size
down to around 200 nm. The composite showed excellent
rate performance even charging/discharging at a high current
rate of 12C, which was attributed to the improved electronic
conductivity as well as the reduced Li+ diffusion length.

Experimental

TiO2 (anatase, averaged particle diameter 150 nm), Li2CO3,
and sucrose were chosen as the starting materials. Sucrose
accounted for X (X=0, 10, 15, 20) percent of the total weight
of TiO2 and Li2CO3. All the starting materials were mixed in a
liquid medium of acetone and water by a planetary ball mill for
4 h. The ball feed ratio was 5:1. The as-prepared slurry was then
dried at 80 °C and grounded into fine powder for later use.
Following that, the ternary precursor was treated at a rate of
3 °C/min from room temperature to 800 °C in a tube furnace
filled with argon gas, holding the maximum temperature for
12 h and natural cooling afterwards. The as-synthesized sam-
ples were named as LTOCX (X=0, 10, 15, 20).

The morphology of the as-synthesized samples was char-
acterized by a field emission scanning electron microscope
(FE-SEM, Hitachi, S3400N) and a transmission electron mi-
croscope (TEM, JEOL, JEM-100CX). The phase analysis was
carried out with X-ray diffraction (XRD, X’Pert PRO MPD)
using Cu Kα radiation, and the data was collected with a 2θ
scan ranging from 15° to 85° at a step size of 0.03°. Raman
spectra were measured by a Renishaw inVia Reflex Raman
Microscope at a laser power of 0.5 mW with the excitation
wavelength of 514 nm.

Two-electrode lab cell was assembled in a glove box cir-
culated with argon gas (99.999 %) for electrochemical mea-
surement. To produce the working electrode, the active mate-
rial and acetylene black and polyvinylidene fluoride (PVDF)
were dispersed in N-methyl-2-pyrrolidine (NMP) solution
with a carnelian mortar. The weight ratio of the above three
solid species was set to be 80:10:10. The electrode fabrication
was finished by spreading the grounded mixture on a thin Cu
foil with the doctor-blade method and drying at 110 °C in a
vacuum drying oven for about 12 h before cell assembly. The
counter electrode was of metallic Li foil. The electrolyte was
LiPF6 (1 mol/l) dissolved in the mixture ethylene carbonate,
diethyl carbonate, and dimethyl carbonate (1:1:1 in volume).

The galvanostatic discharge/charge measurements were
conducted on a LAND series battery testing system
(CT2001A, LAND Electronic Co.) at a potential range of
1.0–3.0 V with different discharge/charge rates varying from

0.2C to 20C. Cyclic voltammetry (CV) and electrochemical
impedance spectroscopy (EIS) were performed on an electro-
chemical work station (Solartron Model 1287/1260A;
Solartron Analytical). CV curves were recorded under a scan
rate of 0.1 mV S−1 at a potential range of 1.0–3.0 V. EIS was
performed at a frequency range of 0.01 Hz–1.0 MHz with the
voltage amplitude of 5 mV.

Results and discussion

Morphology characterization and phase identification

Figure 1 exhibits the XRD patterns of the as-synthesized
LTOCX compounds. The pattern of LTOC0 demonstrates
clear peaks located at 2θ degree of 18.3°, 35.6°, 43.2°,
57.2°, and 62.9°, which match the positions and relative
intensities of the spinel Li4Ti5O12 diffraction peaks listed in
PDF #49-0207 very well. No impurity phase was identified,
suggesting LTOC0 consists of pristine Li4Ti5O12. While the
amount of carbon source is slightly increased, the XRD pat-
tern does not show a noticeable change considering either the
peak position or the intensity. When the weight ratio of su-
crose is increased to 20 % (LTOC20), unexpected diffraction
peaks of Li2TiO3 and anatase TiO2 appear, suggesting the
pyrolyzed carbon retarded the reaction. This phenomenon
was frequently observed while the carbon weight ratio is over
the critical point. All of the XRD curves do not show any
signal of carbon, indicating that the total weight of the carbon
material might be too low or the pyrolyzed carbon is
amorphous.

Fig. 1 XRD patterns of LTOCXs and PDF #49-0207
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Figure 2 shows the corresponding SEM images of the as-
synthesized LTOCX compounds. As a reference, the SEM
image of the TiO2 reactant is also provided. The particle size
of the pristine Li4Ti5O12 (LTOC0) is over 500 nm, and each
particle is well crystallized, exposing very clear and flat facets.
The introduction of 10 % weight of carbon source (LTOC10)
can significantly reduce the particle size [34], in which the
estimated average size is around 200 nm. The smaller particle
will shorten Li+ diffusion distance and offer larger reaction
area, which would provide benefit by reducing the electro-
chemical polarization and promoting the rate performance
[35]. With the increased amount of the carbon source, the
product becomes more uniform and its size can be further
decreased slightly. The tendency is consistent with the pub-
lished result, where the TiO2 precursor was coated with car-
bon layer prior to the solid-state reaction [16, 36]. However, it
should be mentioned that the particle size of the sample with
the highest carbon ratio (LTOC20) is larger than that of the
TiO2 reactant, suggesting that the aggregation occurred in the
process of thermal annealing. Even though the carbon source
ratio was up to 20 % (LTOC20), it is still very difficult to
identify if the pyrolyzed carbon is coated on Li4Ti5O12 nano-
particles by SEM imaging. TEM and high-resolution trans-
mission electron microscopy (HRTEM) images of the com-
posite LTOC15 are given in Fig. 3. Figure 3a exhibits a low
magnification TEM image, where the particle size is around

200 nm. It is in accordance with SEM observation. The spider
network is visible in the neighboring particle, which must be
made of pyrolytic carbon. The enlarged TEM image exhibits
that the carbon material is potted uniformly on the surface of
well-crystallized Li4Ti5O12 grains. The HRTEM image illus-
trates that there are clear strip lines for each dot, and the
spacing of the lattice fringe is 0.208 nm, which can be
assigned to graphite (010). The maximum height of the dot
is around 4 nm, and the minimum height is around 1 nm.More
importantly, the neighboring dots are overlapped. That is to
say, a serrated graphitized carbon layer is successfully coated
on Li4Ti5O12.

In order tomake sure that graphitized carbonwas formed in
the macroscopic area, Raman spectrum was collected as
shown in Fig. 4. The peaks located at 1,340 and 1,595 cm−1

can be assigned to D and G bands, respectively. It is common
knowledge that D band represents the vibration mode from
amorphous carbon and G band originates from graphitized
carbon [37]. The two peaks have comparable intensity, sug-
gesting that the two types of carbon may have similar weight
ratio. A large amount of defects on the surface of graphite
grains also contributes to the low peak intensity ratio of the G
band to D band [38]. According to HRTEM result, it can be
easy to know that the particle is coated with graphitized
carbon, and the neighboring particles were connected with
amorphous carbon network. The nature of the startingmaterial

Fig. 2 SEM images of LTOCXs and TiO2: a LTOC00, b LTOC10, c LTOC15, d LTOC20, and e TiO2 used in the experiments

Fig. 3 TEM and HRTEM images of sample LTOC15: a at low resolution, b high magnification of random grains, and c HRTEM of surface area of a
random grain
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(sucrose) is suggested to be the shifts of the Raman peaks of
carbon [39].

This result was different from that discussed in former
works in which amorphous carbon was detected [24, 40].
The cooperation of relatively higher synthesis temperature
and longer annealing time was suggested to be one of the
reasons of graphitization. Atmosphere was another factor that
affects the graphitization. The carbon layer tended to be amor-
phous if synthesized in NH3 atmosphere reported in our
previous work [20].

Electrochemical performance

The typical charge/discharge profiles of LTOC15 at different
current rates are shown in Fig. 5. The average initial specific
capacity was 183 mAh g−1 when charged-discharged at a rate
of 0.5C, which is slightly higher than the theoretical value.
The possible reason is that graphitic carbon exhibits electro-
chemical double layer capacitance effect above 1.0 V [41].

Due to the good conductivity of graphitic carbon coating
outside the particles, the batteries prepared with sample
LTOC15 show the best rate performance among all the sam-
ples. As shown in Fig.6, high capacity retentions as 154, 136,

127, 114, and 102 mAh g−1 were obtained even after being
charged-discharged at 0.5C, 1C, 2C, 7C, and 12C for 100 cy-
cles. Al foil was used as the current collector for comparison.
The capacities are 155, 133, 116, 88, and 67 mAh g−1, respec-
tively, which are much lower than those of the batteries with
Cu foil as the current collector. The tendency agrees with the
result reported by Hu [42]. The coulombic efficiency is over
96 % after the second cycle and almost 100 % afterwards.
After 300 cycles, the capacity retention at a high level of more
than 90 % was achieved with a high discharge-charge rate of
7C and 15C, respectively (shown in Fig. 7). To compare the
rate performance of all the samples, the normalization of the
capacity variations based on the capacity at 0.5C is exhibited
in Fig. 8. Sample LTOC15 performed much better than that of
sample LTOC0, but slightly better than that of sample
LTOC20. It suggests that for sample LTOC15, a thin graphitic
carbon layer on the grains and the pyrolyzed carbon among
them have formed a nearly complete conducting network and
improved the electron conductivity significantly. The smaller
grain size and less agglomeration also contribute to the im-
provement. The results agree with TEM and Raman spectra
well. The graphitic layer on the grains of sample LTOC20 is a

Fig. 4 Raman spectrum of LTOC15

Fig. 5 The charge-discharge data of sample LTOC15 tested from 1 to
3 V at different rates

Fig. 6 The rate performance of sample LTOC15 tested from 1 to 3 V

Fig. 7 The cycle performance of sample LTOC15 tested from 1 to 3 Vat
the discharge-charge rates of 7C and 15C
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little thicker, which prevents Li+ from fast transport just like
the case discussed in our previous work [20], that is why there
is no further obvious improvement for sample LTOC20.

The irreversible capacity decline in the first cycle is pre-
sented in Table 1. The increased phase impurity in the samples
is suggested to be the main reason of the capacity decline in
the first cycle with the increasing weight ratio of sucrose
involved [43].

To further demonstrate the effect of the graphitic carbon
layer on the active materials. The first three cycles of CV
measurement of samples LTOC0 and LTOC15 are shown in
Fig. 9. Checking the figure, one dominant couple of redox
peaks is observed while scanning at a rate of 0.1 mV S−1. For
pure Li4Ti5O12, the cathodic peak and the anodic peak are
located at 1.40 and 1.78 V, respectively, while for LTOC15,
the two peaks are located at 1.45 and 1.66 V, which demon-
strates that the graphitic carbon layer improves the electronic
conductivity of the active materials. The coincidence of one to
three cycles of the CV curves indicated the stability and
reversibility of the discharge and charge process for pure
and carbon-coated samples. This further indicates that there
is no side effect when introducing sucrose (pyrolyzed carbon)
in the material sintering process.

The AC impedance spectra were measured to further un-
derstand the conductivity of the graphite-coated Li4Ti5O12

material. The data are given in Fig. 10. The equivalent circuit
is shown as an inset. Rct of LTOC15, the equivalent resistance
of the impedance caused by the electrochemical reaction

activity at the interface between active material and electro-
lyte, is fitted to be 86Ω, which is much smaller than that of
pure Li4Ti5O12 (170Ω). The result is comparable or better
than the results mentioned in the literature [24, 44–46].

Conclusions

Graphitic carbon-coated Li4Ti5O12 of high rate performance
and good cycle stability was successfully achieved with the
assistance of sucrose, which is cheap, environmentally friend-
ly, and abundant in nature by a simple, short-time consump-
tion, one-step solid-state reaction process. In this work, XRD,
SEM, and TEM were carried out to study the physical char-
acteristics. At both the aids of sucrose film coating on the
grains of Li2CO3 and TiO2, the average grain size of the as-
prepared graphite carbon-coated Li4Ti5O12 was tested to be
around 100–200 nm, 1 order smaller than pristine Li4Ti5O12

prepared similarly. A good conducting network formed by
graphitic carbon and pyrolyzed carbon can be seen from
TEM photos. The less agglomeration and reduced grain size
made the lithium ion diffusion much easier. As a result, the

Fig. 8 The capacity retention rates of the samples prepared with different
percentages of sucrose

Table 1 The capacity retention of the batteries fabricated by the samples
in the initial cycles

Sample name LTOC0 LTOC10 LTOC15 LTOC20

Initial capacity retention (%) 92 85 84 81

Fig. 9 CVdates of samples LTOC0 and LTOC15 tested from 1 to 3Vat a
scan rate of 0.1 mV S−1

Fig. 10 The AC impedance spectra of LTOC0 and LTOC15 measured at
a stable voltage of 1.55 V in the frequency range of 0.01 Hz–1 MHz and
the equivalent circuit used in data fitting
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rate performance and cycle ability of graphitic carbon-coated
Li4Ti5O12 were significantly improved. The specific capacity
retained 66.7 % even at a rate of 12C compared with the
capacity achieved when discharged at 0.5C. After the 300th
cycle, the specific capacity retention was more than 90 % at a
high rate of 15C. The work in this article is expected to be
used in the mass production.
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