
Research Report on
Adaptive Multimodal Fission and Fusion

Authors:Mick Cody, Fred Cummins, Eva Maguire, Erin Panttaja, David Reitter

Project: IST-2001-38685

Project Title: FASiL - Flexible and Adaptive Spoken Language and Multimodal
Interfaces

Workpackage:WP5

EC Project Officer:Kimmo Rossi

Keywords:Multimodal Interaction, Fission, Signal Fusion, Adaptability, Natural
Language Generation, Wizard-of-Oz Method

(C) 2004 Media Lab Europe Ltd.

1

Contents

1 Executive Summary 6

1.1 Multimodality . 7

1.2 Adaptivity . 8

1.3 Abbreviations and Acronyms .10

2 Multimodal Functional Unification Grammar 11

2.1 Abstract .13

2.2 Introduction .13

2.3 Related Work .14

2.4 Formalism .15

2.5 Planning for Coherence .18

2.6 Adaptively Choosing the Best Variant20

2.7 Conclusion .21

2.8 Acknowledgement .22

3 Multimodal Centering 23

3.1 Introduction .25

2

3.2 Centering .26

3.3 The Generation of Referring Expressions28

3.4 An Analysis of a Multimodal Corpus30

3.5 Centering in the Multimodal Unification Grammar37

3.6 Generation of a Referring Expression for an Object FD41

3.7 Therefexp Components .47

3.8 Generating Personal Descriptions from a Social Network Database49

3.9 Grammar components .49

3.10 Conclusion .54

4 Grammars 55

4.1 Unification .55

4.2 Anatomy of a component .56

4.3 Realized .57

4.4 Grammars .57

5 MUG Workbench – A development environment for Multimodal Func-
tional Unification Grammar 59

5.1 Introduction .61

5.2 Development with MUG .61

5.3 Applications .64

6 A Platform for Multimodal Wizard of Oz User Interaction Studies 66

6.1 Abstract .67

3

6.2 Introduction .67

6.3 The WOzOS Platform .68

6.4 Multimodal Study using WOzOS73

6.5 Conclusion .74

6.6 Acknowledgements .75

7 Evaluation 76

7.1 Introduction .77

7.2 Recent work .79

7.3 Evaluation .81

7.4 UI on the Fly .86

7.5 Evaluating UI on the Fly .90

7.6 Conclusion .92

8 Dissemination Activities 93

8.1 Overview .93

8.2 Journal articles .93

8.3 Conference and Workshop papers93

8.4 Thesis .94

8.5 Talks .94

8.6 Multimedia .95

A Multimodal Integration and FASiL VPA 1.5 96

4

B Grammar Examples 98

B.1 Component variants .98

B.2 Full Example .100

5

Chapter 1

Executive Summary

In the year since the last Fission/Fusion report, much work has gone into the im-
plementation of a Fission workbench for creating adaptive multimodal user inter-
faces. The background of this process and recent work in Multimodal Interaction
is included in the Research report on Multimodal Fission/Fusion models presented
as Deliverable number D 5.1 in May of 2003.

This report will describe the progress we have made on the Fusion services, the
fission services and Multimodal Workbench, a project on using Centering theory
to add pronouns to our grammars, and an overview of the structure of the MUG
grammars for FASiL.

We follow with a discussion of the evaluation of multimodal systems. This in-
cludes an overview of the Wizard of Oz experiments in English, Portuguese, and
Swedish, as well as a description of an evaluation methodology for mobile multi-
modal systems and plan for the evaluation of the current MUG grammars.

At the close of the paper are appendices describing the VPA 1.5 integration pro-
cess, dissemination activities pursued as part of WP5, and a selection of example
grammars. The full set of grammars wil be available in deliverable D.5.4 Adaptive
multi-modal fission/fusion service.

Much of the text in this report comes from papers which have been published
(or will be published) in various conference proceedings. See Chapter 8 for a full
listing of references and dissemination activities related to Multimodal Fission and
Fusion.

6

1.1 Multimodality

We attempt here to examine some of the possibilities of the use of coordinated
multimodality, in which the system may present screen images and audio which
work together to present a view to the user, and in which the user may use voice
and gesture together to convey a command to the system. (“Send this [point] to
him [point].”)

Multimodality is a tool for allowing a user to choose between different ways to
access a system. In some systems, multimodality enables access to functionality
that would not be available through unimodal means. We, however, are looking
specifically as multimodality as a mechanism to allow a user to choose the right
modality for himself for a given point in time. As much as possible, all function-
ality needs to be available in each mode.

Realistically, some features will be more intuitive and easier to use in some modes.
For a user who is deaf or hard of hearing, voice messages may be played using an
avatar. This is less convenient than text would be. By the same merit, text mes-
sages played via voice will use TTS, which is harder to understand than straight
text. These are compromises based on the state of the art and the preferred modal-
ity of the user.

In addition, interfaces in different modalities need to be different. Some users can
use multiple modalities, and we want to offer them that option, in the situations in
which they choose to use them, without sacrificing the best possibly functionality
and interface in each individual mode.

Some examples of situations in which multimodality is natural:

When a GUI presents a list of options (read, reply, delete), it might be more natural
to click. In a VUI-only system, the user may not notice features that are not
explicitly offered.

When driving preparing some food in the kitchen, a user might want the ability to
look briefly at the GUI for context, and to be reminded of options, but then dictate
a response by VUI.

If a user isn’t sure of someone’s name (eg. John Smith or Joe Smyte) it might

7

be easier to use GUI to see the match, instead of using trial and error against a
grammar that only recognises valid names.

When a user is certain of a name, it will be more natural to say “to Kerry Robinson
and Sara Holm” than to brouse through long and possibly slow drop-down menus.

Multimodality is defined, in the context of VPA2 as:

“A single application that MUST accept speech input, touch screen input and key-
board input and MUST respond with speech, text or graphics. All functions avail-
able MUST be accessible in speech only or graphics only modes. At each turn,
the user SHOULD be able to input one of the following modes: speech, touch
screen or keyboard (so not in combination). All users MUST experience the same
interface but MAY choose which parts of it to use according to their abilities and
preferences. The user experience of the system MUST be equivalent regardless of
the input and output modes used.”

That is, VPA2 works with sequential multimodality.

We do this research in the context of delivering mobile solutions to users, and so
have chosen to implement our systems for small-screen devices, with voice input,
touch screens, and buttons. The theories inherent are applicable to other domains,
other systems, and other modalities.

1.2 Adaptivity

We make a distinction between adaptive systems and adaptable ones. Both adap-
tive and adaptable systems present challenges, as user expectations may be con-
founded, and interfce consistency needs to be maintained despite variation in sur-
face realization. We see a role for adaptable systems where aninformation bottle-
neckarises, e.g. because of the use of a small screen device, situational constraints,
or changing user preferences. In these cases, we address the problem of adapting
the output to the situational demands by generating multiple variants, and select-
ing among them based on a fitness function which takes these constraints into
account. Adaptive systems, on the other hand, change over a longer time scale
to match the user’s (or group of users’) needs or skills. Our current methodology

8

does not involve sufficient testing time to experiment with such adaptivity, though
it could be modified to do so.

Fission is an adaptive and adaptable system in that it allows the dialogue manager
to specify ways in which the dialogue should adapt to the user. Currently, the
dialogue manager can define the level of experience the user has with the system,
and the degree of direction present in the dialogue. In addition, by controlling the
ordering of the dialogue and the form of confirmation (implicit or explicit), the
dialogue manager can adapt to the needs and desires of the user.

9

1.3 Abbreviations and Acronyms

ASR Automatic Speech Recognition
FASiL Flexible and Adaptive Spoken Language
GUI Graphical User Interface
MUG Multimodal Unification Grammar
PDA Personal Digital Assistant
PIM Personal Information Manager
TTS text-to-speech
UI User Interface
VPA Virtual Personal Assistant
VUI Voice User Interface
WOz Wizard of Oz
WOzOS Wizard of Oz Operating System
WP Work Package

10

Chapter 2

Multimodal Functional Unification
Grammar

It’s a common perception that some meetings are more effective than others. Those
meetings that involve the physical presence of participants allow them to rely on
multiple communication channels (multimodality), among them natural language,
eye gaze and body postures. When channels are missing, such as in a call confer-
ence, communicative elements such as topic tracking (coherence) and turn-taking
behavior become harder to manage. This is equally true in user interfaces: when
restricted to unimodal communication, and this single channel is limited in band-
width, noisy, or otherwise error-prone, humans encounter difficulties - for exam-
ple when they use a small-screen computer interface or a voice-based dialogue
system over the phone. Humans can usually integrate multimodal information
without effort, which leads us the ask: can multimodality improve language-based
interaction in bottle-neck devices?

In this chapter, we discuss UI on the Fly, a dynamic output generator for multi-
modal interfaces that goes beyond the sequential use of input and output meth-
ods available in today’s human-computer interfaces. UI on the Fly aims to en-
sure cross-channel coordination for both input and output, so the channels (touch-
screen, voice) can be used in parallel. These interfaces convey not just redundant,
but also complementary information. For example, they can augment a graphical
user interface (GUI) with helpful audio commentary. In mobile situations, screen-
based output may be simplified, or eliminated entirely, in reponse to a specific
use situation, e.g. when driving. Similarly, the system can adapt to the needs of
hard-of-hearing or visually impaired users.

11

An adaptive multimodal system cannot have a hard-coded interface. While a tra-
ditional user interface designer would specify the exact layout and timing as well
as the exact wording of graphical and voice-based interface elements, an adaptive
interface needs some leeway. However, adaptation needs to be constrained and an
algorithm must be defined to choose the right adaptations for the present usage
situation, for the particular user and for the device the software currently runs on.

In FASiL, we address the adaptivity of the user interface with a dynamic gener-
ator. Multimodal Functional Unification Grammar (MUG) is a unification-based
formalism that provides the means to dynamically generate content. That means,
the system takes an unambiguous, mode-independent, language-independent (the
same representation for Swedish, Portuguese and English) structure and turns it
into actual output shown on the screen and played as speech signal via the user’s
headphones.

The content we generate is coordinated across several communication modes,
which currently include natural language and a GUI. It has an inherent mechanism
to ensurecross-modal coherence, that is, that content presented in each mode uses
the same lexical words for discourse entities (the items that it talks about), or,
alternatively, pronouns.

The interface can adapt the content presented in each mode to the user’s prefer-
ences and usage situation. An objective function defines the trade-off between
two measures. 1) Predicted cognitive complexity of the output: the system should
utter sentences that are easy to understand under the circumstances that the usage
situation dictates. 2) Utility: the system should convey as much information as
possible in order to speed up the dialogue. This way, the system can select from
among several possible output forms generated by the grammar.

12

UI on the Fly: Generating a Multimodal
User Interface

2.1 Abstract

UI on the Fly is a system that dynamically presents coordinated multimodal con-
tent through natural language and a small-screen graphical user interface. It adapts
to the user’s preferences and situation. Multimodal Functional Unification Gram-
mar (MUG) is a unification-based formalism that uses rules to generate content
that is coordinated across several communication modes. Faithful variants are
scored with a heuristic function.

2.2 Introduction

Multimodal user interfaces are everywhere. The use of a keyboard and mouse on a
desktop PC is ubiquitous, if not natural. However, the click-then-type paradigm of
common interfaces misses the cross-modal synchronization of timing and meaning
that is evident in human-human communication. With coordinated output, novice
users could get explanations (redundant content) and experienced users could re-
ceive additional (complementary) information, increasing the bandwidth of the
interface.

If a user interface is generated on the fly, it can adapt to the situation and special
needs of the user as well as to the device.

While users are not necessarily prone to make multimodal inputs Oviatt (1999),
they can still integrate complementary output or use redundant output in noisy

13

situations. Consequently, this paper deals with generating output. We propose a
grammar formalism that generalizes decisions about how to deliver content in an
adaptable multimodal user interface used in mobile, small-screen devices such as
the one employed for the FASiL Virtual Personal Assistant.

2.3 Related Work

Since Bolt’s (1980) Put-That-There system introduced cross-modal coordination
in multimodal user input, various projects have investigated multimodal input and
output methods. Users display a preference for the touchscreen in map-based
positioning acts and object selection Oviatt et al. (1997). WIP André et al. (1993)
and other systems Feiner & McKeown (1990); Roth & Hefley (1993) generate
static multimodal documents. In an interactive user interface, however, layout
should remain consistent (Woods & Roth, 1988, perceived stability).

SmartKom Wahlster (2002) is a recent effort that produces a multimodal user inter-
face, using XML/XSLT techniques to render the output. These are deterministic,
which makes soft constraints such as usability hard to implement. SUPPLE Gajos
& Weld (2004) overcomes this problem in its model of the user and the expected
workload for various interfaces, generating a unimodal (graphical) user interface
without natural language generation elements. On the integration side, Johnston
(1998) presents a unification-based grammar that recasts multimodal signal fusion
as a parsing problem.

Our approach employs a non-deterministic grammar to derive variants which are
evaluated with a comparatively simple user and situation model according to their
utility (information conveyed) and the projected cognitive load imposed on the
user. It also removes the requirement inherent in Johnston’s system of explicitly
defining rules to integrate multimodal information.

In the following, we discuss the grammar formalism used to create output, as well
as consistency and adaptation considerations.

14

2.4 Formalism

In this section, we will explain how the Multimodal Functional Unification Gram-
mar (MUG) allows us to generate content. Our formalism and the associated eval-
uation algorithm work closely with a dialogue manager. As input, they receive
an unambiguous, language- and mode-independent representation of the next dia-
logue turn. 

typeaskconfirmation
initiative implicit
experiencenovice
errornone

action



typetask
contexttypeemail

task



typesend-email

email



typeemail

to

typecontact
firstnameFred
lastnameCummins


cc

typecontact
firstnameErin
lastnamePanttaja


from

[
typeemailaddress
adrreitter@mle.ie

]

subject

[
typetext
contentAussie weather

]

body

[
typetext
contentG’day mates....-Dave

]








Figure 2.1: Input representation: confirmation of sending of an email

2.4.1 Dialogue acts as input

Although the semantic input is independent of mode (screen, voice) and language
(Portuguese), the input semantics are domain-specific. The representation uses the
following types of dialogue acts at the top level: ask for missing information, ask
for a confirmation of an action or data, inform the user about the state of objects,
or give context-dependent help.

15

An example is shown in Figure 7.3. The input-FD specifies type of act in progress
(askconfirmation), and the details of the interaction type. It then specifies the
details of the current action, in this case, the email that the user is sending.

(a) (b)

Figure 2.2: a) Voice: “Do you want to send the email? Yes or No?”. b) Voice: “Send the email regarding
Aussie weather to Fred Cummins now?”

Furthermore, the dialogue manager may indicate the need to realize a certain por-
tion of an utterance with an attributerealize. The input format integrates with
principled, object-oriented dialogue managers.

2.4.2 The domain: a personal assistant.

In this example, we have constructed a personal assistant to be used in the domain
of sending email messages.

We implemented a MUG for a PDA-size handheld device with a color touch-
screen (see Figure 2.2a). The initial steps to adapt it to a mobile phone (Figure
2.2b) involved creating a device profile that uses no GUI widgets and associates a
higher cost (see Section 7.4.2) with the screen output, as the screen is smaller. All
devices used have server-driven TTS output capabilities.

16

2.4.3 The grammar

MUG is a collection ofcomponents. Each of them specifies a realization variant
for a given partial semantic or syntactic representation. This representation may be
specific to a mode or general. We call these componentsfunctional descriptions
(FDs) in the tradition of the Functional Unification Grammar Kay (1979), from
which MUG is derived.

For each output, the MUG identifies anutterance plan, consisting of separate con-
stituents in the output. For example, when we ask for missing information (“Who
would you like to send the e-mail to?”), the utterance consists of an instruction
and an interaction section. Such a plan is defined in a component, as is each more
specific generation level down to the choice of GUI widgets or lexicon entries.

MUG is based on the unification of such attribute-value structures. Unification
can be seen as a process that augments an FD with additional information. FDs
are recursive: a value can be atomic or a nested FD. Values in an FD can be bound
to the values in a substructure FD (structure sharing).

To realize a semantic representationR, we unify a suitable grammar component
FD with eachm-constituent substructureF in R, until all substructures have been
expanded. Anm-constituent is an FD that has an attribute pathm|cat, that is,
which has been designated as a constituent for modem. Note that zero or one
grammar components for a given mode can be unified withF .

Components from the grammar invoke each other by instantiating thecatattribute
in the mode-specific part of a substructure. Figure 2.3 shows a component that
applies to all modes.

There may be several competing components in the grammar. This creates the
ambiguity needed to generate a variety of outputs from the same input. Each
output will be faithful to the original input. However, only one variant will be
optimally adapted to the given situation, user, and device (see Section 7.4.2). Our
final markup is text for the text to speech system as well as HTML to be displayed
in a browser, similar to the MATCH system Johnston et al. (2002).

The nested attribute-value structures and unification are powerful principles that
allow us to cover a broad range of planning tasks, including syntactic and lexical

17

choices. The declarative nature of the grammar allows us to easily add new ways to
express a given semantic entity. The information that each component has access
to is explicitly encapsulated by an FD.

A grammar workbench allows us to debug the generation grammar. We could
improve the debugging process with a type-hierarchy, which defines allowed at-
tributes for each type. 

action 3

Mode
[
cat 1

]
type 1



instruction


action 3

Mode

[
catconfirm-mod

text 4

]
user-input

Mode

[
catyesnolist

text 5

]
Mode

[
cataskconfirmation

textconcat([4 , 5])

]


Figure 2.3: A MUG component that handles the confirmation of tasks or user input. The mode in variable
Modemay bevoiceor screen.

2.5 Planning for Coherence

Coherence is a key element in designing a multimodal user interface, where the
potential for confusion is increased. Our user interface attempts to be both consis-
tent and coherent. For example, lexical choice does not vary: it is either ‘mobile
phone’ or ‘cell phone,’ but it is the same whether it is in text or voice. This is in
line with priming effects, which are known to occur in human-human dialogue.

Like humans McNeill (1992); Oviatt et al. (1997), our system aims to be coherent
and consistent across all modes. We present redundant content, for example, by
choosing the same lexical realizations (never mixcell phoneandmobile phone).
We present complementary input in linked components. If, for example, a deictic
expression such asthese two e-mails(by voice) requires the e-mails to be put in
focus on the screen, it will set a feature accordingly in the complementary mode.

18

Mode/Language-Independent
Dialogue Act Representation

Instruction

SupplyInfo

Interaction

Acknowledge

Voice: Long Question
Screen: Text input field

Voice -
Screen: Submit-

Button

Introduction RequestToUser

Voice: Explanation
Screen: Icon, task
context information

Voice: Intro
Screen: -

screen:generation
of referring
expressions

syntactic,
lexical

choices

Figure 2.4: Constituents of one generation variant. Voice output: “The system needs additional information
from you, before it can send the e-mail. Please specify. Who else would you like to send the e-mail to?”.
Screen: “E-Mail, to: M. Cody,” (see Figure??)

This is possible because of a very simple principle encoded in the generation al-
gorithm: all components realizing one semantic entity must unify. Components
may still specify mode-specific information. This is done in a feature named after
the mode, so it will not interfere with the realization instructions of a component
that realizes the same semantic entity in another mode. The FDs allow us to dis-
tinguish information a) that needs to be shared across all output modes, b) that
is specific to a particular output mode, or c) that requires collaboration between
two modes, such as deictic pronouns. The unification principle replaces explicit
integration rules for each coordination scheme, such as the ones used by Johnston
(1998), which accounts for the integration of user input.

The nested attribute-value structures and unification are powerful principles that
allow us to cover a broad range of planning tasks, including syntactic and lexical
choices. The declarative nature of the grammar allows us to easily add new ways
to express a given semantic entity.

MUG components can be used to represent a relatively broad range of planning
tasks. The utterance plan, a limited number of syntactic choices and lexical choice
are implemented in a unified architecture (See Fig. 2.4).

19

2.6 Adaptively Choosing the Best Variant

The application of the MUG generates several output variants. They may include
or exclude pieces of information, which may be of more or less utility to the user.
(When information is being confirmed, it should be fully described, but in later
interactions, the email could be referred to as ‘it.’)

For example, several components applied to the sub-FD fortask in Figure 7.3
may depend more on the screen (Figure 2.2a) or be redundant in screen and voice
output (Figure 2.2b). This allows the system to reflect a low benefit for output on
the screen if the user is driving a car or to increase the cost of voice output if the
user is in a meeting, or reflect the fact that one doesn’t hear the voice output on a
mobile phone while reading the screen.

The system adapts to the user’s abilities, her preferences, and the situation she
is in by choosing an appropriate variant. These properties are scalar, and the re-
sulting constraints are to be weighted against each other in our objective function.
Each piece of output is scored according to a simple trade-off: a) realize content
where requested, b) maximizeutility to the user, and c) minimizecognitive load
in perceiving and analyzing the output.

These constraints are formalized in a score that is assigned to each variantω, given
a set of available ModesM , a situation model< α, β >, a device modelφ and a
utility/time trade-off coefficientλ:

s(ω) = λ
∑

<e,d>∈E(ω)

u(e, d) + maxm∈M(βmtm(ω))

u(e, d) = P (d,
∑
m∈M

(φmαmem|realized), erealize)

The first part of the sum ins describes the utility benefit. The functionE returns a
set of semantic entities ine (substructures) and their embedding depths ind. The
functionP penalizes the non-realization of requested (attributerealize) semantic
entities, while rewarding the (possibly redundant) realization of an entity. The
reward decreases with the embedding depthd of the semantic entity. (Deeper
entities give less relevant details by default.)

20

The cognitive load (second part of the sum) is represented by a prediction of the
time tm(ω) it would take to interpret the output. This is the utterance output time
for text spoken by the text-to-speech system, or an estimated reading time for text
on the screen.

Further work will allow us to cover the range of novice to experienced users by
relying on natural language phrases versus graphical user interface widgets.

2.7 Conclusion

We have demonstrated a formalism that generates coherent multimodal user in-
terfaces, as well its application in a small-screen email client. As the generation
algorithm makes use of both hard constraints and scalar scores, it caters for adapt-
ability. We have proven its functionality and efficiency in a series of examples
in the context of a dialogue system, where content is generated in real-time for
various usage situations and different devices.

Further evaluation will show whether the fitness function can accurately mirror
user satisfaction with a given output variant and whether our form of adaptivity is
actually an advantage to users on the go. Without a gold standard for a generation
system for dynamic multimodal user interfaces to qualitatively compare against,
controlled user trials will allow us to evaluate the usability of the interfaces we
have created. Task completion times, user frustration levels, and user satisfaction
can then be used to evaluate the success of this model of multimodal interactions.

The underlying formalism is intended to be used in creating, using the MUG
Workbench, any multimodal system that can be constructed compositionally, us-
ing natural language and other auditory and visual components. As possible ex-
amples for future applications, we see a multimodal interface that allows mobile
users or users with sensory impairments to traverse information-rich social net-
works, and a kiosk for multimodal, multilingual access to public transportation
options.

21

2.8 Acknowledgement

The authors would like to thank Stefan Agamanolis, Robert Dale, John Kelleher,
Kerry Robinson, and the anonymous reviewers. This research was partially funded
by the European Commission under the FASiL project, contract number: IST-
2001-38685.

22

Chapter 3

Multimodal Centering

Multimodal Centeringdeals with the question of discourse coherence in a mul-
timodal user interface. What is discourse coherence? Using a natural language
based interface, a user will talk about many objects in a dialogue with the system,
for instance a particular e-mail that is to be sent or a meeting that needs to be
planned. Once mentioned, these objects have a prominent status in the discourse.
However, they only retain this status for a short period of time. The user may shift
his focusin the discourse to something new. Similarly, the system can introduce
suchdiscourse entities, refer to them and eventually shift the focus of the discourse
to a new entity.

In many cases, we can refer to these entities in our dialogue with a pronoun (he,
she, it). That is not only shorter, but also more natural. When system and users
use pronouns and also structure their sentences to make the single steps of the
conversation “fit together” (in the eye of an observer), we say the discourse is
coherent.

Theories of discourse explain why in dialogue users refer to focussed entities with
less description – after all, these entities are known from the context:Can you
forward the e-mail from John to Mary, and then delete it.Most dialogue systems,
in turn, do not adhere to this principle: they are overly specific:Forwarding the
e-mail titled Dinner Tonight to Mary O’Sullivan. Deleting the e-mail titled Din-
ner Tonight. instead of simplyForwarded it to Mary, deleted it.(if there is only
one e-mail from John, and only one Mary.) Since the over-specification of refer-
ring expressions results in a perceived ‘unnatural’ and lengthy output, we find it
necessary to find a happy medium between maintaining a “not too descriptive” re-

23

ferring expression whilst avoiding under-specification and the resulting confusion
involved.

A computational model of discourse coherence can provide us with an algorithm
that determines when to use pronouns, how to refer to discourse entities and how to
order our phrases within the sentences uttered. In the multimodal context, it allows
us to emphasize the right elements on the screen and control the body posture and
gestures of an avatar (which is a usually human-like figure on the screen).

The underlying model of discourse coherence has its roots in Centering theory,
which was originally conceived for pure text. We apply it to the multimodal con-
text, with an emphasis on deictic referring expressions (pointing gestures) and
natural language dialogue acts.

We show an computational treatment within Multimodal Functional Unification
grammar, the grammar formalism developed to generate natural language voice
interfaces in combination with natural language and graphical interfaces.

We demonstrate, how the model applies to two practical multimodal generation
applications: a virtual personal assistant and, to underline the discourse aspects
in an application that could be implemented without the need for the complex
architecture of a dialogue system, a language generator that describes people and
their social networks.

In Dialogue Systems that rely on Natural Lanaguage Generation as their output it
is desireable to maintain a natural communication with the user. Coherence refers
to the level to which the shared attentional state of the discourse (during a given
segment of utterances) is adhered to and the correct use of referring expressions
within that segment.

24

Centering and Referring Expressions in the
Multimodal Context

Abstract

This paper discusses the application of theory of Centering which applies to spo-
ken or written discourse to a Virtual Personal Assistant incorporating multimodal
input and output and therefore attempt to extend the theory to cover Multimodal
Centering. Multimodal Centering is a theory that allows us to use UI-on-the-Fly
techniques to generate context-aware user interfaces which use natural language
pronouns and other referring expressions.

3.1 Introduction

Coherence refers to the level to which the shared attentional state of the discourse
(during a given segment of utterances) is adhered to and the correct use of refer-
ring expressions within that segment. Theories of discourse such as that of Grice
(1975) show that in dialogue users refer to focussed entities with less description.
Since the overspecification of referring expressions results in a perceived ’unnat-
ural’ output it is necessary to find a happy medium between maintaining a “not
too descriptive” referring expression whilst avoiding underspecification and the
resulting confusion involved.

In dialogue systems that rely on Natural Lanaguage Generation as their output it is
desireable to maintain a natural and efficient style of communication with the user.
We believe that coherent dialogues go a long way in rendering natural-language
based user interaction more natural.

25

3.2 Centering

One predominant theory of coherence over the last few years has been Centering
(Grosz et al., 1995; Walker et al., 1997a). The theory hinges on the following three
concepts:

• Linguistic structure groups utterances into discourse segments.

• Attentional Structure provides a representation of the current focus and the
focus of the context. It accounts for many choices in the realization of refer-
ring expressions in an optimal context.

• Intentional structure consists of discourse segment purposes and the relations
between them.

Centering (Grosz et al., 1995) predicts that the perceived coherence of a group
of sentences (a segment) involving referring expressions depends on the type of
transition from one utterance to the next.

The Attentional structure is defined in terms oftransitionsbetween the utterances
which are defined by linguistic means. The type of transition depends on the
focus/attention of the current utterance (Ui), the focus/attention of the previous
utterance (Ui−1) and what the focus of the current utterance was expected to be
following that of the last utterance.

Centering defines a ranking of transitions: some transitions are preferred over
others. The rank of the transitions used relates to the perceived coherence of the
discourse. Transitions are defined in relation to a small set of data structures (Cb,
Cf, Fp) and constraints and rules that operate on them.

3.2.1 Constraints and Rules

Walker et al. (1997a) define the constraints and rules in the theory of centering as
follows:

• CONSTRAINTSFor each utterance Ui in a discourse segment D consisting of
utterances U1 . . . Um:

26

1. There is precisely one backward looking center Cb(Ui, D)

2. Every element of the forward centers list Cf(Ui,D), must be realized in
Ui.

3. The center Cb(Ui,D), is the highest-ranking element of Cf(Ui−1,D) that
is realized in Ui.

To elaborate,

1. Cf is the set ofFORWARD LOOKING centers which represent entities in-
voked by an utterance in a discourse segment.

2. Cb is theBACKWARD-LOOKING CENTER and is the highest ranked el-
ement in the Cf of the previous utterance that is realized in the current
utterance. If there is no previous utterance in the segment (i.e. if this is
the first utterance of a new segment of conversation) then there is no Cb.

3. Cp is thePREFERRED CENTERwhich is an attempt to predict the Cb of
the following utterance and is the first member of the Cf of the current
utterance. Sometimes the Cp will be what the previous utterance of dis-
course was about, the Cb, but this is not necessarily the case.

In addition to the data structures Cf, Cb, Cp defined for each utterance, Cen-
tering uses a small set of (hard) rules.

• RULES:
For each Ui in a discourse segment D consisting of utterances U1 . . . Um:

1. If some element of Cf(Ui,D) is realized as a pronoun in Ui, then so is
Cb(Ui,D).

2. Transition states are ordered. TheCONTINUE transition is preferred to the
RETAIN transition, which is preferred to theSMOOTH-SHIFT transition,
which is preferred to theROUGH-SHIFT transition.

The type of transition between two utterances U(i) and U(i−1) depends on the
following information and table of transitions is shown below.

Cb(Ui) = Cb(Ui−1), or Cb(Ui−1) = [?] Cb(Ui) 6= Cb(Ui−1)
Cb(Ui) = Cp(Ui) CONTINUE SMOOTH-SHIFT

Cb(Ui) 6= Cp(Ui) RETAIN ROUGH-SHIFT

27

3.3 The Generation of Referring Expressions

In order to generate referring expressions automatically it is necessary that the
system produces a description of an object which is neither too descriptive or
ambiguous within the given context.

Reiter & Dale (2000) provide an incremental algorithm that takes an intended
referent and a set of other objects (distractors) and outputs a distinguishing de-
scription for the referent - i.e. one that whose referent will be unambiguous in the
context. Distractors are “distinct objects answering to the same description”. The
attributes selected to modify a referring expression are ordered by “preference” -
a relation which is intended to reflect the order in which human writers prefer to
describe entities.

3.3.1 Referring Expressions in a Multimodal Environment

The theory of centering as presented in Grosz et al. (1995) and Walker et al.
(1997a) operates on utterances in a spoken or written discourse. As it is our
intention to show that centering can predict some of the behaviour of referring
expressions in a multmodal environemnt it is necessary to investigate how such an
environment differs from that of discourse alone.

Salmon-Alt & Romary (2000) note that multimodal interaction differs greatly
from discourse in that there are perceptual antecedents for referring expressions.
Referring expressions are introduced dynamically on perceptual (visibility on the
screen), gestural (introduction of a new entity by the user) or discursive (the men-
tion of a new entity) criteria. In their model, entities are distinguished from one
another on the basis of differential criteria.

Our unification grammar produces co-ordinated output in two different modes for
output written to the screen and output read using a text-to-speech system through
headphones. Since the output is mode specific it is possible to choose different re-
ferring expressions (including possibly null realizations) for the two output modes.

28

3.3.2 Encoding Gesture as a Center

Theories of centering that are applied to discourse alone such as Walker et al.
(1997a) must only include in the list of forward-looking centers those referring
expressions which were mentioned in the current utterance and the first element of
that list from the previous utterance. The visual equivalent of speaking the name
of an utterance is by gesticulating towards it and therefore highlighting it for the
viewer (we shall assume for the moment that such gestures are always noticed in
FASiL). In a multimodal environment which makes no distinction semantically
between the two modes which it incorporates any set of forward looking centers
would have to include such gestures and rank them according to some refined
theory of obliqueness.

In order to encode gesture as a form of referring expression in our application
of centering for a multimodal environment we need to investigate how gesture
should be encoded with respect to the other centers. Gestures can be used with
an accompanying verbal referring expression or as a referring expression on their
own. The gesture may occur either before, during or after the spoken referring
expression and it may therefore be necessary to decide upon a temporal domain in
which a gesture may be bound to a verbal referring expression from the user.

In Johnston & Bangalore (2000) the authors note the following:

Our approach makes certain simplifying assumptions with respect to
temporal constraints. In multigesture utterances the primary function
of temporal constraints is to force an order on the gestures.If you say
move this here and make two gestures, the first corresponds to this and
the second to here. Our multimodal grammars encode order but do not
impose explicit temporal constraints. However, general temporal con-
straints between speech and the first gesture can be enforced before the
Feature Structure Analysis is applied.

Our choices with regard to the encoding of gesture must be based on data taken
from the transcriptions representing the ways in which people use gesture as a
referring expression in a multimodal environment.

29

3.4 An Analysis of a Multimodal Corpus

In order to decide if centering is a viable theory for prediction of both the binding
of user referring expressions in input and the decisions regarding choice of refer-
ring expressions in “system” output we investigated the corpus of data collected
in a multimodal corpus.

The corpus was collected using a Wizard-of-Oz application (6). The platform per-
mits simulation by an expert of the system’s responses and was used to gather
empirical data from human subjects about the way in which they would interact
with a multimodal VPA such as FASiL. The user remains unaware that the appli-
cation is being externally controlled.

The centering information for the “system”/user dialogue in the following exam-
ples taken from the corpus has been inputted by hand. Note that centers refer to
semantic entities and not to the referring expressions which realize them. There-
fore when a particular center is referred to by two different referring expressions
from one utterance to the next the centers remain the same. Output from the system
which does not refer to arguments and which is used purely for communication of
status (such as “Checking your Inbox”) does not effect the centers. The four types
of referring expression which we looked for in the transcriptions were deictics,
pronouns and definites.

In the examples taken from the corpus each utterance is follwed by centering in-
formation (i.e. the Cb, Cp and Cf as dictated by the constraints in 3.2.1). The
centering information given is a discourse analysis of the utterances output by the
“system” and user. The analysis of the transcriptions was used in order to provide
indications as to the interaction between the modes of gesture and speech. The
indices in boxes such asn are used to represent structure sharing of centers from
utterance to utterance. The Mode in each example represents whether the user
was employing speech and gesture (i.e. the microphone and the screen) or speech
alone.

30

3.4.1 Deicticthis

The antecedent of a deictic pronoun is either one which has been highlighted or
one that has been mentioned in the previous sentence using either a full or deictic
reference.

(3.1) Mode: Screen and Voice
U1:I’d like to check my new emails
Cb = [?] , Cf =<[new emails]= 1 >, Cp = 1

S1:Here are your new emails
Cb = 1 , Cf = < 1 >, Cp = 1

U2:[gesturing to an email] I’d like to read this email
Cb = [] , Cf = <[email]= 2 >, Cp = 2

In example 3.1 above U1 has no Cb (as no utterance precedes it in this segment).
The system has shown the user their new emails on the screen. The user makes a
gesture towards an email which highlights the email. The user then refers to the
email with the deictic determinerthis.

(3.2)

U1:Do I have any email mentioning S’s birthday?
Cb = [?] , Cf =< [email mentioning S’s bday]=1 >, Cp = [1]
S1:Checking your inbox - [System displays one relevant email]
Cb = [?] , Cf =< [a mail mentioning S’s bday]=2 >, Cp = [2]
U2:[gesturing to the email] Can you read this please

In example 3.2 above the user gestures to an email and then uses the deictic deter-
minerthis to refer to that email.

(3.3) Mode: Screen and Voice
S1:Checking your inbox
S2:You have one new email
Cb = [] , Cf = <[one new email]>, Cp = [one new email]
U1:Read this email
Cb = [one new email] , Cf =<[one new email]>, Cp = [one new email]

In example 3.3 the system refers to ’one new email’ using a definite expression.
The email is the Cb in U1 and the user refers to it using a deictic determiner.

31

(3.4) Mode: voice
S1:Please repeat search term
Cb = [?] , Cf =< [serch term]> Cp = [search term]
U1:Photos
Cb = [?] , Cf =< [photos]= 2 > Cp = 2

S2:Checking your inbox.
S3:One email with content ’photos’
Cb = [?] , Cf =< [email with content photos]=3 >, Cp = 3

U2:read this email
Cb = 3 , Cf = < 3 >, Cp = 3

In example 3.4 the system finds and mentions an email which fits the user’s re-
quest. The user refers to the Cb using a deictic determiner.

So it seems that deicticthis is employed by the user when the referent has either
been highlighted or is the Cb.

3.4.2 Deicticthat

Deictic that was also used when referring to an object that had been gestured to
and highlighted.

(3.5) Mode: voice
S1:Checking your inbox.
Cb = [?] , Cf =<[inbox]= 1 > Cp = 1

S2:[displays three emails on the screen]
Cb = [] , Cf = <[three emails]=2 > Cp = 2

U2:[gesturing to an email on the screen]Read that please.
Cb = [?] , Cf =< > Cp = []

Users seemed to employ the deictic pronoun and determinerthat instead ofthis
when they either felt or wanted to create distance between themselves and an ob-
ject.

thatwas used most when in voice-only mode and when there was no visual link to
something which was in focus. The user therefore was aware of the object being

32

in focus yet could not see it.

(3.6) Mode:voice
U1:Can you read the mail from Elizabeth Dixon please?
Cb = [?] , Cf =<[the mail from Elizabeth Dixon]=1 > Cp = 1

S1:[System reads out contents of email]
U2:Could you reply to that please?
Cb = 1 , Cf = < 1 > Cp = 1

In example 3.6 after the system has read out the contents of an email the user refers
to the email asthat email. The mail is open and in focus.

(3.7) Mode: voice
[User has been entering information for a Contact]
S1:Is there anything else?
S2:Yes, could you add a mobile number to that please.
Cb = [] , Cf = < [a mobile phone number]=1 , [that]= 2 > Cp = 1

In example 3.7 the deicticthat refers to the contact information which is being
added to. The contact is in focus and open.

In dialogue if one locutor used the deictic pronounthis then the other refered to
the same item asthatas shown in example 3.8 and example 3.9.

(3.8) Mode: voice
S1:I heard ’your work progress’.
Cb = [?] , Cf =<[your work progress]=1 > Cp = 1

S2:Is this correct?
Cb = 1 , Cf = < 1 > Cp = 1

U1:Could you repeat that?
Cb = 1 , Cf = < 1 > Cp = 1

(3.9)

S1:is this correct
Cb = [] , Cf = <[this]= 1 > Cp = 1

U1:yes that’s fine please send the email
Cb = 1 , Cf = < 1 > Cp = 1

33

The user employed the deicticthat when they were finished with an object - i.e.
close that, send that.

(3.10) Mode: voice
S1:Is this correct?
Cb = [] , Cf = <[this]= 1 > Cp = 1

U1:That’s correct.
Cb = 1 , Cf = < 1 > Cp = 1

U2:Could you send that please?
Cb = [?] , Cf =<[that]= 2 > Cp = 2

In example 3.11 the system is in voice mode and yet the user still treats it as being
in focus or ’open’.

(3.11)

U1:.[dictacting the body of the email]....end email.
Cb = [] , Cf = <[email]= 1 > Cp = 1

S1:Hang on a second
U2: Send that please. Cb =1 Cf = < 1 > Cp = 1

In example 3.12 the user used the phrase “that’s everybody”. We can assume that
the deicticthat employed refers to the group of people that the email is being
sent to whose last member is the CCed recipient - Lisa Stephenson. The group of
people that the mail is being sent to realizes Lisa Stephenson and therefore the Cb
of U1 in example 3.12 is the Cp of S1.

(3.12)

S1:Cc. Lisa Stephenson, anyone else?
Cb = 1 , Cf = <[Lisa Stephenson]=1 > Cp = 1

U1:No that’s everybody.
Cb = 1 , Cf = < 1 > Cp = 1

3.4.3 Pronouns

Pronouns were used by a user when they had either gestured to an object on the
screen or when the object had been referred to in the previous utterance (by any

34

form of expression). Since the “system” did not use pronouns it was not possible
to tell whether or not the user employed a pronoun after the system had used one
to refer to the same center.

(3.13)

S1:“Appointments today” (displays three apps on the screen)
Cb = [?] , Cf =<[apps for today]=1 > Cp = 1

U1:“At 10:30?”
Cb = 2 , Cf = <[apps at 10:30 today]=2 > Cp = 2

S2:“Elizabeth Dixon”
Cb = 3 , Cf = <[app at 10:30 today/app with ED]=3 > Cp = 3

U2:“Send her a reminder about this meeting”
Cb = 3 , Cf = <[Elizabeth Dixon] = 4 ∈ 3 , 3 > Cp = 3

(3.14) U1:Send an email to ED about the appointment I creted earlier to remind her about this meeting

In example 3.14 above the user employs a pronoun when referring to a person who
they have already mentioned in the same sentence.

(3.15) [User is adding information to a contact’s details] U1:Her mobile phone number is 087 1234467

In example 3.15 above the user is adding information to a contact’s details and
the contact’s information is on the screen. The user refers to the contact using a
pronoun.

The pronouns employed in examples 3.13 to 3.15 show that a pronoun is used
to refer to a center when a definite expression has been used either in the last
utterance or in the current utterance. A pronoun can also be used if the referent is
open or highlighted on the screen.

3.4.4 Definites

Definites seemed only to be employed when an object is in focus and its type could
be used to distinguish the referent from other components or features of an object
that is currently in focus.

35

(3.16)
the body
the address
the subject

The referencethe emailwas used when the email was not mentioned in the previ-
ous sentence but was in focus due to the task at hand.

(3.17) please send the email

The definite was also used when the user wished to add specificity to something
they had said for the system.

(3.18)

U1:check email
S1:checking your inbox
S2:one new email
U2:who is [it] from?
S3:please repeat
U3:who is [the email] from?

The definite produced for an object such as an email was different for that pro-
duced by users for contacts. Contacts were referred to by their first name appended
onto their last. Users did not refer to contacts asthe/this contactbut usedthe/this
personinstead.

(3.19)
U1: remind Elizabeth Dixon about this meeting
S1: Checking your contacts
U2: [user gestures to a contact] U3: send this person an email

3.4.5 Conclusions from the Corpus Data

After analysing the mulitmodal corpus we made the following conclusions:

• A pronoun can be used if an object was referred to in the previous or current
utterance.

36

• A definite referring expression should be used if the output is invoice mode
and the object was not referred to in the last utterance.

• A deictic referring expression can be used by the system in either mode when
the referent is distinguishable from type alone (is in focus) and used by the
Screen and Voice mode when the referent is highlighted (open or in focus) on
the screen.

• Therefore when object is either open or highlighted on the screen it be re-
ferred to using either a deictic or pronominal expression.

Analysis of the corpus shows that gesture perceptually highlights an object which
can then be referred to using a deictic or pronominal referring expression just as
if it had been mentioned in the last utterance. An object which has been gestured
to is the most likely candidate for the referent of a pronominal or deictic referring
expression and therefore could be considered to be syntactially ranked above any
other elements in the current utterance. There are two possible ways of encoding
gestures as centers into the grammar which we have developed:

1. Encode a gesture as an utterance in itself which contains one center: the target
object which the gesture highlights.

2. Allow any object which has been highlighted with a gesture to automatically
become the highest syntactiallly ranked element in the utterance (i.e. the Cp).

3.5 Centering in the Multimodal Unification Grammar

In order to describe our application of centering within a multimodal unification
grammar it is necessary to first define the concepts involved in the theory.

• ”object:” A real-world object, represented as a typed sub-structure of a the
semantic utterance specification.

• ”semantic entity”: An object in an utterance, with centering information as-
sociated. For a single object, there can be only one semantic entity per ut-
terance. In our generation system, we represent an entity as a copy of the at-
tribute value matrix of the associated object, with an additionalcentering

37

attribute and anobject-id attribute that holds a unique index to identify
the associated object.

• ”center”: Any semantic entity, that has a centering function in the current
utterance.

• ”utterance U”: an utterance, represented as a dialogue act specification with
several nested semantic entities.Ui−1 represents the utterance that occurrs
beforeUi in the discourse.

3.5.1 Semantic Features

Any object in the MUG contains semantic information necessary for the genera-
tion of a referring expression for that object. An object contains features which
specify its centering status within the current utterance and its centering status
within the last utterance. The semantic information stored in an object which is
relevant to generating referring expressions is shown in figure 3.20 below.

(3.20)
2666666666666666664

typeType

objectID 1 ObjectID

pngPNG

centering

2666666664

current

"
cb IsCb
cp IsCp

#

previous

"
cbWasCb
cpWasCp

#
utterance

h
cb 1

i

3777777775

3777777777777777775
• centering/current/cb is a boolean feature. 1 indicating that

the FD is the current Cb, 0 otherwise.

• centering/current/cp is a boolean feature. 1 indicating that
the FD is the current Cp, 0 otherwise.

• centering/previous/cb is a boolean feature. 1 indicating that
the FD was the Cb in the last utterance, 0 otherwise.

• centering/previous/cp is a boolean feature. 1 indicating that
the FD was the Cp in the last utterance, 0 otherwise.

• utterance/cb contains theobjectID of the object which is the
cb in the current utterance.

38

• type holds the type of the object.

• objectID holds the number associated with this particular object.

• png holds the semantic information about gender and number re-
quired to correctly pronominalise a referent.1

3.5.2 Allocating the Cf and Cb

From utterance to utterance, the objects in focus shift; hence, their associated
centering information changes. The realization of a semantic entity depends on
whether a semantic entity associated with the same associated object was a center
in the previous utterance. If so, parts of the entities are linked by means of structure
sharing.

The constraints set out by four centering transitions (Continue, Retain, Smooth
Shift, Rough Shift) can be applied to the unification-based architecture by the
links between entities and, additionally, transition constraints.

Semantic entities as a whole are not shared in the dialogue or within the utterance,
as their centering information, will be different. Sharing is still possible in the
grammar; however, shared structures always share their realizations as well.

1. Centering information is threaded between semantic entities in adjacent utter-
ances which realize the same concept. For every entitiese ∈ Ui ande′ ∈ Ui−1,
for which e : object − id = e′ : object − id, the following structure-sharing
constraint holds:e : centering : previous = e′ : centering : current.

2. All entities in one utterance that realize the same concept share the same
current centering information. For every entitye that is in Ui and that is
associated with concepto, e : centering : current = ci,o holds.

3. For every entitye′ that is contained in an utteranceUi, e : centering :
utterance = ui. ui is information specific to an utterance.

Relations (1) and (2) allow us to define the ranked transitions as FDs that
simply unify with the centering structure. Relation (3) ensures that there can
be only one backwardlooking center per utterance.

1We have not encoded case as a feature as all of our possible argument positions require accusative case.

39

4. A transition is defined as an FD that holds for all entities in an utterance.

In an utteranceUi, there is some transition:

t ∈< CONTINUE,RETAIN, SMOOTHSHIFT, ROUGHSHIFT >

and for each semantic entity must unify with an FD∈ transition(t). These FDs
are shown in 3.21:

(3.21) The transition function is defined as follows:
transition(CONTINUE) =266666666664

object-id 1 -G874

centering

26666664
current

"
cb1
cp1

#
previous

h
cb1

i
utterance

h
cb-obj 1

i

37777775

377777777775

26664centering

26664current

"
cb0
cp0

#
previous

h
cb0

i
37775

37775

transition(RETAIN) =266666666664

objectid 1 -G895

centering

26666664
current

"
cb1
cp1

#
previous

h
cb0

i
utterance

h
cb-obj 1

i

37777775

377777777775
264centering

24current 1
h
cb 0

i
previous 1

35
375

transition(SMOOTH-SHIFT) =266666666664

objectid 1 -G871

centering

26666664
current

"
cb1
cp1

#
previous

h
cb0

i
utterance

h
cb-obj 1

i

37777775

377777777775

24centering

24current

"
cb0
cp0

#3535

transition(ROUGH-SHIFT) =266666666664

objectid 1 -G895

centering

26666664
current

"
cb1
cp0

#
previous

h
cb0

i
utterance

h
cb-obj 1

i

37777775

377777777775

264centering

264current
h
cb0

i
previous

h
cp1

i
375

375

40

We define a relationlinkedCenters which holds if all constraints (1), (2), (3)
and (4) hold.

For any group of utterances being input to the MUG the functionlinkCenters
is called which instantiates theobjectID s and centering information of any
objects within those utterances relative to the previous utterance. This prolog
procedure finds any substructure within the FD representing an utterance which
has atype: attribute and determines whether or not the object denoted by that
object appeared in the previous utterance. If so, the object’s values of center-
ing/previous are instantiated as the centering/current values of the previous in-
stantiation of the object. In this way centering information is passed from object
to object . The centering information in an object dictates the forms of refer-
ring expressions which can be generated for that objects. In order to ensure that
only one cb and one cp are possible for each utterance each object is instantiated
with a featureutterance: which is structure shared between all of the objects
within an utterance and which contains the featurescb: andcp: . The value for
utterance/cb andutterance/cp is theobjectID of the object which
has a value of 1 for thecurrent/cb andcurrent/cp .

3.6 Generation of a Referring Expression for an Object FD

In the MUG any task that instantiates a realization for objects within the grammar
must generate referring expressions for those objects. The form of these referring
expressions depends on the semantics of the object being referred to which contain
information on whether that object was referred to in the last utterance.

Figure 3.1 shows an FD that is to be input into the MUG. The FD in Figure 3.1
represents the information required to instantiate the referring expressions needed
to ask confirmation of an action from the user. In this particular instance the task
that is being confirmed is that of sending an email. The FD in Figure 3.1 also
contains information about the type of action involved and the ‘arguments’ to that
action which include an FD containing information about the email that is to be
sent. The task structure being input to the MUG in Figure 3.1 contains object
information for the email that is to be sent and the recipients and subject of that
email.

41

26664

typeaskconfirmation
initiative implicit
experiencenovice
errornone

action

26664

typetask
contexttypeemail

task

26664

typesend-email

email

2664

png

"
gendneut
numsing

#

centering

266666666664

current

"
cp1
cb1

#

previous

"
cp1
form pronoun

#

utterance

"
cb10
cp10

#

377777777775
typeemail
objectid10
salient〈 subjectto 〉

to

2666666666666666666664

typecontact
objectid9
firstnameMick
lastnameCody

png

"
gendmasc
numsing

#

centering

2666664
current

"
cp0
cb0

#

previous

"
cp1
form pronoun

#
3777775

3777777777777777777775

cc

266666666666666664

typecontact
firstnameErin
lastnamePanttaja

png

"
gendfem
numsing

#

centering

26664current

"
cp0
cb0

#
previous 1

h
cp 0

i
37775

377777777777777775

from

26666666666666664

typeemailaddress
objectid8
adrreitter@mle.ie

png

"
gendmasc
numsing

#

centering

2664current

"
cp0
cb0

#
previous 1

3775

37777777777777775
subject

"
typetext
contentAussie weather

#

body

"
typetext
contentG’day mates. Happy New Year Everybody! -Dave

#

3775

37775

37775

37775
Figure 3.1: Example FD Input to the Unification Grammar

42

Note that thepng values for anemail FD are always instantiated as singular and
neutral as this information stays the same regardless of the feature values which
the email contains.

The input FD in Figure 3.1 must unify its substructure FD of typesend email
with the FD in 3.22 below.

(3.22)
26664

polaritypositive

email

266666664

to 2 ToSem

objectid 1

centering

264current
h
cp1

i
utterance

h
cp 1

i
375

377777775

email-refexp

266666664

semEmailSem

3

266664
catrefexp
prefix ”
realized1

text 4

377775

377777775

to-refexp

266666664

sem 2

3

266664
catrefexp
prefix ”
realized1

text 4 Email

377775

377777775

to-refexp

266664
sem 2 ToSem

3

264catrefexp
prefix to
textTo

375
377775

3

264realized1
synroleinf-vp
text template(send w w , [Email, To,])

375

37775

The email object is unified with EmailSem and the recipient is unified with the
variable ToSem. Each of these structures is passed to theemail-refexp and
to-refexp structures respectively which instantiate referring expressions which
are structure shared with the realization for the entire FD.

Referring expressions are realized with a set of components of categoryrefexp .
These components, depending on the centering information provided, decide whether
to realize the referring expression as a full, definite, pronominal or deictic referring
expression.

43

Shown in example3.23 is theemail component which is unified with the email
object. The FD structure shares the value within thesubject: attribute of the
input with thestring attribute and the componentoptional string instan-
tiates a text value forSubj - (” if Subj is uninstantiated and the value ofSubj
otherwise). The mode specifictext: instantiated byoptional string is ap-
pended onto the textthe emailand the resulting string is instantiated as the mode
specifictext: value of the input FD.

(3.23) 26666666666666666664

polaritypositive

subject

266666664

content 1 Subj

string 1

2 =Mode

264catoptional-string
prefix regarding
textSubjText

375

377777775
2

264realized1
synroleinf-vp
text template(the email w , [Subj])

375

37777777777777777775

The examples in example 3.24 show two FDs which may unify with the FD value
of to: . As shown in example 3.24a a value forfirstname has been instanti-
ated in an FD then that FD may unify with the structure forcontact 2 below
and text: is realized as a concatenation of the values forfirstname and
lastname .2 If the address is given thetext value may also be unified with the
value ofadr as shown in example 3.24b

(3.24) a. given(firstname)266664
firstnameName
lastnameName2

Mode

"
realized1
textconcat([Name, , Name2])

#
377775

b. given(adr)26666664
int-adr-is-emptyno
adrAdr

Mode

264realized1

textAdr

375

37777775
2The component has the namecontact 2 as other components exist which can unify with contact information depending on

what values have been instantiated in the input FD.

44

Note that both the FD representing the email and the FD representing the recipient
nested withincontact have a featuretext: . The value oftext: is evalu-
ated by the component for a particulartype of object and represents a realization
which may be used as a referring expression in certain circumstances. Note also
that thetext: value is the result of the evalutation of the functionconcat . For
simplicity I have filled in the result of this function below which is the concatena-
tion of the values offirstname: andsecondname: .

(3.25) 266666666666666666666664

typecontact
objectid9
firstnameMick
lastnameCody

png

"
gendmasc
numsing

#

centering

264cf 1
cb0
cfprev1

375
voice

"
realized1
textMick Cody

#

377777777777777777777775

When the algorithm comes to acat:refexp value in the FD a suitablerefexp
component must be unified with the FD from whichrefexp is called. The
refexp component instantiates thetext: variable in the FD which calls it de-
pending on the semantic information it receives from thepng andcentering:
values of that FD and the value of theprefix: attribute which is passed to it.
The FD in example 3.25 is unifiable with the FD in the following instance of a
refexp component.

(3.26) 2666666666666664

sem

26666664
typeType
pngPNG

centering

264current
h
form pronoun

i
previous

h
form PreviousForm

i
375

37777775
Mode

264text template(w w, [P, Word,])
realized1
prefixP

375

3777777777777775
The following constraints must also hold:

/* first pronominalization rule
at least one of the following conditions must hold:

- the currently pronominalized concept did not appear in U(i-1),

45

- the CB of the current utterance is realized as pronoun
This excludes the case that is forbidden by the rule:
- this element occurred in Cf (u-1), but CB(U) is not realized as pronoun

*/
(WasInCF = 0 ; FormOfCurrentCB = pronoun),

/* it MUST have been realized somehow in the previous utterance */

% not null
(PreviousForm=pronoun; PreviousForm=full; PreviousForm=deictic),

/* cheap lexicon access */
lex(PNG, Word).

lex(PNG, ’it’) :- PNG === [gend: neut, num: sing].
lex(PNG, ’her’) :- PNG === [gend: fem, num: sing].
lex(PNG, ’him’) :- PNG === [gend: masc, num: sing].
lex(PNG, ’them’):- PNG === [num: plural].

The component in example 3.7 will unify thepng information from the recipient
object.Mode: unifies withvoice and thetext: value for thevoice mode is
instantiated as ‘him’. If we return to the output of thesend email component in
example 3.22 we can see that thetext: value instantiated by the call torefexp
for the recipient information into: is used to refer to the recipient in thetext: .
Therealized: boolean value is instantiated as 1 if the FD which contains it has
been output in that particular mode. A referring expression for the FD representing
the email will be instantiated intext: through the same process as that for the
FD representing the recipient information value and the output ofsend email
for the voice mode (depending on the referring expression instantiated in the
email) will be something like the simplified segment of the resultant FD shown in
example 3.27 below:

(3.27)
24voice

"
realized1
text template(send w w, [the email, to him])

#35

The final function called istemplate which inserts the list values in its second
argument consecutively into the˜w variable values in its first. Thetext: value
is then instantiated as the FD in example 3.28:

(3.28)
24voice

"
realized1
textsend the email to him

#35

46

3.7 Therefexp Components

Eachrefexp component has an attributesem: into which the FD for an object
is passed when the component is being called bycat . Depending on the informa-
tion contained withinpng andcentering the component instantiates a string
into the text: attribute. Therefexp components are divided into four main
categories: full referring expression, definite referring expression, pronominal re-
ferring expression and deictic referring expression.

(3.29) 2666666666666666666666666664

sem

26666666666666666664

type 1 -G1591

png
h
numsing

i

centering

26664
current

h
form full

i
previous

"
cp0
form null

#
37775

2 =-G1662

2664cat 1

realized1
text -G1657

3775

37777777777777777775
2

264textconcat([-G2095, , -G2101])
prefix -G1674
realized1

375

3777777777777777777777777775

As shown in the FD in example 3.30 a definite referring expression may be used
if the object was not referred to by a pronoun in the last utterane.

(3.30) 2666666666666666666666666666664

sem

26666666666666666666664

type 1 ObjectType

png
h
numsing

i

centering

26664
current

h
form definite

i
previous

"
cp0
form PreviousForm

#
37775

2 =Mode
h
cattemplate-mod

i
templatetype

otype 1

textTypeText

37777777777777777777775
2

264text template(w the w, [P, ObjectType])
prefixP
realized1

375

3777777777777777777777777777775
The following constraints must also hold: (PreviousForm=null; Previous-

47

Form=full; PreviousForm=deictic),
(ObjectTypē’’).

shows the pronominal referring expressions. If an object was referred to in the last
utterance it may be pronominalised according to its semantics. If an object was a
pronoun in the last utterance it is excluded from begin referred to by any referring
expression other than a pronoun.

As shown in example 3.31 a deictic expression can be used in screen mode only
and when the object is the current cb. This component will also instantiate as the
cb any object which is referred to using a deictic expression.

(3.31) 2666666666666666666666666666666664

sem

26666666666664

png
h
numsing

i
objectID 1 ThisObjectID

centering

26664current

"
cb1
form deictic

#
utterance

h
cb 1

i
37775

type 2 ObjectType

37777777777775

typetext

2666664
templatetype

otype 2

screen

"
cattemplate
textTypeText

#
3777775

screen

264text template(w this w, [P , TypeText,])
realized1
prefixP

375

3777777777777777777777777777777775

Should an object be empty then an empty text value may be instantiated for that
object’s referring expression and realized is set to 0 so that the scoring algorithm
does not count the referring expression as output.

(3.32) 26666664
sem

24centering

24current

"
cf 0
cb0

#3535
Mode

"
text ”
realized0

#
37777775

48

3.8 Generating Personal Descriptions from a Social Network Database

In the previous section of this chapter, we have showed how referring expressions
are instantiated in a single utterance. A crucial part is still missing: how is a
discourse generated? In Section 5, we introduced thelinkCenters relation.
In this section, we will show how it can be applied to a text plan generated with
MUG.

In this section, we discuss and demonstrate the generation of anaphoric pronouns
in the context of a different grammar that is unrelated to the domain explored in
FASiL’s Virtual Personal Assistant. The system in question generates brief per-
sonal descriptions from databases that contain information about people, includ-
ing relational information to their business or social contacts. These networks have
become increasingly common; examples are Friendster (www.friendster.com) or
Orkut (www.orkut.com). The personal profiles stored in these public public databases
contain information about a person’s name, likes and dislikes and links to their
friends.

The original semantic input to the social network grammar is similar. However,
since several sentences are generated (which are clearly different utterances in
the Centering sense), we need to first come up with a text plan that specifies the
utterance semantics and the order of the utterances. Just like during the later text
realization step, we use a Multimodal Functional Unification Grammar for this
job.

As a second step, all necessary centering-related attributes are instantiated in the
utterance semantics, so the linkedCenters relation holds.

In a third step, the markup or texts for each utterance is generated, similarly to the
way we did it in the previous section.

3.9 Grammar components

The information from the profile is instantiated in an FD with the structure shown
in example 3.33 below:

49

(3.33)
2664

sem

266664
png

"
gendfem
numsing

#
firstnameSarah
lastnameJones

377775

general

26664
describeI am great fun to be around
rs single
countryIreland
hometownLondon

37775

interests

266666666666664

passionsgoingout
sportsrollerblading
activitieschess

favourite

2666664
booksFaust
music”
tv ”
movies”
cuisines”

3777775

377777777777775

personality

2666664
politics ”
sohquirky
fashionurban
smokingheavy
drinkingsocially

3777775

personal

2666664
first ”
best”
date”
five ”
match”

3777775

3775

A component calledgenerate utterances passes each substructure con-
tained ingeneral , interests:, personality: andpersonal: to the following
components:

50

(3.34) 2664

sem
h
typeperson

i
general 1 General

interests 2 Interests

personalityPersonality

personal 5 Personal

polaritypositive

general-sem

2666664
sem 1

person 3 Person

screen

"
catgeneral-sem

utterance6 GeneralSem

#
3777775

interests-sem

2666664
sem 2

person 3

screen

"
catpersonality-sem

utterance7 PersonalitySem

#
3777775

personal-sem

2666664
sem 5

person 3

screen

"
catpersonal-sem

utterance8 PersonalSem

#
3777775

screen

»
utterances

D
6 7 8

E–

3775

general sem instantiates the semantic information for a subject

(3.35) 26666664
sem InterestsSem

"
typegeneral-syn

subject 1 PersonInQuestion

#
person 1

Mode
h
utteranceGeneralSem

i

37777775

(3.36) 26666666664
sem

2664
type interests-syn

subject1 1 PersonInQuestion

subject2 1

3775
person 1

Mode
h
utteranceInterestsSem

i

37777777775

(3.37) 26666666664
sem

2664
typepersonality-syn

subject1 1 PersonInQuestion

subject2 1

3775
person 1

Mode
h
utterancePersonalitySem

i

37777777775
51

(3.38) 26666666664
sem

2664
typepersonal-syn

subject1 1 PersonInQuestion

subject2 1

3775
person 1

Mode
h
utterancePersonalSem

i

37777777775

The syntactic information in the output is constrained by unification with the fol-
lowing FDs. Note that each FD which unifies a realization with thetext value
has a corresponding ’empty’ component which will unify with an FD with under-
specified information.

(3.39)
26664

subject1 2 Subject1

subject2 5 Subject2

passions1 Passions

passions-text

2666664
sem 1

subject 2

6 =-G2535

"
catpassions-syn
textPassionsText

#
3777775

sports 3 Sports

activities 4 Activities

sports-text

2666666664

sem

24sports 3

activities 4

35
subject 5

6

"
catsports-syn
textSportsText

#

3777777775
6

"
textcapitalize(concat([PassionsText, SportsText]))
realized1

#

37775
passions syn

52

(3.40)
2666666666666666666666664

semPassionsText

subject 1 Subject

subjectrefexp

2666666666664

sem 1

2 =Mode

2666666664

catrefexp
casenom
functionposs
textRef1
prefix ”
realized1

3777777775

3777777777775
2

"
text template(w passions are w, [Ref, PassionsText])
realized1

#

3777777777777777777777775
PassionsText̄’’.2664
passionsPassions

Mode

"
text ”
realized0

#3775
Passions=”.

Further components realize other existing information about the person in ques-
tion.

3.9.1 Examples

The experimental generation grammar, together with the algorithm to generate
referring expressions, is able to produce short discourses like these:

(3.41) Sarah is from London, but living in Ireland now . Her passions include
going out , and she also enjoys rollerblading as well as chess.

3.9.2 Further Work

Further work is required to insure the right relation of referring expressions within
a single utterance. Right now, semantic entities that refer to the same object are
still unified:

(3.42) Sarah‘s passions include going out , and Sarah also enjoys rollerblading
as well as chess.

53

Coordinated sentences may be treated as separate utterances. In this case, the text
planning grammar did not do so and unified both instantiations of the referring
expression (Sarah).

3.10 Conclusion

In this chapter, we described a unification-based approach to discourse coherence,
in particular with respect to the generation of referring expressions. Far away from
a comprehensive theory, we were able to show first investigations into a model of
multimodal discourse coherence in the Centering framework.

54

Chapter 4

Grammars

Grammars for the MUG system are written in a prolog-like grammar formalism.
Each component describes a method of display for a given piece of information.
This may involve calling for the application of other components. There may be
multiple components of a given type; in this case, each applicable component will
be unified with the input in turn. Each that successfully unifies will create a variant
of the output.

Components may be independent of mode (for example, a user’s name may be
“George Jones” regardless of the modality being used), or specific to a given mode
(radio buttons may be used only on the screen).

4.1 Unification

A component is represented by a Functional Description (FD). Each FD is a collec-
tion of attribute-value pairs. A value may be a terminal (“Send email”), a function
(concat(“George ”, “Jones”)), or a nested FD.

Unification is a process in Prolog in which two structures are merged into one if
the appropriate structures matched.

Here we have a structure describing George Jones.

FD ===
[

firstnameGeorge
lastnameJones

]

55

And a structure showing how to display a name.

FD ===firstname?

lastname?
textconcat(firstname, lastname)


Unifying these two structures, we get:

FD ===firstnameGeorge
lastnameJones
textGeorge Jones



4.2 Anatomy of a component

Here is a MUG component that handles the confirmation of tasks or user input.

component(askconfirmation,, Mode, FD, askconfirmation1) :-
FD ===

action 3

Mode
[
cat 1

]
type 1



instruction


action 3

Mode

[
catconfirm-mod

text 4

]
user-input

Mode

[
catyesnolist

text 5

]
Mode

[
cataskconfirmation

textconcat([4 , 5])

]



This is a component of category “askconfirmation.” That is, it asks for a confir-
mation from the user of a given piece of information.

The second parameter (’’) represents the language. In this case, the component is
language independent, as there are no actual words presented, and the ordering of
pieces is pragmatic, rather than grammar-based.

56

The third is the available mode. This component may be used in any mode.

The fourth is a variable to hold the FD.

The final parameter is a name of this specific component. There may be several
’askconfirmation’ components, but this is the unique name of the component.

This component calls (via the nested FD with category (cat) confirm-mod) another
component that will generate text confirming a task with the user. (for example,
“Do you want to send email to George Jones?”)

The component then calls a component “yesnolist.” Depending on the mode, that
may generate a response of the form “Please say yes or no,” or a pair of labelled
buttons. For an expert user, it may generate nothing at all. On a telephone, it may
remap the two input buttons.

4.3 Realized

Another important aspect of the components is the ability of the interaction de-
signer to require the instantiation of certain pieces of information. Certain ele-
ments may be marked with an attribute “realize.” This is an instruction from the
dialoge manager that this piece of information must be present in the output pre-
sented to the user.

“Realized” is an attribute set by the MUG engine to indicate that a given piece of
information has been faithfully represented in the output, in at least one mode.

Together these ensure that required information is presented to the user.

4.4 Grammars

A grammar may be arbitrarily complicated. It could have a single component
for each possible state of the dialoge manager, or it could do natural language
generation to put together a response word-by-word and element by element.

The MUG formalism is designed to allow a combination of the two. When a new

57

mode or language is added, some new components will be required (to represent
the input options available, or to create prompts in the new language), but a large
number of the components in the existing system would be usable, allowing for
faster addition of new modes, and for consistency in interface between modes of
interaction.

For more details on the grammar, see Appendix B.

58

Chapter 5

MUG Workbench – A development
environment for Multimodal Functional
Unification Grammar

The MUG approach to the design of adaptive interfaces described in this report
redefines the role of the designer. Instead of coming up with a complete user ex-
perience, designers create a number of (alternative) realizations for smaller com-
municative functions – be it a part of a sentence in natural language, or an arrange-
ment of “yes” and “no” buttons in a graphical user interface.

However, such specifications (grammars) tend to become hard to extend and de-
bug. The MUG system represents a new tool set to address this issue.

The particular formalism supported is Multimodal Functional Unification Gram-
mar, a grammar formalism that supports several coordinated modes, such as voice
prompts or structural and/or language-based screen displays. For each input de-
scription, the grammar can generate a range of coherent realization variants, which
are ranked by a scoring function in order to optimize the output towards situational
and device-related factors.

The MUG System (FASiL Deliverable D5.4) is a development tool that consists
of a Formalism, a central algorithm and the Workbench development environment
that is the focus of this chapter.

The MUG Workbench works as an inspection tool, which runs a test case, gener-
ating all possiblevariantsof the output, and then gives access to the various steps

59

taken during content realization.

The workbench offers several views of the generation process that allow the gram-
mar developers to inspect the details of a single potential output, as a combination
of voice, screen or other modes. Developers can run unit tests defined with the
grammar or make free inputs, which, in a complete dialogue system, would come
from a dialogue manager.

60

A Development Environment for
Multimodal Functional Unification
Generation Grammars

5.1 Introduction

When grammar-based techniques for natural language generation (and analysis
alike) find their way into collaborative projects or actual application, big grammars
tend to become hard to extend and debug. The MUG system represents a new tool
set with a graphical debugging environment for functional unification grammars,
which is designed to help grammar developers inspect the results of their work.

The particular formalism supported is Multimodal Functional Unification Gram-
mar (MUG, Reitter et al. (2004)), which is similar to Functional Unification Gram-
mars (FUG: Kay (1979), Elhadad & Robin (1992)), but supports several coordi-
nated modes, such as voice prompts or structural and/or language-based screen
displays. For each input description, the grammar can generate a range of coher-
ent realization variants, which are ranked by a scoring function in order to optimize
the output towards situational and device-related factors.

5.2 Development with MUG

5.2.1 System overview

The MUG System is a development tool that consists of several components. The
MUG Formalismis a grammar specification syntax. TheMUG Enginehandles the

61

generation and adaptation process and offers interfaces to connect external compo-
nents.MUG Workbenchis a graphical development environment. The workbench
works as an inspection tool, which runs a test case, generating all possiblevari-
antsof the output, and then gives access to the various steps taken during content
realization. We found this a faster method than the step-by-step execution in a
graphical debugger.1

5.2.2 MUG Formalism

The MUG formalism is close to Prolog syntax. One or more grammar files con-
tain components, which are usually made up of one big FD (additional disjunctive
or conjunctive unifications are allowed). Variables can be named and always start
with an upper-case letter. The grammar writer is allowed to add detailed comments
about components or their parts. MUG rules (components) are attribute-value ma-
trices (AVM), which regularly have internally shared substructures propagating
information between the different levels of linguistic representation. The gram-
mar formalism implements this functionality by using named variables.

Unification-based grammars just like other object-oriented formalisms need to bal-
ance off the safety of strongly typed classes, which give error messages at an early
stage, and the fact that no typing supports exploratory programming and quick
prototyping. We address the issue with a type hierarchy that is used to issue non-
fatal warnings in case of possibly ill-formed substructures in dialogue act input
and grammar rules.

5.2.3 Inspecting variants of output

In thevariants view(Fig. 5.1), these variants may be inspected and compared: the
workbench lists, for each variant, the components used. Variants with the same
generated text, but different structures, are automatically flagged, as we found this
to be a common problem during the development of grammars. Generally, the
variants view is a good way to deal with faulty or extraneous variants.

Misspelled variable names, but also variables in the wrong positions in AVMs
1The generation system including the workbench will be available shortly as open source, with documentation and for free.

62

Figure 5.1: Variants and a large AVM. Attributes can be collapsed.

are a common source of errors. Such variables remain unbound. The workbench
marks them clearly in the display. The developer can also inspect variables easily
and collapse or filter the rather large feature structures. Syntax errors are shown,
when the grammar is loaded via the workbench user interface.

5.2.4 Log view

This view of the process is purely logical: there is no conceptual time-line in
unification-based grammars as in procedural programs. We found that a more
procedural view may help to spot problems with variants that failed to come up,
furthermore it is a way to spot efficiency bottlenecks or to simply learn about how

63

the formalism works. We offer alog view(Fig. 5.2) that enumerates all the steps
that the MUG interpreter takes to apply a grammar to the input. These steps are
shown for each variant of the output. This view allows inspection of the state
of the sub-substructures as they were before and after a component (for a given
mode) was applied.

A useful feature in this view is the marking of steps that were undone by means of
backtracking, because – at a later stage in the generation process – an application
of a rule failed. In many cases, the cause of the failure is a bug in the grammar.
In other cases, it is desired behavior, but computationally inefficient. Such effects
are visualized in the log view.

(a) (b)

Figure 5.2: a) In the log view, steps taken back during backtracking (because they didn’t lead to valid
solutions) are greyed out. b) life-size results can be demonstrated from the workbench (design: E. Panttaja)

5.3 Applications

The MUG Workbench aided two experienced and one novice grammar writers to
create a multimodal UI for personal information management (handling e-mail),
which contains 126 components (190 with disjunction compiled), and a second,
smaller MUG (39 comp.), which generates a short coherent discourse with pro-
nouns. To test (see Panttaja et al. (to appear 2004)) and also demonstrate the

64

grammar, multimodal output can be made on any networked device (e.g. PDA)
with an HTML client, with text-to-speech voice rendered on the server, as well
as on simulated devices on the local workstation. A dialogue system in Java will
demonstrate the use of MUG a complete environment.

65

Chapter 6

A Platform for Multimodal Wizard of Oz
User Interaction Studies

In order to collect Multimodal Interaction data in a similar Personal Information
Manager setting a Wiazard of Oz study was constructed. A platform to do this was
created and following the study itself, which was conducted January-March 2004,
further enhancements were made to this platform to prepare for general release.
This chapter outlines the operation and use of the platform.

66

A Platform for Multimodal Wizard of Oz
User Interaction Studies

6.1 Abstract

This paper describes WOzOS (Wizard of Oz Operating System), a Java-based plat-
form that can be used in multimodal Wizard of Oz (WOz) experiments. In addition
to the platform design, a study using WOzOS is described. Human-machine in-
teractions in a multimodal environment were the focus of this study. WOzOS was
used to collect multilingual (English, Portuguese and Swedish) data for research
purposes, including for training of a multimodal fusion/fission service.

6.2 Introduction

In the Wizard of Oz (WOz) paradigm, a user interacts with what appears to be a
fully functioning automatic system. Unbeknownst to the user, however, the system
responses are generated in real time by human operators who remain unseen (Fig-
ure 6.1). In this manner, a variety of user interfaces can be prototyped, and user
responses to a range of system behaviours can be studied. Such simulation-based
research is useful in the design of multimodal interfaces Oviatt et al. (1992) as well
as for the collection of multimodal corpora Yang et al. (2000). Multimodal data
gathered in this manner can guide system design and help in optimizing human-
computer interaction.
In many cases, WOz systems are purpose-built to investigate specific systems
(Oviatt et al. (1992), McInnes et al. (1997), Wyard & Churcher (1998)). Two
research groups have tried to provide more generic platforms, which would allow
simulation-based research in a wider variety of contexts. In NEIMO Coutaz et al.

67

(1996), Apple’sHyperCardwas used to assemble an UI in real time. The system
allowed both GUI elements and video, but not sound, to be transmitted and logged.
In SUEDE Klemmer et al. (2000), a speech interface could be generated from a
relatively simple toolkit. WOzOS represents a further contribution to the set of
tools that can support simulation-based research across a variety of situations. It
combines standard GUI elements with spoken input and synthesized voice output.
In this paper, we describe the basic WOzOS architecture, and report on a study we
conducted, in which multilingual, multimodal data was collected for research and
development purposes.

Figure 6.1: Wizards (behind the scenes) and Client (oblivious to deception)

6.3 The WOzOS Platform

6.3.1 Hardware

WOzOS runs on three networked workstations and comprises three separate ap-
plications: Operator, Session Manager and Client. Two of the workstations are
“Wizard” stations (Session Manager & Operator), the other is the Client inter-
face. Deception is the principle underlying the experiments, so the Wizard stations
should be hidden and, preferably, should not be in the same room as the subject.
The platform includes a commercial text-to-speech (TTS) module (ScanSoft’sRe-
alSpeak) for generation of synthetic system spoken output, but this could readily
be replaced by an open source TTS module (e.g.Festival). In addition to a work-
station, the Client also uses a head-mounted microphone and headphones.In the
following description, the application used in our corpus collection will be used
as an illustrative example. In it, the Client interacts with a Personal Information

68

Manager (PIM), which provides a subset of Microsoft’sOutlook functionality,
augmented by speech output.

Figure 6.2: WOzOS Operator application

6.3.2 Wizards

The example domain requires the rapid construction of appropriate system re-
sponses (graphical and TTS) in real time based on Client requests to the system.
A credible system response must be fast; excessive delays could influence sub-
jects’ impression of whether they are interacting with a computer system Oviatt
et al. (1992). In WOzOS the general target was a response time of a few seconds
at most, this target was achieved; average response time1 of a typical, sample ses-
sion was 5.5 seconds, with standard deviation 4.7. To facilitate a quick response
the Wizards compose their GUI responses using templates and widgets that can
be included or excluded. WOzOS can simulate adaptive systems, where human
performance is assumed in all decisions related to how to adapt. In our case, this
means that Wizards choose from a constrained set of user interface elements (wid-
gets on the screen, words and phrases by voice), in order to compose the output.
The choice Wizards have in reacting makes them a study subject also, and al-
lows for studies of adaptivity, provided the situations triggering adaptation (noise,
physical activity) are simulated.

1Response time being defined as time difference between end of Client input and start of system (Wizard generated) response.

69

The Wizards assume two roles: theOperator retrieves data from an application
such asOutlook, and prepares the visual representation. In parallel, theSession
Manager assembles the voice output and ensures that all experimental tasks are
carried out. On-line chunking of the data in task sets has proven helpful in navi-
gating the data created.

Operator

The Operator’s interface is used to assemble screen content appropriate to the ex-
perimental context and Client requests. The Operator can copy content from other
application sources and paste it into a screen area. This can then be further edited
before sending to the Session Manager.In the PIM context, within which we have
experimented using WOzOS, content like e-mails or contact data may be copied
from Outlook. The Operator’s application automatically arranges the content ei-
ther as a list (Figure 6.2) or as a single item. The data from this initial study was
used for design of a multimodal PIM application (FASiL project), which is to run
on a mobile device e.g. PDA. For this reason the output screen area was kept to a
size consistent with such a platform. There is no reason why screen size has to be
limited. Indeed, following further development we hope to demonstrate WOzOS
in different contexts, using differing sources for content and output screens. To aid
and speed up the Wizards’ work all application functions have hotkeys associated
with them.

Session Manager

The Session Manager application controls the sequence of the experimental ses-
sion and the output presented to the Client. The Session Manager can set the
experimental environment (output modalities presented, TTS/noise volume, back-
ground noise), compose TTS utterances and add additional screen elements (but-
tons) as appropriate to output.

The Session Manager receives screen content (Figure 6.3) from the Operator and
has the option of editing and/or augmenting this as desired. In parallel, the Session
Manager can compose TTS utterances to send to the client. TTS utterances can
be sent with screen content or independently. TTS utterances are often used as

70

Figure 6.3: WOzOS Session Manager application

system ‘pacifiers’ to mask delays in Wizard responses. This TTS-only output can
also be used where a unimodal (voice only) context is appropriate. We can add
background noise if required by the experiment.

6.3.3 Client

The Client Application receives the graphical user interface dialogs from the Ses-
sion Manager (Figure 6.4). Running on a Tablet PC, the subject can use the GUI
on the touchscreen. Text input aids (handwriting recognition, on-screen keyboard)
could be used, though they were not appropriate for our experiment.

All Client interactions with this application screen (mouse clicks/drags, scrolling,
text input) are displayed immediately on the Operator (Figure 6.5) and Session
Manager application screens to allow the Wizards to monitor the Client interac-
tion.In addition, screenshots showing Client interaction are generated and sent to
Session Manager for storage.

71

Figure 6.4: WOzOS Client application

6.3.4 Text-to-Speech

The TTS utterances are output via the Session Manager workstation. To speed up
response times and to maintain consistent system utterances, we found it useful to
define a set of utterances and to encode these in an abbreviated form, e.g. “pw” is
expanded and uttered as “Please wait, I’m checking this”.

Figure 6.5: Client interaction (click on “Reply”) is displayed

72

6.3.5 WOzOS session data

All session data are logged on the Session Manager workstation. Time-stamped
events of Client and Wizard actions are logged, along with an audio recording
of both TTS utterances and Client speech. Screenshots of the screens sent to the
Client, and their interaction with the screens are saved and referenced in the log.
We provide a tool chain to generate XML data in theTASX2 format from the raw
log files generated by WOzOS.

6.4 Multimodal Study using WOzOS

WOzOS was developed as part of the FASiL3 project. The R&D vehicle of
this project is a multimodal, multilingual PIM application, suitable for use on a
portable platform, which is developed by a consortium of European partners.

6.4.1 Study aims

In general a particular focus of our research has been the coordination of the graph-
ical and voice outputs, which are tailored to meet the demands of a specific situ-
ation and user Reitter et al. (2004).In line with this and the particular objectives
of the FASiL project, our study had two separate goals. Firstly, we wished to
gather a reasonably large corpus of user interaction with a Virtual Personal Assis-
tant (VPA), which gave access to email, calendar and contact information. This
corpus was to be used in training machine learning modules responsible for di-
alogue management (grammar induction, etc.). Our second goal was to supply
an empirical basis for the evaluation of algorithms for multimodal fusion, as well
as fission, i.e. the generation of multimodal system output, where models of co-
herence and pronominalization in multimodal human-computer dialogue play a
role. This second goal required the design of a formal experiment in which both
available modes and user situation were controlled variables. The SmartKom Turk
(2001) project had similar motivations4 for conducting a large multimodal WOz

2http://tasxforce.lili.uni-bielefeld.de
3Flexible and Adaptive Spoken Language and Multi-Modal Interfaces
4SmartKom also uses gestural input, so video of interaction was annonated as part of the corpus. WOzOS presently restricts

itself to screen interactions.

73

study, however this was only done in one language: German. Our study was car-
ried out in three languages: English, Swedish and Portuguese. As a first step, we
had to devise a suitably constrained set of tasks which novice subjects could be
required to complete. To this end, we ran a unimodal (voice only) pilot study (70
subjects, three languages), which helped to refine our subsequent task design.

6.4.2 Study description

Three sites (Ireland, Sweden, Portugal) each conducted the study using 30 sub-
jects recruited locally. Subjects were professionals and students (average age:
34.6, standard deviation: 10.6), had prior experience with personal information
management software such asOutlook, but no specific training in spoken user in-
terfaces. Subjects completed a fixed list of tasks such as “arrange a meeting with
Veronica for tomorrow at three to discuss the new recruitment procedures”. Each
subject completed tasks in a unimodal (voice only) and multimodal condition and
in the presence/absence of a noise distractor. Wizards received training; training
materials as well as subject tasks were standardized across experimental sites. The
detail of the experimental design and results will not be further discussed here.

Subjects found the system easy to use, and were not, in general, aware that they
were interacting with people, rather than an automaton. This is somewhat sur-
prising as the system offered near-perfect speech recognition and understanding,
which is beyond the abilities of any state-of-the art system.

6.5 Conclusion

We have described a new Wizard of Oz system that can facilitate the collection
of user responses to a simulated system. WOzOS supports both screen-based and
voice input and output. Two Wizards collaborate to assemble content and system
responses on the fly, allowing for a rich set of behavioural data to be collected. We
have used WOzOS to collect interaction data in three languages, and will shortly
release the resulting annotated, multilingual corpus through the FASiL consortium
(www.fasil.co.uk). One of our FASiL research partners, The Royal National Insti-
tute for Deaf People (UK) also ran a parallel study on a large number of hearing

74

impaired subjects of mixed backgrounds and ages. The study design was similar
to that outlined above, but obviously had to be adapted for subjects with significant
hearing loss. This corpora and WOzOS itself will also be made publicly available.

6.6 Acknowledgements

We would like to acknowledge the hard work done in putting together the plat-
form and conducting the study. In particular Nathalie Richardet, Erin Panttaja,
Stefanie Richter & Wei Zhu (Media Lab Europe), Roman Zielinski, Sara Holm &
Per Idoff (Cap Gemini, Sweden), Nuno Beires, Luis Almeida; & Rui Gomes (PT
Inovaç̃ao, Portugal), Guido Gybels & Jamie Buchanan (RNID, UK) and the team
at ScanSoft.

75

Chapter 7

Evaluation

Evaluation, as we have seen, is a very difficult proposition in user interface design
and implementation. Originally we had planned to integrate MUG Fission and
Fusion into VPA 2 and test them as part of the full system evaluation. Implemen-
tation constraints have made that impossible. In the absence of a full end-to-end
system, we have designed an alternate evaluation methodology, as described in
this chapter. The evaluation itself will be completed later this summer.

76

The Evaluation of Adaptable Multimodal
System Outputs

Abstract

Adaptable multimodal systems are difficult to test. We present a methodology
for evaluating parallel multimodal output which is generated in response to a spe-
cific set of user, device, and situation constraints. We focus on the generation of
multiple variants of user interfaces for small-screen graphical devices with natural
language voice output, within a system we term UI on the Fly. Our methodology
tests any system that ranks potential output variants using a fitness function.

7.1 Introduction

Coordinated multimodality, adaptivity, and automatically-generated interfaces are
relatively new paradigms in human computer interface design. Rather than se-
quentially employing modes to convey information to the user, several modes are
used redundantly or complementarily. Sound-enabled interfaces are a simple ex-
ample for coordinated multimodality, voice-enabled SALT1 documents another.
Some research prototypes represent dynamically generated user interfaces, which
can be adapted to the user’s special needs in a given situation, for example, if the
user cannot pay much attention to the screen while performing maintenance op-
erations or driving a car. Natural language plays a central role in such interfaces,
not only in voice output, but also in visual user interfaces adapted to devices like
mobile phones that have only limited input options.

1Speech Application Language Tags,www.saltforum.org

77

These advanced systems are notoriously difficult to test, as they change their be-
havior dynamically and unpredictably. As systems begin to follow new interface
paradigms, evaluation metrics will need to take into consideration additional learn-
ing time on the part of the user. In addition, test systems are often limited in their
functionality, and may depend on the implementation of a complete dialogue sys-
tem that may not be available during testing. We circumvent some of these prob-
lems by focusing on a system with anadaptable situation modelwhich remains
fixed during each test case.

There are many different measurements for describing a ‘good’ system. Does it
function within the specification of its design document? Can it be used by its
target group? Is it accessible to the hard of hearing? To the blind? To those
with motor impairments? Even accessibility is hard to define. A system may be
technically accessible without being usable. Does it allow users to complete the
tasks they set out to complete? Are these tasks useful in their daily lives? Do they
enjoy the system? Do they trust the system?

In our example case, the system performs the automated, parameterizable gener-
ation of a user interface with a visual component and text-to-speech voice output
for sending email (see Figure 7.1). The system relies on a grammar of hierarchical
components to define the display. The generation algorithm and the components
ensure that the output is consistent across multiple devices. The design choices
that the algorithm makes are also based on the prediction of utility and cognitive
load that a possible output variant will have. We describe the underlying formal-
ism in Section 7.4.

In what follows, we will present a general methodology for the evaluation of mul-
timodal system outputs which we believe is capable of potential application to a
wide variety of evaluation problems. We illustrate the method as it is currently
being applied to a specific application (an email client), along with a concrete
formalism which easily supports the method by the generation of multiple output
variants. Full evaluation results will be presented at the workshop.

78

(a) (b) (c)

Figure 7.1: a) Voice: “Send the email regarding Irish Weather?” b) Voice: “Send the email?” c) Voice: “Do
you want to send the email to Mick regarding Irish Weather?”

7.2 Recent work

It can take a very long time, on the order of years, to find out if users will really
use a system or accept a new paradigm. This acceptance may be dependent on
(or impeded by) other factors (e.g. issues with documentation, trust, advertising,
cost...) Reiter & Dale (2000). It is not surprising that a user who has years of
experience using a two-dimensional graphical user interface with a keyboard and
a mouse will seldom find that a novel interface with 3D graphics and coordinated
natural language interaction is a better way to input commands and data, at least
at first.

In many projects related to natural language or multimodal dialogue, evaluation
is ignored altogether. Experiments with human users are often used mainly as
part of the system design process. (as in Feiner and McKeown, 1988). Many of
these systems are research prototypes that apply to a limited domain or a limited
number of interesting test cases. A user-based evaluation is only feasible once the
system is sufficiently stable to allow users to access it over time. While this is
an eventual goal, preliminary evaluation will prevent wasting time on substandard
user interfaces.

79

When it comes to the evaluation itself, there are a variety of quantitative measures
(time to perform, accuracy, percent agreement of assessments) and qualitative ones
(user perceptions of utility, ease of use, and naturalness). Maybury & Wahlster
(1998)

Qualitative measures also include the study of think-aloud protocols and observa-
tion of users. These techniques obviously require a stable and even robust system
to be available. At earlier design stages, a cognitive walk-through or a heuristic
evaluation against rules-of-thumb Cockton et al. (2002) can provide guidance.

Evaluation based on user models employs a simulated user that behaves under,
ideally, the same limitations and strategies that a human user would demonstrate.
GOMS (Goals, Operators, Methods and Selection rules, Kieras, 2002) is a method-
ology that allows the formalization, even before a system can be used, of elements
of a user interface in terms of the knowledge required from a user. A GOMS
model seems inappropriate for an adaptable system that may dynamically change
the operators available to the user.Adaptivity involves a constantly changing sys-
tem model. Its benefits become clear only in the context of a user under certain
external limitations - such as those imposed by parallel, unrelated tasks like driv-
ing a car or participating in a conversation.

In SUPPLE, Gajos and Weld (2004) present a system that adaptably generates a
graphical user interface. They discuss a number of different evaluations to their
system. Efficiency tests of the generation algorithm show the effect of certain
proposed optimizations. Gajos and Weld propose judging the quality of the user
interfaces by comparing the system’s decisions to those made by human designers
under similar constraints regarding the available user interface widgets.

In general, subjective testing asks a user or designer for their impression and judg-
ment of a system. Reiter and Dale (2000) discuss having experts evaluate both
automatically-generated and hand-generated examples. In Comfort, Knight et al.
(2002) evaluate wearable UIs on the bases of emotion, attachment, harm, per-
ceived change, movement, and anxiety. This set of criteria was generated by mul-
tidimensional scaling, and could be adapted for use with other mobile (but not
necessarily wearable) devices.

The NASA-TLX system Hart & Staveland (1988) is a measure of subjective work-
load. It has users rate a human-machine environment based on mental demands,

80

physical demands, temporal demands, their own performance, effort, and frustra-
tion. A weighted superposition of these features, based on relative ratings given by
the user, leads to less between-rater variability than do one-dimensional ratings.

Direct testing compares metrics that are directly related to the interface itself, such
as task completion time or success rates. Walker et al. (1997) score dialogue
systems with a combination of dialogue success measure and various utterance-
related costs. Dialogue success depends on whether slots for a dialogue are cor-
rectly filled. Costs for normal utterances and repair moves are counted separately
and, like the dialogue success, are weighted using multiple linear regression, with
user satisfaction as an external factor. The advantage of this approach is that dia-
logues may then be scored without an explicit user judgment.

Beringer et al. (2002) modify the framework significantly in order to evaluate free
dialogues with their multimodal system, where users are given a much less specific
task which cannot be described in terms of necessary and optional slot-filler pairs.

Indirect testing examines things like walking speed or ability to concentrate on
outside tasks. Pirhonen et al. (2002) use the percentage preferred walking speed
that a user is able to maintain while using the device to evaluate usability.

When doing evaluations, it can be very difficult to compare results from different
systems Bontcheva (2003). It is important to ensure that both the baseline and
adaptive versions of the system are generating in real time.

7.3 Evaluation

In this section, we propose an evaluation methodology. We expect very similar
methods to be applicable to a range of dynamic human computer interfaces that
generate output based on a number of constraints and define a fitness function
to rank solutions. This is true whether or not these systems are multimodal, and
without regard to the degree or specific instantiation of the multimodality.

81

Figure 7.2: Generating test cases for user evaluation

7.3.1 Method

Our method expects the definition of a candidate fitness function with which mul-
tiple candidate output variants can be ranked. The fitness function estimates the
projected utility of a variant depending on factors defined by the system designer,
and is intended to capture the relevant features of the dialog context, device con-
straints, user preferences and situation-specific elements. Figure 7.2 illustrates the
process whereby an abstract specification of the dialog turn is received from the
dialog manager. This is used to generate many candidate output variants which dif-
fer in their informational density and the distribution of information across modes.
The fitness function ranks these from best to worst, allowing well-differentiated
test cases to be selected from among the best, middle, and worst cases for user
evaluation in an experimental situation.

Without a gold standard generation system for dynamic multimodal user interfaces
to compare against, controlled user trials will allow us to evaluate the usability of
the interfaces we create. Key to our approach is the use of sufficiently discrim-
inable output variants (as provided by the ranking) to ensure that we capture a
range of user reactions, and can thus gauge the suitability of the fitness function.

Multimodal output generation has been the focus of various grammar-driven gen-
eration algorithms, such as COMET Feiner & McKeown (1998) and SUPPLE
Gajos & Weld (2004) which optimize text and graphics layout in documents for
print or display on various screens. In dialogue systems, coordinated multimodal-

82

ity can be found in some embodied conversational agents (e.g. Cassell et al., 2000;
Wahlster, 2002). Essentially, these systems form intelligent multimedia-interfaces.

7.3.2 A note on adaptable systems

We make a distinction in this paper between adaptive systems and adaptable ones.
Both adaptive and adaptable systems present novel challenges, as user expecta-
tions may be confounded, and interface consistency needs to be maintained de-
spite variation in surface realization. We see a role for adaptable systems where
an information bottleneckarises, e.g. because of the use of a small screen device,
situational constraints, or changing user preferences. In these cases, we address
the problem of adapting the output to the situational demands by generating mul-
tiple variants, and selecting among them based on a fitness function which takes
these constraints into account. Adaptive systems, on the other hand, change over
a longer time scale to match the user’s (or group of users’) needs or skills. Our
current methodology does not involve sufficient testing time to experiment with
such adaptivity, though it could be modified to do so.

7.3.3 System of ranked variants

Prior to the design of the system, we identified several areas where we can pa-
rameterize the output. Thedevice modelspecifies capabilities of the end-user
devices, in particular the screen size and interaction options such as a touch screen
or variable buttons, as used in many cell phones. Theuser modelreflects preferred
multimodal interaction (and signal integration) patterns.

Thesituation modelreflects external constraints imposed on the interaction with
the device. These constraints originate from ambient noise, the users’ cogni-
tive workload, manual workload (as in cooking, driving), and sensory workload
(watching a movie, walking, listening to a talk).

Our evaluation method controls the adaptation models in order to reflect carefully
chosen real-life situations. The more adaptation parameters there are, and the
more values that are under consideration, the greater the number of experiments
needed to gain sufficient data to show a significant effect of the system’s design

83

choices. Over long periods of time, user model adaptation can be problematic,
as the system and user may adapt to each other reciprocally. For these practical
reasons, we decided to vary only the situation and device models.

In an adaptable system in which multiple variants are generated and scored, the
scoring metric (see Section 7.4.2) can be tested by creating versions of the system
for the user to interact with. Each version is based on a particular user model,
situation model, and device model, and compares the best-rated, worst-rated, and,
optionally, one mid-ranked option (according to the fitness function) for each sit-
uation. In this manner, the fitness function can be evaluated, as a high degree of
discriminability among the variants presented to the user is assured.

Both subjective and objective measures of interface usability can then be used to
assess whether the fitness function can boost user satisfaction with a given output
variant and, indeed, whether adaptivity is of advantage at all to users in a specific
situation. Task completion times, task completion rates (recognition of incorrect
system responses), user frustration levels, and user satisfaction are all candidate
variables for evaluating the fitness function.

7.3.4 Scales

There are several different scales on which one can measure a given test. A scale
may be absolute or comparative. It may test things subjectively, directly, or indi-
rectly. It may compare different instantiations or different underlying reasons for
adaptivity.

In absolute testing, we ask “is this a good user interface?” This is a difficult
question to answer. In general, the testing of a user interface comes down to
comparing it with other systems. Sometimes that means comparison with similar
interactions between humans, and other times it may mean comparison with the
behavior of a simulated system in a Wizard of Oz scenario (See Section 7.3.5).

In comparative testing, different output variants or different versions of the same
system are compared to find the relative merits of the systems in the eyes of either
users or human designers. This tends to be easier to control, as it can be ensured
that the systems are, in fact, comparable.

84

Even multimodality has multiple scales. A user may use the screen or sound for
output, and may use touch screen, keyboard, or voice for input. Multimodal inter-
faces may also use gesture, haptics, or even smell as a mode for interaction.

Stressors on the user may be internal, as when the user is trying to pay attention
to a meeting while checking for an emergency email message, or external, as in
a noisy restaurant where one cannot escape distraction. A user may have limits
placed on them, based on how public or private their setting is, which may be
changed significantly by personal and cultural issues.

User distraction levels and different device models are not, in themselves, appli-
cable to every multimodal system, but each system will have its own set of con-
straints that will be used to define the output variants generated and the fitness
function used to select the optimal variant.

An ideal system evaluation would test each relevant metric individually, but there
is a need for testing that will give an overall judgment of an interface.

7.3.5 WOz

Wizard of Oz (WOz) testing has an important role to play in the creation of adapt-
able systems. It can give an indication of what kinds of interfaces are needed and
how those interfaces will be used without the initial cost of building a whole sys-
tem. However, over-reliance on WOz testing can be dangerous: some aspects of a
WOz simulation may not be replicable in the actual application (e.g. near-perfect
speech recognition). In the special case of evaluating adaptable systems, it can be
difficult to ensure sufficient consistency in the work of the wizards to ensure that
the only differences between trials are those demanded by the adaptation.

7.3.6 Methodology

We create situations in which we can limit the user’s attention to various modalities
and collect information on user satisfaction using the NASA-TLX scale Hart &
Staveland (1988), task completion time, and task success rates.

For mobile systems, the ability of the user to use the system even when distracted

85

is key. To this end, the testing will involve the user being distracted from the
requested task. Undistracted usage would parallel a user at his desk or working
in some other quiet, non-distracting environment. This situation could serve as a
control. For a system which includes a screen display with auditory output and
pen and voice input, one form of distraction would be auditory in nature, as that
found in a crowded restaurant, while listening to the radio, or while in a meeting.
Visual and tactile distractions would be those found in a meeting, while cooking,
or while walking down the street. These situations, of course, must be customized
to the aims of the particular modalities present in the system in question.

We divide the testing into two phases, for ease of understanding. The first phase
tests the fitness function’s ability to choose the best of the interfaces for a given
situation. This would mean selecting (see Figure 7.2) the best, middle, and worst
cases for each situation.

The second evaluation phase allows users to use the ideal variant for each situa-
tion in other situations. This means evaluating whether the fitness function really
does select the optimal design for each situation correctly, as well as determining
whether there are distinct ideal adaptations for each situation.

These two sets of tests are very similar. In most cases, the total variant list for each
scenario will be the same. But the worst-case interface for a user who is subject to
auditory distraction may be an unequivocally bad interface, rejected by both users
and the fitness function.

In the next section, we describe the application of this methodology to a specific
case study: UI on the Fly.

7.4 UI on the Fly

In this section, we outline our multimodal generation system, which has a gram-
mar and a fitness function at its core. The system is currently undergoing a full
evaluation.

86

7.4.1 MUG

Multimodal functional Unification Grammar is a non-deterministic grammar for-
malism Reitter et al. (2004) that generalizes decisions about how to deliver content
in a multimodal user interface. A grammar in this formalism specifies an adaptable
user interface. The formalism is an extension of Functional Unification Grammar
(Kay, 1979; Elhadad & Robin, 1992) that ensures content coordination in the
different modes. It allows for the generation of multimodal user interfaces.

The application of a MUG yields several solutions that are faithful to the original
specification and consistent and coherent across the different output modes. Only
one of these solution is considered the best one – according to a fitness function,
which incorporates the user, situation and device models.

We demonstrate MUG in the context of a limited-domain user interface for a mo-
bile personal organizer (see Figure 7.1).

A MUG is a set ofcomponents. Each of them specifies a realization variant for a
given partial semantic or syntactic representation, similar to a rule in a production
grammar. The components are attribute-value structures. The generation algo-
rithm chooses components from the grammar and unifies them iteratively with the
original input specification, thereby instantiating several layers of output planning
and surface form realization.

While allowing for cross-modal consistency, the attribute-value matrices allow
us to distinguish information a) that needs to be shared across all output modes,
b) that is specific to a particular output mode, or c) that requires collaboration
between two modes (for example, deictic pronouns).

There may be several competing components in the grammar for a particular job,
all of which unify with a given partial semantic input. This translates to a design
choice the system has to make. Design choices are never made individually. They
often depend on other choices. For example, choosing to render the full subject
line of an email in a display variant on a small screen device might not leave
enough room for the (more important) name of the recipient. The system therefore
evaluates the variant as a whole2.

2Practically, best-first / A* search algorithms may be used to optimize the search for an optimal solution. But that has no
consequences for the evaluation.

87

26664

typeaskconfirmation
initiative implicit
experiencenovice
errornone

action

266666666666666666666666666666666666664

typetask
contexttypeemail

task

266666666666666666666666666666664

typesend-email

email

266666666666666666666666666664

typeemail

to

264typecontact
firstnameFred
lastnameCummins

375
cc

264typecontact
firstnameErin
lastnamePanttaja

375
from

"
typeemailaddress
adrreitter@mle.ie

#

subject

"
typetext
contentAussie Weather

#

body

"
typetext
contentG’day (...) -Dave

#

377777777777777777777777777775

377777777777777777777777777777775

377777777777777777777777777777777777775

37775
Figure 7.3: Input representation: confirmation of sending of an email. E-Mail body text abbreviated.

MUG enables some feedback to the dialogue system about which parts of the
dialogue semantics were actually realized in a given situation, as addressed by
Wahlster (2002). A mode-specific attribute (realized) is instantiated by the gram-
mar for each semantic entity that has been incorporated in to the output in the
given mode.

Design variants are ordered according to the outcome of a fitness function. The
best variant is is that optimally adapted to the given situation, user, and device (see
Section 7.4.2).

7.4.2 Fitness function

Finding the best solution to the hard constraints defined by the grammar can be
seen as optimization problem. What do we optimize?

There are different approaches to formulating the scoring function, and usually
there are several considerations that are weighted. In SUPPLE (2004), Gajos and

88

Weld predict the effort a user has to make in order to reach each element of an
interface. Such a user-model driven fitness function still leaves the designers with
many choices – for example, whether the cost for each user interface element
should also depend on the maximum-likelihood probability for its actual use.

In UI on the Fly, we generate simpler, but multimodal interfaces for small-screen
devices. The number of elements shown on a screen is small, and the user interface
widgets defined by the MUG do not differ greatly in the time it takes to operate
them. We see major cost differences, however, in the degree to which the voice
modality is used (it takes time to listen to system speech). We therefore model
the utility of a particular multimodal output as a competition between reading /
listening time and the benefit of presenting important information.

By default, we try to be as helpful as possible, with information that is deeply
embedded in the semantic structure receiving lower priority than higher elements.
Redundant information, that is, information that is presented in both modes, does
not receive a double benefit. Information that needs to be presented according to
the assumed dialogue management component leads to a heavy penalty if it is left
out during generation stage.

The trade-off lies in the cost of the output, which is estimated in terms of the
cognitive load imposed on the user, who needs to read new text on the screen or
listen to the voice output.

These constraints are formalized in a score that is assigned to each variantω, given
a set of available ModesM , a situation model< α, β >, and a device modelφ:

s(ω) = λ
∑

<e,d>∈E(ω)

u(e, d) − maxm∈M(βmtm(ω))

u(e, d) = P (d,
∑
m∈M

(φmαmem|realized), erealize)

The first part of the sum ins describes the utility benefit. The functionE returns a
set of semantic entities ine (substructures) and their embedding depths ind. The
functionP penalizes the non-realization of requested (attributerealize) semantic
entities, while rewarding the (possibly redundant) realization of an entity. The re-
ward decreases with the embedding depthd of the semantic entity. (Deeper entities

89

give less relevant details by default.) The request is encoded in therealizeattribute
and the actual realization feedback is given in the mode-specific attributerealized.
αm are benefit andβm are cost coefficients that represent the user’s attention level
in each mode.

The cognitive load (second part of the sum) is represented by a prediction of the
time tm(ω) it would take to interpret the output. This equals the utterance output
time for a text spoken by the text-to-speech system or an estimated reading time
for text on the screen.

The utility/time normalization coefficientλ can be manually estimated or learned
from a corpus. If the evaluation setup is used,λ will be acquired from a separate
training partition of the data.

7.5 Evaluating UI on the Fly

In carrying out preliminary evaluations of UI on the Fly, we need to bear in mind
that a) it is not a complete dialogue system, but b) it should be evaluated with
human subjects.

One of the ideas behind UI on the Fly is that local decisions about the generation
of multimodal output may incur a local cost, but benefit the dialogue. For example,
a certain output may contain more information and thus be longer. But in turn, the
system may be able to remove an additional confirmation step. Such decisions can
only be evaluated in the context of a full dialogue.

To evaluate whether the prediction of cognitive complexity is realistic, we will
measure task completion time for a predefined task that involves sending an e-
mail. We will compare the performance of a system that chooses the output variant
deemed optimal against one that always chooses a mid-ranking output variant.

7.5.1 Recreating usage situations in the laboratory

In an attempt to broaden the range of respondents in this evaluation, it will be built
as a web page to be used in the user’s own office or home. This will allow us to

90

test the system with a variety of different computer-literate users.

The evaluation of the system in the laboratory attempts to recreate the important
mode-specific characteristics of a range of hypothetical situations.

The users will be given a computer-game task as an auditory, visual, and tactile
distraction. This will be a flash program in the testing web page. In order to ensure
that the user is paying attention to the game, their score will be recorded. The time
they are allowed for each turn will also be limited.

This will not exactly mirror the target task of walking down a busy street, but will
simulate some of the distraction and cognitive load.

7.5.2 Devising tasks

Each user will be asked to send one email message using the system, while per-
forming the distraction task. This message will be selected from a bank of three
messages. They will not be using a full dialogue system: each turn of the task will
be represented by an output turn from the system, then a corresponding input from
the user. Errors by the user will be ignored by the testing system (though recorded
for the evaluation).

The tasks will all be web site-based, but will simulate usage of either a small
screen cell phone or a PDA-device (see Figure 7.1).

Each task will involve approximately five system turns, and the two selected vari-
ants will be the first and middle option from a pool of 30-90 variants created by
the system for each turn.

Some of the test turns will involve mistakes on the part of the system. Whether or
not the user catches these mistakes will be recorded as the user’s error detection
rate.

There will be three different tasks, and two different devices. There will be 10
users of each task, for a total of sixty users.

91

7.5.3 Measuring quality

We will be collecting several different kinds of information from each user. We
will start with a user questionnaire, to establish their background and whether their
system is sufficient for the experiment.

For each system turn, we will record the task completion time and whether the
task was completed successfully.

After the task, we will ask the user how appropriate the system output was in the
given situation (user satisfaction). By pairing user satisfaction ratings for different
utterance types we can show whether the fitness function and the user satisfaction
data show a significant correlation, and whether the situation-specific adaptation
has a significant effect on the user satisfaction.

7.6 Conclusion

We have discussed several approaches to the evaluation of adaptable multimodal
dialogue systems and their output generation components. We have presented a
case study giving a preliminary view of the evaluation of a concrete instantiation
of such a system under realistic constraints. Meaningful evaluation, even of a
single subsystem with limited functionality, is feasible.

This methodology can be applied to any system that uses a fitness ranking to
choose an optimal interface to present to a user. Each parameter (situational, user,
or device) added to the system will, of course, increase the number of tests (and
users) required, but each additional constraint can be easily be compared against
tests already completed.

Acknowledgements

This research was in part funded by the European Commission under the FASiL
project, contract number: IST-2001-38685.

92

Chapter 8

Dissemination Activities

8.1 Overview

The research activities described in this report were publicized on many occa-
sions – in publications and public talks (listed below) and at Media Lab Europe’s
Open Houses, which are events held in Dublin for an international audience of
decision-makers, journalists and scientists. Further talks (not listed) were given
at Media Lab Europe events for invited audiences. Catering for a broader public
audience, three MLE-based, partially FASiL-funded researchers were featured in
MLE’s 2004Innovatorsbrochure.

8.2 Journal articles

David Reitter. Simple signals for complex rhetorics: On rhetorical analysis with
rich-feature support vector models. LDV-Forum, GLDV-Journal for Computa-
tional Linguistics and Language Technology, 18(1/2):38-52, 2003.

8.3 Conference and Workshop papers

David Reitter. A development environment for multimodal functional unification
generation grammars. InProc. Third International Conference on Natural Lan-

93

guage Generation(INLG04), 2004.

David Reitter, Erin Panttaja, and Fred Cummins. UI on the fly: Generating a multi-
modal user interface. InProceedings of Human Language Technology conference
2004 / North American chapter of the Association for Computational Linguistics
(HLT/NAACL-04), 2004.

David Reitter and Manfred Stede. Step by step: underspecified markup in incre-
mental rhetorical analysis. InProceedings of the 4th International Workshop on
Linguistically Interpreted Corpora(LINC-03) (at EACL 2003), Budapest, 2003.

8.4 Thesis

David Reitter.Rhetorical analysis with rich-feature support vector models. Mas-
ter’s thesis, University of Potsdam, 2003.

8.5 Talks

David Reitter.UI on the Fly: Generating a multimodal user interface with func-
tional unification grammar.SALS-SIG Research Seminar, Macquarie University
Sydney, Australia, December 2003

David Reitter.Aspects of Generating a Multimodal User Interface.Speech Sem-
inar, Interactive Systems Lab / Language Technology Institute, Carnegie Mellon
University, Pittsburgh PA, U.S.A., July 2004

David Reitter.UI on the Fly – a changing multimodal user interface interface for
mobile people.Media Laboratory, Massachusetts Institute of Technology, Cam-
bridge MA, U.S.A., July 2004

94

8.6 Multimedia

David Reitter, Michael Cody:Multimodal user interfaces in the FASiL Virtual Per-
sonal Assistant.Video clip, 0:53. available at: http://www.medialabeurope.org/asi/fasil/

95

Appendix A

Multimodal Integration and FASiL VPA 1.5

FASiL VPA 1.5 was defined at the multimodal workshop in London as a proof
of concept for the FASiL multimodal architecture and an opportunity to integrate
the work that VOX and MLE have been doing in a less ambitious manner than
the full VPA 2 functionality. It is intended to show end-to-end functionality in
the context of the send email task only. Our original goal is a VUI similar to that
of VPA1, with a simple GUI with few functional elements. We are not trying to
recreate Outlook. The original plan for translating VPA 1.5 to Portuguese has been
dropped for lack of resources.

The original schedule set at the time was to complete development by the end of
January. We agreed at the time that this was optimistic, and subsequent develop-
ments mean that this deadline will be missed.

VOX and MLE met in November to define the interfaces between the various
components.

Vox implemented much of the MM Gateway, and a first version of the fission
module has been integrated. MLE created have a simple MUG that generated the
existing prompts and GUI text for some parts of the email system, with a goal of
covering all of email functionality.

Fusion required additional work to implement the interface with the MMGateway,
and work with a modified semantic interpretation. There was a problem with
providing the required timing information to Fusion (start-of-speech event and
timings in the semantic interpretation).

96

A working VPA1.5 prototype was scheduled for delivery in February. Ideally this
would have covered the whole of send-email. We identify a contingency whereby
we cover a subset of it.

As of the consortium meeting in January, this integration process was cancelled in
favor of separate work by Vox on VPA 2 and by MLE on independent Fission and
Fusion services.

97

Appendix B

Grammar Examples

B.1 Component variants

There may be several different components defined for displaying a particular type
of data. Some may be appropriate for specific types of situation (or require certain
information to be present). Others may be instantiated in any situation, but will
change the score of interface which is presented to the user in the end.

There are a wide variety of different ways to display a contact’s name.

If we know their email address, we can display that.

int-adr-is-emptyno

adr Adr

Mode


realized1

prefix P

textconcat([P , Adr])




If we know their given and surnames, we can concatenate those together.

98


firstnameName

lastnameName2

Mode

[
realized1

textconcat([Name, Name2])

]


In some cases, we want to give only their first name, for brevity.
firstnameName

Mode

realized1
form firstname

text Name




If we don’t have a name or an email address, we won’t display them, but (note that
realized is 1) we incur no penalty.

firstname“”
lastname“”
adr“”
int-name-is-emptyyes
int-adr-is-emptyyes

Mode

[
realized1
text “”

]


We may choose not to show the contact’s name, even if we have the information.
This will reduce the cognitive load. However, the information is recorded as being
un realized.
int-name-is-emptyno
int-adr-is-emptyno

Mode

[
realized0
text “”

]


99

B.2 Full Example

Here is an example (B.1) of the output for a request for a user name. In this
scenario, the user has already asked to send an email.

(a)

Figure B.1: Voice: “Who should be on the to list?”

The input to the MUG for this example is as follows:

typeaskinfo
experienceexpert
errornone

action



type addtolist

task


type send-email
contexttype email

email
[
type email

]


scope〈 task/email/to 〉




That is, we are asking for information from a user who has used the system in the
past (expert). They will be adding to a list (task/email/to), and there is no current
email message.

100

Following are all of the components used to generate the screendynamic portion
of the display.

tree



action

scopeScope

task
[
scopeScope

]
type DialogueAct

screendynamic


cat DialogueAct

text A

type DialogueAct




screendynamic


catmultimodal

text template([‘〈 table〉〈tr 〉〈 td 〉 ∼w〉tr 〉〈td〉〈table〉’, [[A]]])




The component above calls for something that is cat:DialogueAct. Unifying that
with the input FD, we see that the DialogueAct is askinfo. The component below
unifies with that.

101



experienceExperience

initiative Initiative

action Action

Mode

[
catActionType
typeActionType

]

explain-context



experienceExperience

initiative Initiative

actiontypeActionType

Mode

[
catexplain askinfo

text Explanation

]



user-input


action Action

Mode

[
catui modfield

text UIText

]
Mode

[
cataskinfo

textconcat([Explanation , UIText])

]


askinfo1 works for either screendynamic or voice. It calls for the concatenation
of a context explanation and a user input.

102



scopeFields

userintention User Intention

fieldcontent



scopeFields

contentsourceUser Intention

Mode


catfieldcontent

text Content
realized1





fieldtext


scopeFields

Mode


catfieldtext

text FieldText
realized1




Mode

[
text template([‘add ∼ to the ∼ w’, [Content , FieldText])

]




experienceexpert

Mode

[
text “”
realized0

]
In this example, for the explainaskinfo component, this user is an expert, so there
is no explanation.
scope

〈
task/ ? / ?

〉
Mode

[
text “”
realized1

]


The fieldcontent returns nothing.
scope

〈
? /email/to

〉
Mode

[
text “to list”
realized1

]


103

The fieldtext returns “to list”.action


type addtolist
scope〈 task/email/to 〉

Mode
[
realized 1

]
Mode

[
text “To whom?”
realized 1

]
The ui modfield component returns “To whom?”

More grammar details will be available in deliverable D5.4, the Adaptive multi-
modal fission/fusion service.

104

Bibliography

André, E., Finkler, W., Graf, W., Rist, T., Schauder, A. & Wahlster, W. (1993).
Wip: The automatic synthesis of multimodal presentations,in M. T. Maybury
(ed.),Intelligent Multimedia Interfaces, AAAI Press, Menlo Park, CA, pp. 75–
93.

Beringer, N., Kartal, U., Louka, K., Schiel, F. & Türk, U. (2002). PROMISE
- a procedure for multimodal interactive system evaluation,Proceedings of the
LREC 2002 Workshop on Multimodal Resources and Multimodal Systems Eval-
uation, Athens, Greece.

Bolt, R. A. (1980). Put-that-there:voice and gesture at the graphics interface,Pro-
ceedings of the 7th annual conference on Computer graphics and interactive
techniques, Seattle, pp. 262 – 270.

Bontcheva, K. (2003). Reuse and challenges in the evaluation of NLG systems,
Proceedings of the EACL-2003 Workshop on Evaluation Initiatives, Budapest,
Hungary.

Cassell, J., Sullivan, J., Prevost, S. & Churchill, E. (2000).Embodied Conversa-
tional Agents, MIT Press, Cambridge, MA.

Cockton, G., Lavery, D. & Woolrych, A. (2002). Inspection-based evaluations,
in J. Jacko & A. Sears (eds),The human-computer interaction handbook: Fun-
damentals, evolving technologies and emerging applications, Lawrence Erbaum
Associates, Mahwah, NJ.

Coutaz, J., Salber, D. & Carraux, E. (1996). Neimo, a multimodal usability lab for
observing and analyzing multimodal interaction.

Elhadad, M. & Robin, J. (1992). Controlling content realization with functional
unification grammar,in R. Dale, E. Hovy, D. Roesner & O. Stock (eds),Pro-

105

ceedings of the Sixth International Workshop on Natural Language Generation,
Springer Verlag. Lecture Notes in Artificial Intelligence, pp. 89–104.

Feiner, S. & McKeown, K. (1990). Coordinating text and graphics in explanation
generation,Proc. of AAAI-90, Boston, MA, pp. 442–449.

Feiner, S. K. & McKeown, K. R. (1998). Automating the generation of coordi-
nated multimedia explanations,in M. T. Maybury & W. Wahlster (eds),Intelli-
gent User Interfaces, Morgan Kaufmann Publishers, Inc., San Francisco, CA.

Gajos, K. & Weld, D. S. (2004). Supple: Automatically generating user interfaces,
Proceedings of IUI-2004, Funchal, Portugal.

Grice, H. (1975). Logic and conversation,in P. Cole & J. Morgan (eds),Syntax
and Semantics, Vol. 3, Academic Press, pp. 41–58.

Grosz, B. J., Joshi, A. K. & Weinstein, S. (1995). Centering: A frame-
work for modeling the local coherence of discourse,Computational Linguistics
21(2): 203–225.

Hart, S. G. & Staveland, L. E. (1988). Development of a multi-dimensional work-
load rating scale: Results of empirical and theoretical research,in P. A. Han-
cock & N. Meshkati (eds),Human mental workload, Elsevier, Amsterdam, The
Netherlands.

Johnston, M. (1998). Unification-based multimodal parsing,Proceedings of
COLING-ACL-1998, pp. 624–630.

Johnston, M. & Bangalore, S. (2000). Finite-state methods for multimodal parsing
and integration, AT&T Labs - Research.

Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., Whit-
taker, S. & Maloor, P. (2002). Match: An architecture for multimodal dialogue
systems,Proceedings of ACL-2002.

Kay, M. (1979). Functional grammar,Proceedings of the Fifth Meeting of the
Berkeley Linguistics Society, Berkeley, CA, pp. 142–158.

Kieras, D. (2002). Model-based evaluations,in J. Jacko & A. Sears (eds),The
human-computer interaction handbook: Fundamentals, evolving technologies
and emerging applications, Lawrence Erbaum Associates, Mahwah, NJ.

106

Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A., Aboobaker, N. & Wang, A.
(2000). Suede: A wizard of oz prototyping tool for speech user interfaces,CHI
Letters: Proceedings ACM Symposium on User Interface Software and Technol-
ogy, pp. 1–10.

Knight, J. F., Baber, C., Schwirtz, A. & Bristow, H. W. (2002). The comfort assess-
ment of wearable computers,Proceedings of the Sixth International Symposium
of Wearable Computers, Seattle, Washington.

Maybury, M. T. & Wahlster, W. (eds) (1998).Intelligent User Interfaces, Morgan
Kaufmann Publishers, Inc., San Francisco, CA.

McInnes, F., Jack, M., Carraro, F. & Forster, J. (1997). User responses to prompt
wording styles in a banking service with a wizard of oz simulation of word-
spotting,Proceedings of IEE Colloquium on Advances in Interactive Voice Tech-
nologies for Telecommunications Services, pp. 1–6.

McNeill, D. (1992). Hand and mind: What gestures reveal about thought, Uni-
versity of Chicago Press.

Oviatt, S. (1999). Ten myths of multimodal interaction,Communications of the
ACM42(11): 74–81.

Oviatt, S., Cohen, P., Fong, M. & Frank, M. (1992). A rapid semi-automatic
simulation technique for investigating interactive speech and handwriting,Pro-
ceedings of the International Conference on Spoken Language Processing 2,
pp. 1351–1354.

Oviatt, S., DeAngeli, A. & Kuhn, K. (1997). Integration and synchronization
of input modes during multimodal human-computer interaction,Proceedings of
the SIGCHI conference on Human factors in computing systems, ACM Press,
pp. 415–422.

Panttaja, E., Reitter, D. & Cummins, F. (to appear 2004). The evaluation of adapt-
able multimodal system outputs,Proceedings of the Workshop on Multilingual
Linguistic Resources (MLR2004), at COLING.

Pirhonen, A., Brewster, S. A. & Holguin, C. (2002). Gestural and audio metaphors
as a means of control for mobile devices,Proceedings of ACM CHI2002, ACM
Press, Addison-Wesley, Minneapolis, Minnesota, USA.

107

Reiter, E. & Dale, R. (2000).Building Natural Language Generation Systems,
Cambridge University Press.

Reitter, D., Panttaja, E. & Cummins, F. (2004). UI on the fly: Generating a multi-
modal user interface,Proceedings of Human Language Technology conference
2004 / North American chapter of the Association for Computational Linguistics
(HLT/NAACL-04).

Roth, S. F. & Hefley, W. E. (1993). Intelligent multimedia presentation systems:
Research and principles,in M. T. Maybury (ed.),Intelligent Multimedia Inter-
faces, AAAI Press, Menlo Park, CA.

Salmon-Alt, S. & Romary, L. (2000). Generating referring expressions in multi-
modal contexts, Proceedings of the INLG.

Turk, U. (2001). The technical processing in smartkom data collection: a case
study,Proceedings of Eurospeech2001, pp. 1351–1354.

Wahlster, W. (2002). Smartkom: Fusion and fission of speech, gestures, and facial
expressions,Proceedings of the 1st International Workshop on Man-Machine
Symbiotic Systems, Kyoto, Japan.

Walker, M., Joshi, A. & Prince, E. (1997a). Centering in naturally occurring dis-
course: An overview,in M. A. Walker, A. K. Joshi & E. Prince (eds),Centering
Theory in Discourse, Oxford University Press, Oxford, pp. 1–28.

Walker, M., Litman, D., Kamm, C. & Abella, A. (1997b). PARADISE: A frame-
work for evaluating spoken dialogue agents,in P. R. Cohen & W. Wahlster (eds),
Proceedings of the ACL-EACL-1997, Association for Computational Linguis-
tics, Somerset, New Jersey, pp. 271–280.

Woods, D. & Roth, E. (1988). Cognitive systems engineering,in M. Helander
(ed.), Handbook of Human-Computer Interaction, Elsevier, North Holland,
pp. 1–43.

Wyard, P. & Churcher, G. (1998). A realistic wizard of oz simulation of a multi-
modal language system,Proceedings of 5th. International Conference on Spoken
Language Processing, pp. 1351–1354.

Yang, Y., Okamoto, M. & Ishida, T. (2000). Applying wizard of oz method to
learning interface agent,IEICE Transactions FundamentalsE00-A(1): 1–8.

108

	Executive Summary
	Multimodality
	Adaptivity
	Abbreviations and Acronyms

	Multimodal Functional Unification Grammar
	Abstract
	Introduction
	Related Work
	Formalism
	Planning for Coherence
	Adaptively Choosing the Best Variant
	Conclusion
	Acknowledgement

	Multimodal Centering
	Introduction
	Centering
	The Generation of Referring Expressions
	An Analysis of a Multimodal Corpus
	Centering in the Multimodal Unification Grammar
	Generation of a Referring Expression for an Object FD
	The refexp Components
	Generating Personal Descriptions from a Social Network Database
	Grammar components
	Conclusion

	Grammars
	Unification
	Anatomy of a component
	Realized
	Grammars

	MUG Workbench -- A development environment for Multimodal Functional Unification Grammar
	Introduction
	Development with MUG
	Applications

	A Platform for Multimodal Wizard of Oz User Interaction Studies
	Abstract
	Introduction
	The WOzOS Platform
	Multimodal Study using WOzOS
	Conclusion
	Acknowledgements

	Evaluation
	Introduction
	Recent work
	Evaluation
	UI on the Fly
	Evaluating UI on the Fly
	Conclusion

	Dissemination Activities
	Overview
	Journal articles
	Conference and Workshop papers
	Thesis
	Talks
	Multimedia

	Multimodal Integration and FASiL VPA 1.5
	Grammar Examples
	Component variants
	Full Example

