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This is a presentation about abcBridge, a set of Haskell bindings for
ABC that I wrote over the course of my summer internship at Galois.
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There are many, many NP problems in this world that occur in many,
many practical situations. One might think that we’d have to devote
endless hours to writing algorithms for each and every one of them...
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..but in fact, they are all equivalent to a class of problems called
NP-complete. This means that we can algorithmically translate a
representation of any problem (say, "Traveling Salesman") into another
problem (canonically, "Boolean Satisfiability") and then ask a solver

for that problem to solve the problem for us. Tricks that we implement
in one problem domain can help us out in other places.
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SAT was the first NP-complete problem to be proved, well, NP-complete,
and lends itself well to our computers, so it has been one of the most
thoroughly studied of any NP-complete problems. There are SAT solving
competitions, and behind almost any program that solves NP problems
you will find a SAT solver to do the dirty work. However, when we
translate any given problem into a list of boolean clauses, we are
effectively throwing away the high level structure of the original
problem instance, which may have allowed us to apply smarter heuristics
and get the answer faster. Thus, there is a tension between the

simple SAT representation, and the more complex problem-specific
representation.
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ABC and abcBridge look at one specific problem domain: the domain of
logic circuits. Here, we see a simple convolutional encoder composed
of elementary logic gates (XORs) and three latches, which constitute

the state of the encoder.
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Logic circuits are of paramount importance to hardware circuit
designers. However, at Galois we’ve had great success applying
converting cryptographic algorithms into logic circuits and

then verifying them with what are traditional electrical engineers.
The logic circuit domain is one closely associated with SAT, but
probably far more well-known to programmers who have their
own NP problems to solve.
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Enough background, so what is ABC? ABC is a "System for Sequential
Synthesis and Verification." I've highlighted "Sequential" and
"Verification": "Sequential" means that ABC has support for handling
circuits with latches, i.e. state. I've highlighted "Verification"

because verification that two circuits are equivalent is precisely

where our SAT solver will come in handy. ABC is public domain software
from the Berkeley Logic Synthesis and Verification Group, and is
primarily developed by Alan Mischenko.
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Like most systems, ABC is internally backed by a SAT solver. However,
for its domain specific algorithms, it adopts a different

representation than the usual conjunctive-normal form (a highly regular
representation that uses only ANDs and ORs). ABC uses AlGs:
And-Inverter graphs: graphs that contain only AND gates and NOT gates
(you may recall that NAND gates are universal: you can simulate any
logical formula with them.) AIGs are a simple representation that can
be easily translated into SAT. It is also an incredibly uniform
representation (after all, there is only one type of multiple

fan-in node to worry about), which makes implementing algorithms for
it easier. Finally, and this is the secret sauce that makes ABC

so much better at finding satisfying instances than pure SAT solvers,

is that this representation is amenable to the functional reduction

of AIGs--known as fraiging--in which functionally equivalent segments
of a circuit are coalesced. When you ask ABC to verify two circuits, it
will spend some time fraiging before passing it to the SAT solver.
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What does it mean to verify a circuit? If we are optimizing a circuit,
we would like to make sure each optimized version is equivalent to the
original version. So verification is equivalence checking.
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Circuit equivalence is NP-hard: we can easily translate instances of
SAT into it. Just treat the set of boolean clauses as a logic circuit,
and check if it’s equivalent to the zero circuit: the circuit that

always outputs False. It will be inequivalent if there is a satisfying
instance.



Ci(‘ CU'IJC NOY\—(?,({UNa\ence S NP—Cowf\éfE

O XOR teatps

T3

rZo 1\

i B[
C\r%()‘l’ose @ v ﬁ
ﬂ |

e
P —— e
| SN,

L

— SHARE +he inputs

LY




Circuit equivalence is NP-complete: we can do the translation in the
other direction (which is what ABC does.) To do this, we compute
the miter of two circuits, which gives us a single circuit with a single
output that outputs True if the two circuits give different outputs.
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So what does abcBridge do? It gives you "Synthesis": a way of building
the logic network, and "Verification", a way to check that networks

are equivalent. And it lets you do this all in our favorite programming
language, Haskell!
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The combinational verification interface is extremely simple: we have
functions for reading AIGs from a binary file format called AIGER,
and we can simply pass them to a pure function ‘cec’ which will test
if the two circuits are equivalent.
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The output of this function is tristate: we can either Pass (in the

case of equivalence), Fail with a counterexample (in the case of
non-equivalence), or fail, letting the user know we ran out of resources
before we could figure out one way or another.
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We can synthesize new networks without needing gates: the ‘miter’
function computes the miter of two networks, which we can then save
to a file for further inspection.
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If we want to build up our network gate-by-gate, we need to bust

out a little more machinery. Network creation is monadic: we create
inputs, create gates and assign outputs inside the NT monad, standing
for "network transformation." We run the NT monad using the "runNT"
function.
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Here are the primitive operations you can run inside the NT monad.
Notice that the type of node is 'Node n’, not '‘Node”: the 'n’ is a
phantom type that ensures that we don’t mix up nodes from one
network with another.



Ruminﬁ the monac

wnNT = (Fh.NTn O0) = AIG

withNT 32 AlG = (% .NTn () = AIG
Phartom type vaen'ts Node MIX-UPS
‘(U(\NT $ do

nd & inpul
let fo0 = unNT 3 do
output nl # Type efrol '




To actually get this assurance, we use rank-2 types in our functions
that run the monads. Here we see 'runNT” with it’s type signature:
in this case, we don’t care about preventing nodes from leaking
out of scope, since our functions don’t let you smuggle them out.
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Tepbce . Noden —=>Node n—=> NTn ()
replace Output == Int — Noden—> NThn ()

O\Q\BJoe lnput . ln’t — NT n O
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SetlatechDelvers: Node n~Node n—=>NTa ()



Since the NT monad is actually all mutation under the hood, abcBridge
also offers some functions for modifying a network as you build it.
These come in handy if your modifying an already existing network,
or sometimes they let you do operations that would not normally

be possible, for example, making a latch feed itself.
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Here’s one small detail about the difference between replace and
replaceOutput. Any node that is replaced may feed arbitrarily
many other nodes, in which case all of those nodes are replaced.
replaceOutput lets us tweak the output value of just one node.
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After we’ve built up networks, we can run them through the equivalence
checker, or we can make more fine-tuned queries on them. The

network query monad lets us do things like calculate the logic cone

of a node (the subset of the network that directly influences

that node) or run the network. Of course, in order for this to be

useful, we need a way to introduce nodes into the NQ monad (remember
that the phantom types prevent us from mixing nodes from NT and NQ.)
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To this effect, we have a NetworkMonad typeclass, which offers functions
that work in both NT and NQ.
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There might be circumstances when you are building a network in the NT
monad, and decide, "I want to take a look at what I have so far" with

some operation in the NQ monad. In this case, you can use 'speculate’

to drop you into the NQ monad with the current partially formed network.
You can use ‘branch’ to go in the other direction. The types are a

little complicated, and I will discuss them in depth later.
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Here is the flow between NT, NQ and AIG.
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Here is an extended example of how you might use the API. Consider a
purely combinational circuit that simulates state through a number

of input and output ports. We’d like to hook those ports up to latches,
so our circuit is intrinsically stateful.
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Here’s the code that does it. The first three lines calculate the

ranges of the the input and output state ports, the next three lines
generate the latches and hook them up to the state output ports,

the further three lines replace the state input ports with the outputs
of the latches, and then we delete the (now unused) input and output
state ports.
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Part two of my presentation dives into the internals of abcBridge. ABC
is a very imperative, shared state library, but I've managed to package
it up in something that smells like Haskell. There were a lot of

things to take care of to make this happen.
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I'm going to talk about five particular issues that came up while
writing abcBridge. The first four are examples of issues that
the library can hide or statically typecheck on the user’s side;
the last is one case where my valiant efforts failed to shield

the user.
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First, some conventions. We indicate the raw struct in Haskell types

by appending a trailing underscore, whereas a pointer to the type
doesn’t have the trailing underscore. If we have an identifier in C

for a function, we translate it into a Haskell identifier by

lower-casing the first character and removing the underscores. Function
pointers are prefixed with ‘p_".
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C code is all about manual memory management: if you allocate it,
you have to free it. Gritty and prone to memory leaks and double frees.
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Since Haskell has a garbage collector, it would be a shame if we didn’t
use it! We can do this by converting pointers to structures that we
normally would have had to manually track into foreign pointers, and
give them a finalizer that frees them when all references go away.
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0t Abe— NtKT vy Prove (Aoe _Ntkt *x ppNtk)
% Abe_Ntk_t *pNtk ,*pNtkTemp = kppNEKS

pPNEK = Abc_NtkIvYAF&F(FNtkTmp}Q
Abe Ntk Delete (pNtkTeme);

*ppNtk = pNtks
return RetValve %



Now, once we’ve put a pointer into a foreign pointer, it’s there

forever: we can’t GHC to stop memory managing it (with some caveats.)
So what do you do if you need to pass the original pointer into

a function that destroys it and gives you a replacement? We’d

need to update every copy of the foreign pointer floating around

in memory.
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This is difficult, so instead, we make the foreign pointer point

to a pointer that points to the struct. We can then poke the inner
pointer when we need to change over, and this change will be reflected
in all of the foreign pointers (since they are pointing to the memory
location you just changed.) If you are writing a concurrent
application, use an MVar instead.
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abcBridge uses unsafePerformIO under the hood to modify (hopefully)
local state. The type system ensures that the local state never
leaks out.
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However, while monads may be a good API for initially building
the data structure, when we stop mutating our structure we’d like
to put away the monad and use a pure interface. Unfortunately, our
C code may do more mutation to hidden shared state.
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Here is one example: ABC’s depth-first traversal to calculate
the logic cone of a node. As ABC walks the tree, it marks the
Travld field in nodes to avoid having to retraverse nodes that
it has already seen. This means that only one traversal can
happen at a time, and so we must take out a lock on the field.
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Faking a persistent interface means that we need to copy a data
structure whenever we would like to mutate it some more after
exiting the monad. In this case, you have to very careful about
what invariants you assume about the copying process. Early
in the project, I assumed that the IDs of nodes was stable

across a copy: this was not actually the case! The correct

thing to do was to use the pCopy field to get the new version of
the node.
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branch = (2. NT (Dupn ) 0)>NQ n AG
Thnd. N# Dupnnd

tTBﬂS\S'tQ  Node n —> NT (Dup n I\D.) (Noo\e_ (Dufmnl))

N 6‘86‘1: lnpu't 0

st < branch $ de
n'¢&tranglate n



Since our in-Haskell representation of nodes was just an integer

ID, with no pointer to the owner network, users need to explicitly
translate an ID from an old object to a new object. We can enforce
this in the type system by assigning a new phantom type variable
that depends on the old network’s phantom type (using Dup.) Our
translation function then only permits translating between networks
whose phantom types line up in this manner.



static nline

stafle line it Aoe-NEKOGNUm

\

SLGN{SKOB) Num = WFEMN clntConv.
i:hae’c Abe._ Ntk,:t—?r\%s#}

0R

it Ovrloc_ IO Nom (ke Ntk £2) §
(et Ao NEk Ok Num(P)3 &



Haskell’s emphasis on static checking means that if you subvert the
static type checker, it’s very easy to cause a segfault. This includes
writing low-level code that dereferences pointers. However, one
instance where you might be tempted to write C-style code in Haskell is
when handling static inline functions, which cannot be imported via the
FFI without creating a wrapper function around it, which means that it
can’t be inlined. The temptation is high...
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...but I've concluded that it’s not worth it! Inline functions can

quickly reach a complexity that make comparison with a Haskell
transcription non-trivial, and when you get it wrong, you get
segfaults with no stack trace (if FFI code segfaults, you do get

a stack trace of all the C code.) bindings-dsl had the right idea:

add convenience macros for making the process of wrapping functions
less painful.
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The last thing to say is interruptibility. Pure Haskell code is

very interruptible. FFI code is very *not* interruptible, due

to limitations in the RTS and also due to the fact that most C code

is not designed to be interrupted. So if you installed your own

signal handler, you should uninstall it when you call a function backed
by the FFI, even if it has been made pure by the virtue of an
unsafePerformlIO.
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Thanks for listening!



