Fast and Sound Random Generation
for Automated Testing and Benchmarking
in Objective Caml

Benjamin Canou

Alexis Darrasse *

Equipe APR - Département CALSCI
Laboratoire d’Informatique de Paris 6 (CNRS UMR 7606)
Université Pierre et Marie Curie (UPMC - Paris 6)

4 place Jussieu, 75005 Paris, France

{benjamin.canou,alexis.darrasse}@lip6.fr

Abstract

Numerous software testing methods involve random generation of
data structures. However, random sampling methods currently in
use by testing frameworks are not satisfactory: often manually
written by the programmer or at best extracted in an ad-hoc way
relying on no theoretical background. On the other end, random
sampling methods with good theoretical properties exist but have a
too high cost to be used in testing, in particular when large inputs
are needed.

In this paper we describe how we applied the recently developed
Boltzmann model of random generation to algebraic data types. We
obtain a fully automatic way to derive random generators from Ob-
jective Caml type definitions. These generators have linear com-
plexity and, the generation method being uniform, can also be used
as a sound sampling back-end for benchmarking tools.

As a result, we provide testing and benchmarking frameworks
with a sound and fast generation basis. We also provide a testing
and benchmarking library, available for download (1), showing the
viability of this experiment.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors; G.2.1 [Discrete Mathematics]: Combina-
torics; D.2.5 [Software Engineering]: Testing and Debugging—

Testing tools
General Terms Languages, Algorithms, Verification

Keywords Random generation, specification-based testing, Alge-
braic Data Types, Boltzmann model

1. Introduction

Testing has always been a major part of software development but
also one of the most tedious. In particular, testing algorithms re-

*work partially supported by ANR contract GAMMA, n°BLANO07-
2195422

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’09, August 30, 2009, Edinburgh, Scotland, UK.

Copyright (© 2009 ACM 978-1-60558-509-3/09/08. . . $5.00

61

quires the programmer to write a lot of input data to cover a signif-
icantly wide amount of cases. The same input generation problem
appears in benchmarking: when one wants to compute a practical
average efficiency. Moreover, in this case, one also wants the gen-
erated input to uniformly cover the set of all possible inputs of a
given size in order to soundly obtain statistical properties.

In our context of statically typed languages with algebraic
data-types, we have an exact and complete formal definition of
the shape of the values (types such as integers, strings, etc. will
be treated as leaves throughout this paper). It is then straightfor-
ward that values of such a type can be automatically generated
by extracting random generators from type definitions. Moreover,
functional languages appear to be a very good environment for
fully automatic specification-based testing techniques, as shown by
QuickCheck [Claessen and Hughes 2000] .

However even if there have been numerous experiments on fully
automatic testing, the random generation methods currently in use
are not satisfactory enough. Input data is generated

¢ by handcrafted generators,

¢ by automatically extracted generators with no theoretical back-
ground to ensure probabilistic properties of the generation, or

e by a constraint-based method which is better on a theoretical
point of view but too expensive and restricts it to small sizes.

For all of these methods, it is usually extremely difficult to calcu-
late the probability for a given value to appear and thus to estimate
the bias of the generation.

Creating random generators with good properties is one of the
topics in the field of combinatorics. The methods it proposed un-
til recently were however not applicable in this context. They were
either specific to some structure and thus not automatically applica-
ble to large enough classes of objects or in the case of the recursive
method [Flajolet et al. 1994] too costly (with a simple implemen-
tation) or too complicated.

In this paper, we propose a solution to solve this problem by
using the recently developed Boltzmann model of random genera-
tion from the combinatorics research field. The Boltzmann model
provides uniform random sampling, meaning that each object in

I'We use the notation (n) to reference external links; see section Links at
the end of the document for full URLSs.

the selected class has the exact same probability to be produced.
Moreover, the generators it produces are very simple and have a
linear-time complexity. We designed a translation from Objective
Caml [Leroy et al. 2008] (3) algebraic data-types to combinatorics
specifications, and use it to automatically extract generators from
type definitions.

Practically, we provide testing framework designers with a ran-
dom sampling core for generating (possibly very large) objects that
respect a given algebraic data-type. The probability for an object to
appear is known and the cost of the generation is linear to the size
of the object. We integrated this generation into Objective Caml via
a syntax extension and tested its viability on a testing and bench-
marking library prototype.

This work can be directly adapted to any functional language.
It can also be used to generate tree-like structures in any program-
ming language.

In section 2, we give an overview of software testing methods,
explain how our work can interact with them and present some re-
lated work in typed functional languages. Section 3 first gives the
theoretical background and section 4 explains the application to
random sampling of algebraic data-types in Objective Caml. Then,
section 5 demonstrates the practical applications of our random
generation core and our associated testing and benchmarking li-
brary prototype in the form of a tutorial. We then give some per-
formance results on the generation speed in section 6. Finally, we
present our future work on this project as well as other ongoing ex-
periments involving the Boltzmann model and programming lan-
guages.

2. Context

In this section, we describe the many sorts of source code level
program testing frameworks. We then explain how these framework
can integrate our work, and why they should.

Program testing The most widespread software testing technique
in use in software development industry is called unit testing. In a
regular industrial development environment, the work is organized
around a well defined methodology called a development model.
The most venerable is the V-Model, which splits the software de-
velopment work in layers of abstraction, going from global con-
ception of the system to detailed source code level development.
To each conception task, this model associates a verification one.
Unit testing consists in finding tests cases and procedures for each
unit of code (methods, functions, procedure, etc. depending on the
programming language). It is therefore the counterpart of detailed
software conception in this model.

Independently from, and for best results in addition to, unit test-
ing, there exists another method usually called specification-based
testing. This approach tests a function by applying a validation
predicate over pairs of values from its domain and the associated
results. Whereas the goal of unit testing was to check that the func-
tion performs correctly on hand-written typical or pathological in-
put values, specification-based testing tries to find bugs by checking
the results of the function over a significant amount of inputs. The
problem, which we are not addressing, is then how to define which
inputs are significant and how to obtain them.

If the domain of the function to test is finite and small enough,
the programmer can write every case and then obtain an exhaustive
test. Since we focus on a functional language with well defined
algebraic data-types, the procedure to obtain all the values of a
given finite type can be automatically derived from its definition.
By defining a size operator over a non-finite type, exhaustive testing
can also be used to test the function for inputs up to a given size.

62

This approach has already been experimented in [Runciman et al.
2008] for the Haskell language.

The problem is then how to obtain meaningful sample inputs of
large size. There are several methods for generating random values
of a given type. In most test frameworks, these values are created by
hand-crafted generators. QuickCheck, for example, defines several
random generators for basic types and combinators to build from
them generators for more complex types. With such a manual
approach, it is very hard not to bias the form of generated values,
and thus to unknowingly concentrate the domain of tested values
to an arbitrary subset of values. A solution to control the shape
of generated values is to use constraints-based random generation.
However, it is not a viable solution in terms of generation time for
large values.

Our proposition The solution we propose is to use uniform ran-
dom generation. In other words, a generator of values of a given
size gives each value of this size the exact same probability to ap-
pear. With such an approach, we know that we are concentrating on
the subset of the most representative values. To achieve this prop-
erty, generators are not hand-written but automatically derived from
a type definition as we explain in the following section. Moreover,
the derived generators are capable of producing values of a given
size in linear complexity. Furthermore, we provide a mechanism
of adding a measurable bias on the distribution, in order to target
different value subsets.

Applications As a direct result, our work can provide any kind of
testing framework based on random generation with a sound and
fast generation basis, in particular for inputs of large size.

Moreover, as we have just said, we use uniform (unbiased)
random generation. From a statistical point of view, this means that
if we run a test over a great number of generated values, we can
obtain statistical properties over the values of given type and size.

In particular, we can obtain a good evaluation of average per-
formance of programs. This can be used to obtain the practical
performance of an algorithm, since obtaining a theoretical average
complexity is often tedious, and many algorithms with bad worst-
case complexity can be very efficient in practice because of their
average behaviour. Moreover, it can reveal errors like complexity
miscalculations due to the use of an unsuited underlying primitive
data structure. Our work can thus be used use as well by mean-time
complexity checking or benchmarking tools.

Related works In this paper, we argue that the most widesreapd
testing frameworks lack a sound generation basis. We propose the
use of uniform generation and present some advantages of this
method. For instance, uniformity of generators prevent them from
systematically missing subsets of input values because of a bias.
Other research works share the same goal to add a theoretical back-
ground to test input generation. We can cite [Sen et al. 2005], focus-
ing on the notion of coverage thus generating inputs to exercise the
maximum number of control paths. In a nearer field, we can also
mention [Fischer and Kuchen 2008] in which the authors define a
notion of data-flow coverage of declarative programs and produce
generators accordingly.

On the benchmarking side, we use uniformity to give practical
information on the performance of the program, as well as a sound
statistical measure of average complexity. Other works focus on
producing inputs to show worst case complexity [Burnim et al.
2009] and could be used to obtain complementary complexity
information.

Related OCaml projects Research experiments on automatic
code generation from Objective Caml type definitions have al-
ready been leaded in the past, including random generation (with-
out theoretical background). We can cite for example OCaml Tem-
plates [Maurel 2004] or multi-stage [Taha 2003] programming with

MetaOcaml (4). Nowadays, efforts in the community are done to
work with types. We use type-conv (5) for type-definition pre-
processing code and dyn (6) for run-time type information. Other
research solutions exists, one can cite for example [Henry et al.
2007] which modifies the compiler to add first-class run-time type
representation to the language.

On the side of testing frameworks, a few tools exist and are
maintained for the Objective Caml language, namely oUnit and
mlquickcheck which have recently been unified by the Kaputt (7)
project. Other functional languages have more widely used tools
like Haskell with QuickCheck [Claessen and Hughes 2000].

3. Underlying theory: the Boltzmann model

Our approach is based on the random sampling of combinatorial
structures, within the frame of the Boltzmann model, as introduced
by [Duchon et al. 2004]. The main feature of this model is uniform
generation with linear complexity, thus allowing for generation of
much larger objects than was possible before.

Given a finite class of objects C, the generation is uniform,
meaning that any object of C is produced with equal probability
1/]|C||, where ||C|| is the number of objects in C. In the Boltzmann
model, each object ~y, with size ||, is generated with probability
proportional to #!7!, where z is a control parameter, thus the gen-
eration is uniform for a sub-class of objects of the same size.

Though uniform for a given size, the size distribution of Boltz-
mann sampling is spread over the whole class C (this is different
from most random generators, that, given a size n, output a random
object of size exactly n). However the expected size of generated
objects can be tuned by the choice of parameter x, thus giving ap-
proximate size sampling as detailed in section 3.3. In the case of
testing, this feature is not a restriction: when generating a large set
of very large objects, say with one million elements, the exact size
of the objects is not relevant up to a few percent. And the important
result is that relaxation of exact size from a small percentage is
rewarded by a linear time complexity of generation.

The Boltzmann method is generic and can be applied to classes
described by specifications based on a rich set of constructors, such
as disjoint union, Cartesian product, sequences, sets, cycles, . . . (as
illustrated in figure 1 by some tree class specifications). The method
relies on transforming a system of specifications into a system of
functional equations involving generating functions, and working
on these functions with analytical techniques (this is the domain
of analytical combinatorics, described in [Flajolet and Sedgewick
2009]). By these means, sampling can be automatically compiled
from specifications.

The generation algorithms are very simple: for instance gener-
ating a couple of objects (a, b) in class A x B, simply reduces in
independently generating a € A and b € B3, and the probability is
correct; for disjoint union, generating an object in AU is obtained
by throwing a biased coin and derive either a generation in A or a
generation in 3. In this case, the bias of the coin is computed by
evaluating generating functions at parameter x.

Boltzmann samplers are particularly efficient if we accept some
variability in the size of the generated structures: fixing a target size
n and a margin of error ¢, generating random structures untill we
get one of size belonging to [(1 — £)n, (1 + €)n] can be completed
in mean time O(n) (whereas exact size average complexity can
be up to quadratic). This relaxed size generator has a measurable
bias towards smaller sized trees which should not be a problem for
practical applications.

63

Tree type
Ternary trees:

A corresponding grammar
T=24+TxTxT

One-two trees: 7 = Z+U + B,
U=2ZxT,
B=ZxTxT

General trees: 7 = Z X F,

F =Seq(7T)

Figure 1. Examples of tree specifications.

Tree type Generating functions P
Ternary trees: | T(z) = z + T°(2) p=23/9
One-two trees: | T'(z) = z + U(z) + B(z) p=1/3
U(z)=z-T(z)
B(z) =z -T*(2)
General trees: | T'(z) = z - F(z) p=1/4
F(2) = 155

Figure 2. The generating functions and radius of convergence p of
the example grammars.

This section is continued with a presentation of Boltzmann
generation of trees. We first explain how to compute the parameters
for the generator in order to obtain a linear complexity generation.
Then we present the notion of tree specification which will be used
for specifying the structure of the trees to be generated. Finally, we
describe how to automatically derive a parametrized uniform tree
generator that follows such a specification.

3.1 Generating functions

The Boltzmann method applies to the generation of structured
objects, using the powerful tool of generating functions. Given a
class C, we consistently denote by C(z) its generating function,
which is the series C(z) = >__ . 2= ez, where ¢, is
the number of objects of size n in C.

The symbolic method [Flajolet and Sedgewick 2009] provides a
dictionary for translating structural constructions into operators on
generating functions: concerning tree constructions, the dictionary
reduces to

C=A+B — C(z)=A(z)+ B(z),
C=AxB — C(C(z)=A(2)-B(z),
C=Seq(A) — C(z)= %A(z)'

Thus in a tree specification, each production rule (non-terminal
elements) transforms into a corresponding generating function
equation, and a grammar transforms into a polynomial system of
equations.

To generate trees from these specifications, we need to evaluate
these functions for a given value x of variable z by solving such
systems of equations. The resolution is analytically coherent for
0 < o < p, where p is a special value, called the singularity of the
system.

Solving polynomial systems of equations is a very complex
problem in general, but systems corresponding to specifications do
have a structure, that can be exploited in the computations. In our
implementation we use a combinatorial newton method that gives
a very efficient solver [Pivoteau et al. 2008], that can also be used
to calculate an approximation of the singularity p.

In figure 2, we show the generating functions for the previously
introduced tree specifications and the value p for each of these
systems.

In each case, using the values of these functions at x = p, the
Boltzmann algorithms of section 3.2 derive a linear time generator
with the property of uniformity: given a size n, two trees of that
size have exactly the same probability of being generated. These
generators however have the particularity that the generated trees
are not all of size n, but have a random size, with a mean value
depending on parameter z. We show in section 3.3 how to deal
with this aspect, using p as the value for x.

3.2 Generation algorithms

In this paper, a tree specification will be a unambiguous context-
free grammar with one terminal, Z and three operators: a unary
operator to create a Sequence (denoted by Seq), where a sequence
is made of and arbitrary number £ > 0 of trees (an empty sequence
is Z); and two binary operators to compose trees: Union (denoted
by +) and Product (denoted by X).

The size of a tree T', denoted by |T°|, will be the number of Z it
contains. This means that the size of a tree is its number of nodes.
Other choices for the size are of course possible, as long as there is
always a finite number of trees of a given size.

A tree specification can be automatically transformed to a ran-
dom generation algorithm. Let’s see how to do it.

Each production rule of the specification describes a non-
terminal. We deduce from it an algorithm to generate objects de-
fined by this non-terminal and the corresponding generating func-
tion (we note A(z) the generating function of .4). We detail here
how to interpret the terminals and operators in the tree specification
to obtain these.

Z: the Z element in the tree specification corresponds to one size
unit. Wherever there is a Z in the specification an object of size one
is to be generated. The generating function of Z is z.

B x C: first generate independently both an element b € B
and an element ¢ € C. The result will be the couple (b, ¢). The
corresponding function is B(z) - C(z).

B+ C: with this construction, either an element in B or in C will
be generated. The probability of generating in B is B(z)/(B(z) +
C(z)), and the probability of generating in C is symmetric. A
pseudo-random number is used to determine which element should
be generated, with respect to the given probability. The generating
function is B(z) + C(z).

Seq(B): first the number k& of components in the sequence is
drawn, following a geometric law with parameter B(z), and then k
elements of type B3 are independently generated and returned as a
sequence. The corresponding function is #%Z).

Figure 3 shows the generation algorithms for the specifications
given in figure 1.

3.3 Parameter tuning and complexity

With the Boltzmann method, the size of generated trees is random,
with a distribution that depends on the specification C and a mean
value that goes from O to infinity when parameter x goes from 0 to
p, and is equal to zC’(z)/C(x). The probability for the result to
be of size n is ¢, " p~ ", which for most tree specifications and for
large n is proportional to n~ Sqm p~ . In all cases, the closest is
to the value of p, the biggest is the probability of generating large
size trees.

The precise size distribution of the generator depends on the
nature of the tree structure. We will identify three cases: finite
classes, lists and trees?, each case demanding a different strategy
for the choice of parameter x in order to generate objects of size

2 some structures may look like trees but are actually lists

Ternary trees:
TTree () = if random 0 1 < z/T'(z) then Leaf ()

else Node (TTree ()) (TTree () (TTree ())

One-two trees:

OTTree () = let r =random O 1 in
if r < z/T(z) then Leaf ()
elsif r < (z + U(x))/T (z) then UTree ()
else BTree ()

UTree () = UNode (OTTree ()

BTree () = BNode (OTTree ()) (OTTree ())

General trees:

GTree () = GNode (Forest ())

Forest () = let k = geom 7T'(2) and res = ref [] in

for i =1 to k do res := GTree ()::!res done;
Ires

Figure 3. The generation algorithms for the example grammars.

approximately n with a linear complexity (including the cost to
generate trees outside the size target, that will be thrown away).
The precise definition of the classes depends on the corresponding
generating functions, allowing for an automatic classification of
specifications. Finite classes have a value of p = co. The generat-
ing function of lists tends to infinity when z tends to p, while that
of trees tends to a finite value.

For lists and finite classes, we have to choose x such that the
mean size of the generated objects equals n. In that case, the the-
ory [Duchon et al. 2004] guarantees that there will be a constant
number of rejects before generating an object of size approximately
n. Therefore the mean time complexity is linear.

In the case of trees, linear time complexity can be achieved by
using either pointing or singular sampling. Pointing consists of
differentiating the tree specification, akin to Huet’s ‘zipper’ [Huet
1997]. The result of this transformation is a specification of the
list class. For our implementation, we chose the second approach,
consisting in taking p as the value of x. In the case of singular sam-
pling, the mean size of the generated structures is infinite. We will
never generate an infinite object, but there is a non-trivial prob-
ability of generating objects of sizes that we cannot handle. The
solution to this problem is simple and consists in aborting the gen-
erating process as soon as we pass the upper bound of our target
size.

The only remaining problem is to calculate the value of p (for
trees) or of x given a target size n (for lists and finite classes).
The details of this calculation out of scope for this paper; it uses
the Newton algorithm of [Pivoteau et al. 2008] that evaluates the
generating function of a given structure on a value x together with
a dichotomy heuristic.

The value p is an algebraic real number for which we calculate
a numeric approximation. The sizes up to which the generation is
efficient depends on the precision of this approximation. Adding
one digit allows to reach trees of one more order of magnitude.
As an illustration, the probability plot given in figure 4 shows the
probability of producing a tree of size n as a function of n, with
different values of x. It is quasi-impossible to obtain a tree of size
one hundred with a precision of 1/10 for p, whereas it is likely to
produce a tree of size ten million when p is approximated with a
precision of 1/10'°.

Our implementation uses double precision floating point num-
bers, which allows the calculation of p to a precision of at least

linear scale

1e-01

00 01 02 03 04 05

1e-05

probability
1e-09

[ap]
T4
()
N~
é T T T 1
1e+00 1e+03 1e+06 1e+09
size

Figure 4. Probability distribution of sizes for trees gener-
ated with the Boltzmann method, with a parameter z =
0.9p, ,0.99999p, 0.9999999999p, and p. The solid color
bars show the range inside which the generators have a guaranteed
linear complexity, which in practice extends to the whole colored
range. In the main plot, both axes are in logarithmic scale, while
the miniature plot is the same one in linear scale.

1/102. Thus, if tree size corresponds to bytes, the biggest trees we
are expecting to generate will be of some gigabytes, the size of the
main memory of a current desktop computer.

4. Application to O’Caml

The following schema summarizes the steps necessary to get from
an algebraic data type to a random value respecting it.

O’Caml Type

J

Tree Specification
l —— Generating

functions
Generator

I

O’Caml value

The simple arrows represent transformations that were ex-
plained in the previous section, and this section deals with the
double arrows. First we explain how to relate algebraic data types
to tree specifications. Then, how to create a generator for O’Caml
values rather than abstract trees.

4.1 O’Caml types to tree specifications

The size function has to be defined over O’Caml values. One may
want to count the number of bytes in the memory representation
of the value, or, in the contrary, only count “units” of information
carried by the value. We made the choice of an intermediate path,
knowing that it is very easy to change the implementation to adapt
to a different one.

Base types (unit, int, float, bool, string) will have size one. A
constructor (including the empty list, list constructor, tuple and
record) add one to the size, so [1] and (True,False) are both of

(o Y S S

65

size 3.

We need a type to express the tree specifications, as presented
in last section:
list

type grammar (string * def)

and def = Sum of def list
| Prod of def list
| Seq of def
| Ref of string
Iz

Listing 1. Type of tree specifications

where the strings correspond to type names.

A run-time representation of O’Caml types is needed. Many are
available and we chose DynLib (6), which is itself based on Type-
conv (5).

The translation itself is quite natural, as O’Caml lists correspond
to sequences, constructions with a fixed number of arguments to
products and variants to sums. Formally, for a type ¢ in a set D of
mutually recursive type definitions, we define the transformation as
the recursive function 7 such as

7 (int,bool,...) = Z
T(t € D) = Ref(““¢")
T(tgD) = Z
T(tlist) = Prod [Z;
Seq (Prod [Z; T (t) 1]
T(ty*...xty) = Prod [Z; T (t1); ...; T (tn)]
T({n1=t1;...;n0 =tn}) = Prod [Z; T (t1); 3 T (tn)]
T (Al of t1 . |Anoft,) = Sum [Prod [Z; T (t1)]; ... ;

Prod [Z; 7 (tn)]]

4.2 Tree sampler to O’Caml value sampler

Once we obtain a tree specification corresponding to the types,
we can apply the methods of section 3 to obtain a tree sampler. It
would then suffice to transform these trees back to O’Caml values
and be done. It is however more efficient and as simple to create
directly a generator for O’Caml values and use the tree specifica-
tion only to calculate the generating function values, necessary for
the generation.

We need to decide how to generate values for the leaves of
our trees, which are either primitive types or types external to the
generator. All testing frameworks include generators for primitive
types and one generator will not fit all use cases, it is thus impor-
tant to use a callback mechanism to allow for some flexibility. Our
prototype provides some simple generators and allows for the user
to name a generator for each type.

We will once again need the definition of the O’Caml type we
are using, and this time we will translate it to a generator. Let’s see
in detail the algorithm to generate a value given its type:

® unit, int, float, bool and string: call the corresponding generator.
e ¢ € D: call the generator created by us.

e ¢ ¢ D: call the generator provided by the user.

° (t1 *

e {ny = t1;...;n, = t,}: generate independently each ele-
ment of the record.

. .xty,): generate independently each element of the tuple.

—_ =

— OO0 XN B W=

e ¢ list : first draw the list length using a geometric law with the
parameter calculated using the generating function correspond-
ing to t. Then generate independently each element of the list.

e Aloftil...1 Anoft,: choose randomly which constructor to
use with the probabilities of drawing each one being calculated
using the corresponding generating functions. Then generate
the value of the constructor’s argument.

4.3 Modifying the generation result

While we argue that it is important to know the exact probability
distribution of the generator, we are aware that the only uniform
distribution is not sufficient. For this reason, we propose the user
a simple means of modifying the probability distribution, while
still being able to easily calculate it. Each type and its variant
constructor can be associated to a real number that will be its
coefficient.

Adapting our framework to deal with coefficients is fairly
straightforward. The generation algorithms are not modified, only
the generating functions change. The new values affect the prob-
abilities of choosing a constructor in a variant type or the length
of a list. The default coefficient value of 1 changes nothing to the
distribution, increasing it will make the corresponding type or con-
structor appear more often.

Tuning the coefficients is still a manual task though. Given a
function on trees (e.g. depth, root degree, number of nodes at a
given level), we would like the framework to calculate the coeffi-
cients that will make the generator produce trees with a given mean
value for the function. The extension of the underlying theory to
allow for this is work in progress.

5. Demonstration

In this section, we give the reader a practical overview of the
different applications of our random generation core. In this regard,
we developed a library handling specification-based testing and
benchmarking based on it.

The implementation is available as a CamlP4° syntax extension
along with a core library to be linked with the executable. To parse
type definitions and obtain a run-time representation from them, we
respectively rely on (5) and (6).

Downloading, building and launching a toplevel The tester must
have at least version 3.11.0 of the Objective Caml compiler and
tools. The aforementioned dependencies also have to be available.
Our library (1) can then be installed with the usual make install
command. The package provides a top-level pre-loaded with the
library and the syntax extension; let’s start by loading it with
genadttop.

An algebraic data type We need a data type to work on, let’s
choose a simplified representation of text documents. It shows

products (tuples), sum types and mutually recursive types.
type document = list
and block =

| Paragraph of text

| Section of (string * block
and text =

| Text of string x text

| Attribs of attribs * text

| Empty
and attribs =

| Bold | Italic |
with sample

string * block

list)

Underlined

Listing 2. Our example data type

3 The Objective Caml preprocessor included in the standard distribution

—_

O N R S

QN B W N =

AW =

66

The "with sample* keyword is preprocessed by our CamlP4
syntax extension to extract its combinatorics grammar.

D =Z x (£ x Seq(B))
B=Z2xT+Zx(Zx(Zx(Z xSeq(B))))
T=2xZxT)+Zx(AxT)+2Z
A=Z+24+2Z
A note on size In this section, we shall talk about document
size, let’s make this notion clear. As explained in section 4, each

constructor in a sum type, each product type as well as each base

type has size one. For example, the following value has a size of 8.
("book", Paragraph (Text ("text", [
1 1

Empty))
11 1 1 1

Listing 3. Size count example

The syntax extension produces the function to build a generator
of documents of a given maximum size (the minimum size can be
adjusted with another optional argument).

val sample_document
?min:int max:int —> (unit —> document)

Listing 4. Generated sampler signature

We also provide a syntax to define specialized samplers in
which the programmer can give coefficients to constructors or
types, as well as specify the samplers for external types appearing
in the definition.

let my_sample_document =
<:sampler< document
coeff 10 for Paragraph
sample string with my_string_sampler >>
?min:int max:int —> (unit —> document)

Listing 5. Tweaked sampler

In this example, we ask for values in which the Paragraph’
constructor appear much more often than in a uniform random
generation by assigning a coefficient of 10 to it (by default, each
constructor is assigned a coefficient of 1). We also require strings
to be sampled by our own function rather than by the default string
sampler.

Testing We shall now demonstrate how to use these samplers in
specification-based testing. We provide several functions for this
task. For example, the run_test' one which runs an interactive
loop, testing a function with a predicate and showing the problem-
atic inputs/outputs on demand.

run_tests

int —> (unit —> ’a) —>

(a —> ’b) —>

(’a —> b — bool) —>
(’a — string) —>

(’b — string) —>

Listing 6. Interactive testing function signature

Here is an example testing the validity of our pretty printing
function for this document format.

run_tests
10 (sample_document ~min:1
print_document
print_endline
to_string
(fun d r —> d =

~max:10_000)

of _string r)

Listing 7. Launching an interactive testing

4 We use the notation ‘code’ for code extracts in the text

(o LS T SO SR

This example reveals simple errors. For example, it seems that
we did not make a difference between sections containing only the
empty string and empty sections in our printer:

Test 5/100 failed.

Show input (size 11) (y/n) ?y
"x", [
Paragraph (Text ("y",
Attribs (Underlined ,
Attribs (Bold, Empty))))

1)
Show output (y/_) ?y

TPy (u (b)))

Listing 8. Interactive testing session

But our ability to easily generate large size values can also make
other classes of errors show up, like the fact that one of our function
is not as tail recursive as we thought:

1/100 raised Stack overflow.
1000000) (y/n) ? n

Test
Show input (size

Listing 9. Interactive testing session (2)

Also, checkers also have to be written correctly to handle check-
ing of large size values:

Checker failed on test 13/100 with Stack overflow.

Listing 10. Interactive testing session (3)

Observing properties As explained in section 2, since we use uni-
form random generation, we can soundly obtain statistical proper-
ties about the values of a given size. For example, it is theoretically
hard to obtain an average height for a non-trivial tree structure.
Even if it quite meaningless in this example, let’s see how to ob-
tain the average number of sections in a random document of size
ranging between 10,000 and 20,000.

range
sample_document (x generator)
10_000 20_000 (% size x)
100 (x 100 samples =x)
average (x combinator)
["height", height] (% property x)

Listing 11. Simple statistical property computing example

This example showed how to obtain a single value by applying
the "average' function to all the results. We provide several func-
tions to select the inputs (range, exact size, histogram, etc.). We
also provide several others to combine the results (identity, aver-
age, min_max, etc.).

The next example show how we can obtain an histogram of all
documents of size between 1000 and 100,000 with 10 subdivisions
with the 'histogram' selector and obtain the average of each subset
with the "average' combinator. The samples can be used simultane-
ously on several properties, here on the height and the maximum
length of paragraphs.

histogram
sample_document

1000 100_000 (% sizes from 1000 to 100,000 x)

10 (x ten subdivisions)

10 (% 10 samples per subdivision x)
average

["height", height ;

"paragraph_length", parlen]

Listing 12. Histogram with multiple properties

We provide an integrated display written with the standard
'Graphics' module, in order to be able to easily see the results from
the top-level in a single line. Figure 5 shows this display applied to
the result of the previous example.

67

[caml graphics —||Of[x
56, Bheight =
9.3 zize
5950, 95050,
.par‘agr‘aph length
leicht [press any key to exit]
Figure 5. Integrated Graphics display
(5] Caml graphics —|[aj|x
[0, 414425 Jrine
o, 0208016 input. size]
14500, 500,
(opes
[Wstrinos [press any key to exit]
= Caml graphics =) ES
[0 564036k 1ne =
.
.
.
an
.
uf
. .
b
"
. rl
.
.
.
.
- H
. "
el o ’
" "o
o " L. = "
i e
0,008 input size
10228, 97690,
W -opes
[l=trings [press any key to exit]

Figure 6. Display of benchmarking results for to_string imple-
mentations with strings and ropes. The top image has been obtained
with the histogram function, the bottom one with range.

Benchmarking One big difficulty when writing complex pro-
grams is to figure out how the complexity of the implementation of
some data structure can affect the global performance. As we can
for any property, we can obtain statistical properties about com-
plexity by running an algorithm over a number of samples.

We provide a benchmarking function taking a list of implemen-
tation and running them on the same samples. Figure 6 shows for
example the performance of the "to_string ' function with two dif-
ferent string implementations (standard strings and ropes).

6. Performance

In order to demonstrate the efficiency of the Boltzmann model, we
measured the time’ needed to generate values of the document
type with our prototype implementation. The measures were made
on a recent desktop computer (Intel Core 2 2.4GHz with 3GB of
RAM). Since the running time of a generation depends on the num-
ber of rejections which is random, the numbers shown below are
averages over 100 runs.

We compared these timings to the recursive generation imple-
mented in the combstruct module of the comuter algebra system
Maple version 10. This module has not been designed for generat-
ing very large objects, sizes over 2000 result in a stack overflow.

size recursive Boltzmann
exact [e=0.1
100 0.5s 0.07s -
200 1.5s 0.25s -
500 9.4s 1.6s -
1000 42s 8.1s 0.037s
1500 1m46s 13.5s | 0.062s
10K fail - 0.4s
100 K fail - 4.2s
1M fail - 50s

This experiment confirms that exact-size generation of trees
using the Boltzmann method is quadratic, while approximate-size
generation is linear. This includes the pre-processing time that is
dependant on the specification size. O’Caml types will typically
produce small grammars, but our prototype is capable of dealing
with grammars containing several hundred rules in minutes.

The O’Caml code needed for this prototype is just a few hun-
dred lines long. The generating function values are calculated by a
seperate C library, shared with other projects, that is itself less than
a thousand lines long.

7. Future works and other applications

Plans for this work The current implementation is still in proto-
type stage. We are willing to help its integration and adaptation by
testing or benchmarking framework designers. If the community
shows interest in this project and our library prototype, we shall be
ready to develop and maintain it, but in this case we shall probably
choose a better run-time type representation. Of course, this does
not apply only to Objective Caml but also to other statically typed
functional languages like SML or Haskell for which the adaptation
of the model is straightforward.

One of the limitations is that we don’t handle type parameters
yet. The easy solution with the current tools would be to add an
argument to the generator for each type parameter so the program-
mer can provide the sub-generator by hand. This means that type
parameters are considered as leaves in the combinatorics specifi-
cation. We would however like the combinatorics specification of
each type parameter to be inlined into the main type so that the
generation is uniform over the whole grammar. In practice, we
want to obtain the instantiation of type parameters when building

5 processor time in user mode

68

the generator. If we stay at the syntax extension level, this would
require the programmer to manually explicit the instances along
with some tricky type operations. A better solution could be to use
the integrated run-time type representation, as proposed by [Henry
et al. 2007] which automatically handles instantiation but requires
a modified compiler.

Another limitation is that the generated values do not contain
cycles or sharing. This is due to the fact that the theory only handles
trees. However, generating graphs, or at least directed acyclic ones,
could be very interesting for testing purposes. Work is done on the
theoretical side, but until a satisfactory solution is found, we have
practical ideas for ad-hoc methods. For example, a method already
experimented in other applications is to tweak the generated values.

Work in progress about programming languages Any program-
ming language with algebraic data types is amenable to the tech-
niques presented in this paper. Haskell is particularly interesting,
since the QuickCheck specification-based test library is widely
adopted by this language’s community. A small library extending
QuickCheck in order to automatically generate random instances of
algebraic data types is almost ready, and it’s functioning principles
are identical to those showed here.

Other tree-like data structures can also be generated with these
methods, sometimes with a more involved translation process.
XML documents respecting a given RelaxNG grammar is an exam-
ple we have treated [Darrasse 2008]. Possible applications include
stress-testing of web services and this can be easily adapted to
related languages, like CDuce or OCamlDuce.

It might even be interesting to generate the tree skeleton of more
complicated data structures, in cases where there is no efficient
random generation yet. In a recent work [Mougenot et al. 2009],
this method has been applied to generate randoms models that
respect a given meta-model. The cross-references that appear in
these structures are treated in an ad-hoc manner.

Work in progress about combinatorics As we just said, we can-
not handle sharing and cycles in the generated values. A rigorous
treatment of structures with cross-references is being worked on,
but the complexity rises with the number of shared objects (e.g.
variables in A-terms). Generating DAGs or graphs in general (other
than specific classes that are in bijection with some kind of trees) is
out of reach for the moment.

Boltzmann sampling theory is much more wide than the part
that we present here. More constructions are available, especially
to take symmetries into account. These could be easily integrated
to this work, but these constructions are out of the range of expres-
siveness of ML’s type system.

We believe however that there is room for more collaboration
between the fields of combinatorial structures and functional lan-
guages. The theory of species [Bergeron et al. 1998], that treats
combinatorial structures from a category theory perspective is cen-
tral to such efforts, as can be seen for instance in the work on deriva-
tives of [Abbott et al. 2003].

8. Conclusion

We applied the recent develoment of the Bolzmann random gener-
ation model to algebraic data types by defining a translation from
type definitions to combinatorics specifications. We developed a
syntax extension for Objective Caml generating combinatorics
grammars from type definitions, and a random generation core
generating values respecting such a grammar. In the end, we ex-
tract in a fully automated way random generators from Objective
Caml type definitions.

The theoretical results on these generators ensure soundness and
efficiency properties that had never been reached simultaneously by
existing generation techniques.

1. The generation is uniform: the generator for a given type and
size gives the same probability to be produced to each possible
value. In a testing context; this property ensures that no subclass
will be missed because the generator is biased. Moreover, it also
allows the method to be used as a sound input generator for
benchmarking.

2. If we authorize a little approximation on the size, which is fine
for testing purposes, the time and space complexity is linear.
The method is thus able to produce very large objects.

Other generation techniques providing the first property have
super-linear space and/or time complexity while techniques pro-
viding the second produce biased generators.

To demonstrate the method, we developed a small testing and
benchmarking open source library for Objective Caml. We are
ready and willing to maintain and extend it if the community is en-
thusiast. We are as well available to help testing and benchmarking
frameworks integrate this method.

Links

(1) GenADT: our prototype implementation
http://www-apr.lip6.fr/"canou/genadt/

(2) Quickcheck, an automatic testing tool for Haskell
http://www.cs.chalmers.se/rjmh/QuickCheck/

(3) Objective Caml
http://caml/inria.fr/

(4) MetaOcaml, multi-stage programming for Objective Caml
http://www.metaocaml.org/

(5) Type-conv: Support library for preprocessor type conversions
http://hg.ocaml.info/release/type-conv

(6) Dyn: Library for run-time type representation
http://www.pps.jussieu.fr/ till/dyn

(7) The Kaputt testing tool
http://kaputt.x9c.fr/

69

References

M. Abbott, T. Altenkirch, N. Ghani, and C. McBride. Derivatives of
containers. Lecture notes in computer science, pages 16-30, 2003.

F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like
structures. Cambridge University Press, 1998.

Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test
generation for worst-case complexity. In /CSE, pages 463-473, 2009.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. In ICFP ’00: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming,
pages 268-279, New York, NY, USA, 2000. ACM. ISBN 1-58113-202-
6. doi: 10.1145/351240.351266.

A. Darrasse. Random XML sampling the Boltzmann way. ArXiv e-prints,
2008. URL http://arxiv.org/abs/0807.0992.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer.
Boltzmann samplers for the random generation of combinatorial struc-
tures. Combinatorics, Probability and Computing, 13:577-625, 2004.
doi: 10.1017/S0963548304006315.

Sebastian Fischer and Herbert Kuchen. Data-flow testing of declarative
programs. SIGPLAN Not., 43(9):201-212, 2008. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/1411203.1411233.

P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer
Science, 132(1-2):1-35, 1994.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cam-
bridge University Press, 2009.

G. Henry, M. Mauny, and E. Chailloux. Typer la dé-sérialisation sans
sérialiser les types. ArXiv e-prints, May 2007. URL http://arxiv.
org/abs/0705.1452.

G. Huet. The zipper. Journal of Functional Programming, 7(05):549-554,
1997.

Xavier Leroy, Didier Rémy with Damien Doligez, Jacques Garrigue, and
Jérome Vouillon. The objective caml system release 3.11 documentation
and user’s manual. Technical report, Inria, november 2008.

Frangois Maurel. Ocaml-templates, méta-programmation a partir des types.
In Actes des journées JFLA Journées francophones des langages appli-
catifs, pages 21-36, Sainte-Marie-de-Ré, France, January 2004. INRIA.
URL http://hal.archives-ouvertes.fr/hal-00153820/en/.

Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michele Soria. Uni-
form random generation of huge metamodel instances. In Fifth Euro-
pean Conference on Model-Driven Architecture Foundations and Appli-
cations, 2009.

Carine Pivoteau, Bruno Salvy, and Michele Soria. Boltzmann oracle
for combinatorial systems. In Fifth Colloquium on Mathematics and
Computer Science Algorithms, Trees, Combinatorics and Probabilities,
DMTCS Proceedings, pages 475488, 2008.

C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck:
automatic exhaustive testing for small values. In Proceedings of the first
ACM SIGPLAN symposium on Haskell, pages 37-48. ACM New York,
NY, USA, 2008.

Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing
engine for c. In ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
263-272, New York, NY, USA, 2005. ACM. ISBN 1-59593-014-0. doi:
http://doi.acm.org/10.1145/1081706.1081750.

Walid Taha. A gentle introduction to multi-stage programming, 2003.
Available from http://www.cs.rice.edu/ taha/publications/
journal/dspg04a.pdf.

http://www-apr.lip6.fr/~canou/genadt/
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://caml/inria.fr/
http://www.metaocaml.org/
http://hg.ocaml.info/release/type-conv
http://www.pps.jussieu.fr/~till/dyn
http://kaputt.x9c.fr/
http://arxiv.org/abs/0807.0992
http://arxiv.org/abs/0705.1452
http://arxiv.org/abs/0705.1452
http://hal.archives-ouvertes.fr/hal-00153820/en/
http://www.cs.rice.edu/~taha/publications/journal/dspg04a.pdf
http://www.cs.rice.edu/~taha/publications/journal/dspg04a.pdf

	Introduction
	Context
	Underlying theory: the Boltzmann model
	Generating functions
	Generation algorithms
	Parameter tuning and complexity

	Application to O'Caml
	O'Caml types to tree specifications
	Tree sampler to O'Caml value sampler
	Modifying the generation result

	Demonstration
	Performance
	Future works and other applications
	Conclusion

