
MaxEnt is simple!
•  In MaxEnt, probability is directly related to harmony: Pi is proportional to 	
•  The relative probabilities of two candidates are independent of the rest of 

the candidate set because εi’s are independent 	

Ø In choice models this property is referred to as ‘Independence from Irrelevant 
Alternatives’ (Train 2009:45ff.) 	

Independence of εi’s and harmonic bounding!
•  Important differences: 	
–  In MaxEnt, εi’s are independent and all drawn from the same distribution.	
–  In NHG, εi’s are not independent – candidates that violate constraint k share a 

noise component nk – and are drawn from distributions with different 
variances.	
Ø  Variance of εi is 	

•  If noise terms εi are independent, as in MaxEnt, then all candidates receive non-
zero probability, including harmonically bounded candidates (cf. Hayes 2017).	
-  a harmonically bounded candidate cannot win under any fixed weighting of the constraints.	

•  In NHG all violations of a given constraint are perturbed by the same noise so 
shared violations cancel out precisely,	
Ø  So a harmonically bounded candidate always has lower harmony than the 

candidate that bounds it (as long as noise is not permitted to make constraint weights negative 
(Jesney 2007))	

	
•  Should harmonically bounded candidates be assigned P = 0?	
- Assigning probability to bounded candidates is central to the MaxEnt analysis 

of local optionality (Hayes 2017), and to ‘markedness only’ analyses of gradient 
phonotactics (Hayes & Wilson 2008).	

- The NHG mechanism for assigning zero probability to harmonically bounded 
candidates has additional effects – ‘partial harmonic bounding’.	

•  In NHG noise is added to the constraint weights, but the resulting harmony 
expression can be separated into hi + εi	
- εi is the sum of noise components associated with the constraint violations of 

candidate i.	
•  It has been proven that the MaxEnt (multinomial logit) model follows from a 

RUM where the noise components, εi, are:	
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Introduction!
•  Stochastic grammars assign probabilities to outputs, making it possible to 

analyze variation and gradient acceptability in phonology.	
•  ‘Maximum Entropy’ Grammar is a form of stochastic grammar that is 

widely used in phonology (Goldwater & Johnson 2003, Hayes & Wilson 2008).	
–  It builds on Harmonic Grammar (Legendre et al 2006) rather than classical 

Optimality Theory	
•  But MaxEnt grammar is not the only proposal for ‘stochasticizing’ Harmonic 

Grammar – an alternative is Noisy Harmonic Grammar (Boersma & Pater 2016)	
•  Identify a uniform framework for comparing and analyzing Stochastic 

Harmonic Grammars: Random Utility Models.	
– Use it to draw out similarities and differences between MaxEnt and NHG.	
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Stochastic Harmonic Grammars!

	
	
•  Noisy Harmonic Grammar (NHG): Random noise, nk, is added to constraint 

weights at each evaluation (Boersma & Pater 2016).	
–  nk	are independent and normally distributed, with mean 0 and variance σ2 = 1.	

•  MaxEnt: Probability of a candidate depends on its harmony, hi:	
- where j ranges over the set of candidates (e.g. Hayes & Wilson 2008).	
-  e.g. 	

NHG and MaxEnt as Random Utility Models!
•  Although NHG and MaxEnt are superficially very different they can both be 

formulated as NHGs where the harmony of candidate i is hi + εi, where εi is a 
random variable (‘noise’).	
- HG is made stochastic by adding noise to harmony	
- Referred to in economics as a Random Utility Model (e.g. Train 2009).	

Shape of the noise distribution!
•  Noise terms (εi) follow a Gumbel distribution in MaxEnt and a normal 

distribution in NHG (normal + normal ⇒ normal)	
•  This is not an important difference because independent Gumbel εi’s are 

essentially a tractable approximation to independent normal εi’s.	
•  The probability of a candidate having the highest harmony depends on the 

difference in harmony between it and competing candidates.	
Ø  The distribution of a difference in harmony depends on the distribution of 

differences between noise terms εi-εj	
Ø  (hi+εi)-(hj +εj) = (hi-hj)+(εi-εj) 	

•  So MaxEnt is difficult to distinguish from a variant of NHG in which εi are 
independent and normal (cf. Hayes 2017, Train 2009:35).	
Ø  The simplest form of NHG	

•  However the Gumbel formulation (MaxEnt) has the practical advantage of a 
simple closed-form solution for candidate probabilities.	

•  Distributions of differences between random 
variables:	
Ø  Gumbel - Gumbel ⇒ logistic	
Ø  Normal - normal ⇒ normal	
•  The logistic distribution is very similar to the 

normal distribution	
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 weights: 10 +n1 1 +n2  NHG MaxEnt 
 /input/ C1 C2 hi  εi Pi Pi 
 a -1  -10 n1 1 0.73 
 b -1 -1 -10 -1 n1+n2 0 0.27 
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Conclusions!
•  In spite of superficial differences, MaxEnt is actually a variety of NHG.	
– Essentially the simplest form of NHG	

•  In the absence of empirical evidence in favor of NHG, MaxEnt is to be 
preferred for its simplicity and tractability.	

•  Candidates with the same harmony can have different probabilities:	
	
	
	

Ø  (b) has lower probability because it shares violations with (a) and (c).	
Ø  n1 only affects the probability of (a), while n3 affects the probabilities of (b) 

and (c) equally.	
•  The relative probabilities of a pair of candidates depends on all other 

candidates that violate the same constraints (more probable candidates have 
stronger effects)	
-  If only (b) and (c) are considered, they are assigned equal probabilities.	
-  If a candidate with violation profile (d) were possible, then all four candidates 

would be equally probable.	

 weights: 30+n1 30+n2 5+n3 5+n4   NHG 
 /spa/ C//V DEPV CONTIG *CC h  ε P 

a. spa -1   -1 -35 n1+n4 0.375 
b.   ´spa  -1  -1 -35 n2+n4 0.25 
c. s´pa  -1 -1  -35 n2+n3 0.375 
d.  -1  -1  -35 n1+n3  

 
 

weights: 15 +n1 8 +n2 8 +n3  NHG MaxEnt 
/input/ C1 C2 C3 ℎ! εi Pi εi Pi 

a -1   -15 n1 0.6 ε1 0.58 
b  -2  -16 2n2 0.26 ε2 0.21 
c  -1 -1 -16 n2+n3 0.14 ε3 0.21 
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-  independent	
- all drawn from the same Gumbel (a.k.a Extreme 

Value Type I) distribution (e.g. Train 2009:75f.) 	

NHG is complicated!
•  In NHG, εi’s are not independent so the relationship between harmony and 

probability is complex, and the relative probability of pairs of candidates can 
depend on other candidates.	

•  The same difference in harmony translates into different relative probabilities, 
depending on how many constraint violations are shared – ‘partial harmonic 
bounding’	

	
	

ε1 – ε2 = n2-n1	
var = 2σ2 = 2	

	

	
ε1 – ε2 = n2+n3-n1-n4	
var = 4σ2 = 4	

weight: 30+n1 28+n2 5+n3 5+n4  NHG 
 C1 C2 C3 C4 h εi P 

cand1  -1 -1  -33 n2+n3 0.92 
cand2 -1  -1  -35 n1+n3 0.08 

 
weight: 30+n1 28+n2 5+n3 5+n4  NHG 

 C1 C2 C3 C4 h εi P 
cand1  -1 -1  -33 n2+n3 0.84 
cand2 -1   -1 -35 n1+n4 0.16 

 
 


