Sibilant Retraction

Edward Flemming (flemming@mit.edu) Massachusetts Institute of Technology

The phenomenon

- When [s-f] or [s-g] contrasts are neutralized, the result can be either [s] or [f/g]
- Example: German and English both neutralize /s-ʃ/ word-initially before consonants
 - English: [s] only spik *∫pik 'speak'
 - ➢ German: [∫] only ∫precon **"**sbrećəu 'speak'
- German exemplifies sibilant retraction: $s \rightarrow \int (or s)$
- Sibilant retraction is surprising because [s] is usually regarded as being less marked than $[\int]$ and $[\S]$
- If a language has just one sibilant, it is almost always [s]
- But sibilant retraction is attested in a number of languages

Patterns of sibilant retraction

• The outcome of sibilant neutralization in three contexts

language	#_C	V_C	V_#
English	S	S	S - ∫
Standard German	\int	S	S - ∫
Swabian German	\int	\int	S - ∫
NE Brazilian Portuguese	_	\int	S
Acoma	Ş	Ş	_
Cariocan, Euro. Portuguese	_	\int	\int

Standard, Swabian German: Hall & Scott (2007), NE Brazilian, Cariocan Portuguese: Reinhardt (1970), European Portuguese: Mateus & d'Andrade (2000), Acoma: Miller (1965)

- 's-\ift' indicates that contrast is maintained in that context
- Portuguese lacks initial /SC/ clusters
- Acoma does not allow word-final consonants

Notes:

- English neutralizes to [ʃ] before [ɹ], e.g. [ʃɹaɪn] 'shrine', due to assimilation.
- German neutralizes s-\(\int /V_C \) within morphemes
 - Swabian [post] 'mail' *[post] Standard [post] 'mail' *[post]
- but the ill-formed clusters can be derived through suffixation
 - Standard [ves-t] 'wash (3sg.)' Swabian [pas-t] 'fit (3sg.)'
- Both varieties of German have [sk] clusters in loanwords, e.g. [skelet] 'skeleton'
- The status of retraction in C_# is unclear. Only German permits CS# clusters, and the distribution of [s] and [ʃ] is complicated, involving several marginal contrasts.

Acoma

- Acoma contrasts [s, f, s] before vowels, with neutralization before stops.
- Neutralization always involves sibilant retraction:
- > to [si] before non-retroflex coronals and front vowels

st'i it is straight' sust'a 'I took water' wi isp'i 'cigarette'

> [s] elsewhere (Miller 1965).

skhúuj'u 'giant' ?é**s**ká spúuná 'pottery' 'rawhide'

- Retraction preferentially yields [s], with [s] resulting from assimilation (cf. Goad 2012)

Observations and analyses

- Neutralization of [s-ʃ/ξ] contrasts can yield [s] or [ʃ/ξ]
- > Outcome depends on the ranking of conflicting constraints favoring [s] vs.
- Articulatory effort favors [s]: s > j > s
- Maximizing sibilant intensity favors $\S > J > s$
- There is an implicational hierarchy between environments of retraction:
- -V #>V C># C.
- Neutralization can be to [s] and [ʃ] in different contexts in the same language (e.g. Standard German, NE Brazilian Portuguese)
- > Maximizing sibilant intensity (retraction) is more important in contexts where other cues to the presence of a sibilant are more limited
- Hierarchy of context-specific constraints favoring retraction
- Acoma suggests that the constraint favoring retraction is gradient: $\xi > \int > s$
- \triangleright Sibilant intensity is gradient: $\varsigma > \int > s$

Constraints

Articulatory effort

 \gg *S >> * \int >> *S (cf. Padgett & Zygis 2007, Flemming 2018)

Maximize Sibilant Intensity

- Maximizing intensity of sibilants serves to increase the distinctiveness of contrasts based on presence vs. absence (e.g. [spai] vs. [pai], [moʊst] vs. [moʊt])
- More retracted sibilants generally have higher intensity (Shadle 1985:43, 150)
- Anterior sibilants have smaller front cavities and thus higher frequency resonances.
- Higher frequency resonances are more damped because radiation losses are greater at higher frequencies, resulting in lower overall intensity.
- Observed in English (Shadle 1985, Jongman et al 2000, Parker 2002), Mandarin Chinese (Svantesson 1986), Komi Permyak (Kochetov & Lobanova 2007).
- High intensity is more important in contexts where other cues to the presence of the sibilant are more limited.
- Adjacent to a vowel there are transitional cues
- singleton S-Ø contrasts are more distinct than SC-C contrasts because singleton S tends to be longer (e.g. Katz 2010:64, Fuchs & Koenig 2009), and because its deletion eliminates the entire consonantal interval.
- ➤ MAXSIBINT/C: Assign one violation to [ʃ] and two violations to [s] in C

Miller, W. (1965) Acoma grammar and texts. UC Press.

 \rightarrow MAXSIBINT/# C>> MAXSIBINT/V C>> MAXSIBINT/V #

Correspondence constraints

- IDENT [anterior] constraints derive the environments of neutralization
- \rightarrow IDENT[ant]/ V >> IDENT[ant]/V # >> IDENT[ant]/ C

Slavic Linguistics 15, 291-324.

Deriving the patterns

- Contrast is neutralized in context C if either *\int or the relevant MAXSIBINT (MSI) constraint ranks above IDENT[ant]/C.
- Whether neutralization yields [s], [ʃ] or [s] depends on the ranking of *s and *f with respect to the MSI hierarchy
- Example: Standard German
 - ➤ Neutralization to [ʃ] in word-initial /SC/ clusters

	/spa/	*§	ID[ant]/	MSI /# C	*∫	MSI /V. C	MSI /V/#	ID[ant]/
	•	_	<u>#</u>	/#_C		/ V_C	/V_#	
a.	spa			**!				
b.	☞ ∫pa			*	*			*
c.	şра	*!						

➤ Neutralization to [s] in post-vocalic /SC/ clusters

	/aſt/	*8	ID[ant]/ _#	MSI /#_C	*∫	MSI /V_C	MSI /V_#	ID[ant]/ _C
a.	ast					**		
b.	ast				*!	*		*
c.	aşt	*!						

Implicational hierarchy of retraction environments

- Neutralization results in retraction to [ʃ]/[s] in context C if MSI/C outranks *ʃ
- so ranking *\infty at different points in the MSI hierarchy yields the attested implications between retraction environments

ranking	#_C	V_C	V_#
$*$ $\int >> MSI/\#_C >> MSI/V_C >> MSI/V_#$	S	S	S
$MSI/\#_C >> *\int >> MSI/V_C >> MSI/V_\#$	∫/Ş	S	S
$MSI/\#_C \gg MSI/V_C \gg *f \gg MSI/V_\#$	∫/Ş	∫/Ş	S
$MSI/\#_C \gg MSI/V_C \gg MSI/V_\# \gg *f$	J/Ş	∫/Ş	∫/Ş

- If MSI/C also outranks *s then there is full retraction to s
- Predicts the possibility of, e.g., retraction to \$\infty\$/# C, \$\infty\$/V = \(\frac{1}{2} \) Predicts the possibility of, e.g., retraction to \$\infty\$/# C, \$\infty\$/V = \(\frac{1}{2} \) Predicts the possibility of the possibility of

Retraction is gradient - Acoma

- Gradient formulation of MSI constraints is required to derive the Acoma pattern – 'retract as much as possible'
- Retraction to [s] is preferred where possible before [p, k]

	/?eska/	ID[ant]/	AGREE	MSI	MSI	ID[ant]/	* §
		_V	[retro]	/#_C	/V_C	_C	
a.	?eska				*!*		
b.	?e∫ka				*!	*	
c.	?eşka					*	*

- Partial retraction still applies where AGREE[retroflex] blocks full retraction to $[\S]$ – before [t, t]

	/sust'a/	ID[ant]/	AGREE	MSI	MSI	ID[ant]/	*§
		_V	[retro]	/#_C	/V_C	_C	
a.	sust'a				**!		
b.	☞ suſt'a				*	*	
c.	suşt'a		*!			*	*

- Evidence for finer gradience: English shows slight retraction of [s] wordinitially before stops (Baker et al 2011, Stevens & Harrington 2016)
- The phenomenon of sibilant retraction confirms that markedness is multidimensional: a segment can be marked in one respect and unmarked in another
- \triangleright Articulatory effort: s > j > s \triangleright Distinctness from \emptyset : s > f > s

- Baker, A., Archangeli, D., & Mielke, J. (2011) Variability in American English s-retraction Hall, T.A., & Scott, J.H. (2007) Inflectional paradigms have a base: evidence from ssuggests a solution to the actuation problem. Language Variation and Change 23, 347— Dissimilation in Southern German dialects. Morphology 17, 151-17 Jongman, A., Wayland, R., Wong, S. (2000) Acoustic characteristics of English fricatives. Jongman, A., Wayla Flemming, E. (2018) Systemic markedness in sibilant inventories. Poster presented at AMP*JASA* 108, 1252-63. 2018, UCSD.
- Katz, Jonah (2010). Compression effects, perceptual asymmetries, and the grammar of timing. PhD dissertation, MIT. Fuchs, S., & Koening, L.L. (2009) Simultaneous measures of electropalatography and intraoral pressure in selected voiceless lingual consonants and consonant sequences in Kochetov, A., & Lobanova, A. (2007) Komi-Permyak coronal obstruents: acoustic German. JASA 126, 1988-2001.
- contrasts and positional variation. JIPA 37, 51-82. Mateus, M.H., & d'Andrade, E. (2000) The Phonology of Portuguese. OUP.
- Parker, S. (2002) Quantifying the Sonority Hierarchy. Ph.D. dissertation, U.Mass, Amherst. Reinhardt, K.J. (1970) Intrusive [i] before /S/ in Brazilian Portuguese. Word 26, 101-106 Shadle, C. (1985) The Acoustics of Fricative Consonants. Ph.D. dissertation, MIT. Svantesson, J.-O. (1986) Acoustic analysis of Chinese fricatives and affricates. *Journal of* Chinese Linguistics 14, 53–70.

Padgett, J., Zygis, M. (2007) The evolution of sibilants in Polish and Russian. *Journal of*

Goad, H. (2012) sC clusters are (almost always) coda-initial. Linguistic Review 29, 335-