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Maximum Entropy Modeling of Short Sequence
Motifs with Applications to RNA Splicing Signals

GENE YEO1,2 and CHRISTOPHER B. BURGE1

ABSTRACT

We propose a framework for modeling sequence motifs based on the maximum entropy
principle (MEP). We recommend approximating short sequence motif distributions with
the maximum entropy distribution (MED) consistent with low-order marginal constraints
estimated from available data, which may include dependencies between nonadjacent as
well as adjacent positions. Many maximum entropy models (MEMs) are specified by simply
changing the set of constraints. Such models can be utilized to discriminate between signals
and decoys. Classification performance using different MEMs gives insight into the relative
importance of dependencies between different positions. We apply our framework to large
datasets of RNA splicing signals. Our best models out-perform previous probabilistic models
in the discrimination of human 5′ (donor) and 3′ (acceptor) splice sites from decoys. Finally,
we discuss mechanistically motivated ways of comparing models.

Key words: maximum entropy, splice sites, nonneighboring dependencies, Markov models,
maximal dependence decomposition, molecular sequence analysis, sequence motif.

1. INTRODUCTION

Given a set of aligned sequences representing instances of a particular sequence motif, what model
should be used to distinguish additional motif occurrences from similar sequences? This problem

occurs commonly in computational biology with examples of DNA, RNA, and protein sequence motifs.
For example, it is important to identify signal peptides in protein sequences and to recognize true sites of
RNA splicing from “decoy” splice sites in primary transcript sequences. A number of statistical models
have been developed to approximate distributions over sets of aligned sequences. For example, Markov
models (MMs) and hidden Markov models (HMMs) are commonly used in bioinformatics (Durbin et al.,
1998), with applications in gene-finding and protein domain modeling (Krogh et al., 1994).
We propose that the most unbiased approximation for modeling short sequence motifs is the maximum

entropy distribution (MED) consistent with a set of constraints estimated from available data. This approach
has the attractive property that it assumes nothing more about the distribution than that it is consistent with
features of the empirical distribution which can be reliably estimated from known signal sequences. In this
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paper, we consider low-order marginal distributions as constraints, but other types of constraints can also
be accommodated. Such models have been exploited in natural language processing (Berger et al., 1996),
amino acid sequence analysis (Buehler and Ungar, 2001) and as a weighting scheme for database searches
with profiles (Krogh and Mitchison, 1995).
We introduce our approach in Section 2.1, define “constraints” in Section 2.2, and define maximum en-

tropy models (MEM) in Section 2.3. In Section 2.4, we describe the use of Brown’s (1959) iterative scaling
procedure of iterative scaling to obtain the MED consistent with a given set of constraints. In Section 2.5,
we introduce a greedy-search information-maximization strategy to rank constraints. This approach is ap-
plied to splice site recognition (Burge, 1998), an important problem in genetics and biochemistry, for which
an abundance of high-quality data are available. We focus on effectively modeling the 9-base sequence
motif at the 5′ splice site (5′ss) and the ∼23-base sequence motif at the 3′ splice site (3′ss) of human
introns, and not on the general problem of gene prediction. However, better modeling of the splice signals
should lead to improved gene prediction and can be used to predict the splicing phenotypes of mutations
that alter or create splice sites. The constraints for a MEM can also be ranked in importance. Finally, we
propose a straightforward mechanistically motivated way of comparing splice-site models in terms of local
optimality.

2. METHODS

2.1. Maximum entropy method

Let X be a sequence of λ random variables X = {X1, X2, . . . , Xλ} which take values from the alphabet
{A, C, G, T }. Let lower-case x = {x1, x2, . . . xλ} represent a specific DNA sequence. Let p(X) be the
joint probability distribution p(X1 = x1, X2 = x2, . . . , Xλ = xλ) and upper-case P (X = x) denote the
probability of a state in this distribution (i.e., there are 4λ possible states).

The principle of maximum entropy was first proposed by Jaynes (1957) and states that of all the possible
distributions in the hypothesis space that satisfy a set of constraints (component distributions, expected
values, or bounds on these values), the distribution that is the best approximation of the true distribution
given what is known (and assuming nothing more) is the one with the largest Shannon entropy, H, given
by the expression

H(p̂) = −
∑

p̂(x)log2(p̂(x)) (1)

where the sum is taken over all possible sequences, x. We will use logarithms to base 2, so that the
entropy is measured in bits. Shannon entropy is a measure of the average uncertainty in the random
variable X, i.e., the average number of bits needed to describe the outcome of the random variable. The
set of constraints should therefore be chosen carefully and must represent statistics about the distribution
that can be reliably estimated. It is possible to specify a set of constraints which are “inconsistent” in that
they cannot be simultaneously satisfied (e.g., {P (A, A) = 3/4, P (T , T ) = 1/2}). However, all constraint
sets used here will be subsets of the marginal frequencies of the “empirical distribution” on sequences of
length λ and will therefore be consistent. The uniqueness of the MED for a consistent set of constraints
was proved by Ireland and Kullback (1968).
The principle of minimum cross-entropy or minimum relative entropy (MRE), first introduced by

Kullback, is a generalization of the MEP that applies in cases when a background distribution q is known
in addition to the set of constraints. Of the distributions that satisfy the constraints, the MRE distribution
is the one with the lowest relative entropy (or KL-divergence), D, relative to this background distribution:

DKL(p̂) =
∑

p̂(x)log
p̂(x)

q(x)
. (2)

Minimizing DKL(p̂) is equivalent to maximizing H(p̂) when the prior q is a uniform distribution on the
sequences of length λ. Shore and Johnson (1980) proved that maximizing any function but entropy will
lead to inconsistencies unless that function and entropy have identical maxima (Shore and Johnson, 1980).
This implies that if we believe that the constraints are correct and well estimated (and no other information
is assumed), then the MED is the best approximation of the true distribution.
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2.2. Marginal constraints

For convenience, we consider two categories of constraints: “complete” constraints, which specify sets of
position dependencies, and “specific” constraints, which are constraints on (oligo-)nucleotide frequencies
at a subset of positions.

2.2.1. “Complete” constraints. Omitting the hats over the variables for convenience, let SX be the set
of all lower-order marginal distributions of the full distribution, p(X = {X1, X2, . . . , Xλ}). A lower-order
marginal distribution is a joint distribution over a proper subset of X. For example, for λ = 3,

SX = {p(X1), p(X2), p(X3), p(X1, X2), p(X2, X3), p(X1, X3)}. (3)

Define Sm
s ⊆ SX, where superscript m refers to the marginal-order of the marginal distributions and the

subscript s refers to the skips of the marginal distribution. In Equation (3), the first three elements are
first-order marginals (i.e., m = 1), and the last three elements are second-order marginals (i.e., m = 2):
p(X1, X2) and p(X2, X3) are the second-order marginals with skip 0 (s = 0), and p(X1, X3) is the
second-order marginal with skip 1 (s = 1). They are illustrated in our notation below.

S1
0 = {p(X1), p(X2), p(X3)}

S2
0 = {S1

0 , p(X1, X2), p(X2, X3)}
S2
1 = {S1

0 , p(X1, X3)}
SX = S2

0,1 = {S1
0 , p(X1, X2)p(X2, X3), p(X1, X3)}

For convenience, we include S1
0 in Sm

s whenever the marginal order m > 1. For an aligned set of
sequences of length λ, the first-order constraints (S1

0 ) are the empirical frequencies of each nucleotide
(A,C,G,T) at each position, and the maximum entropy distribution consistent with these constraints is the
weight matrix model (WMM), i.e., all positions independent of each other (Burge, 1998). On the other
hand, if second-order nearest-neighbor constraints (i.e., S2

0 ) are used, the solution is an inhomogeneous
first-order Markov model (I1MM) (Appendix A). Consequently, different sets of constraints specify many
different models. The performance of a model tells us about the importance of the set of constraints that
was used.

2.2.2. “Specific” constraints. “Specific” constraints are observed frequency values for a particular
member of a set of “complete” constraints. Continuing with the example above, the list of 16 “specific”
constraints for p(X1, X3) are {A · A, A · C, A · G, A · T , . . . , T · A, T · C, T · G, T · T }, where A · A is the
observed frequency of occurrence of the pattern ANA (N = A, C, G, or T ).

2.3. Maximum entropy models

A maximum entropy model (MEM) is specified with a set of complete constraints and consists of two
distributions, namely, the signal model (p+(X)) and the decoy probability distribution (p−(X)), both of
which are the MEDs generated by iterative scaling (Section 2.4) over constraints from a set of aligned
signals and a set of aligned decoys of the same sequence length, λ, respectively. Given a new sequence,
the MEM can be used to distinguish true signals from decoys based on the likelihood ratio, L,

L(X = x) = P +(X = x)

P −(X = x)
(4)

where P +(X = x) and P −(X = x) are the probability of occurrence of sequence x from the distributions
of signals(+) and decoys(−), respectively. Following the Neyman–Pearson Lemma, sequences for which
L(X = x) ≥ C, where C is a threshold that achieves the desired true-positive rate α, are predicted to be
true signals.
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2.4. Iterative scaling to calculate MED

In simple cases, the MED consistent with a set of constraints can be determined analytically using the
method of Lagrange multipliers, but analytical solutions are not practical in most real-world examples.
Instead, the technique of iterative scaling is used. This technique was introduced by Lewis (1959) and
Brown (1959), who showed that the procedure described below converges to the MED consistent with
the given lower-order marginal distributions. There is no limitation on the number or type of component
distributions that can be employed (Brown, 1959). Brown showed that at each step of the iteration, the
approximation to the MED improves, using Equation (2) as a measure of closeness of the approximating
distribution to the true distribution, but the proof of convergence is not rigorous (see Ireland and Kullback
[1968] for a rigorous proof of convergence).
The iteration procedure begins with a uniform distribution with terms P 0(X) = 4−λ, so all sequences

of length λ are equally likely. Next, we specify a set of complete constraints and a corresponding list of
specific constraints. Represent each member of the ordered list of specific constraints as Qi , where i is the
order in the list. The next step is to sequentially impose the specific constraints, Qi , that the approximating
distribution must satisfy. The terms relevant to the constraint at the j th step of iteration have the form

P j = P j−1 Qi

Q̂
j−1
i

(5)

where P j−1 is a term at the (j − 1)th step in the iteration while P j is the corresponding term at the j th
step, Qi is the ith constraint in the list of “specific constraints,” and Q̂

j−1
i is the value of the marginal

corresponding to the ith constraint determined from the distribution p at the j − 1th step. To illustrate, we
return to our example in Equation (3) and apply constraint Qi = A · A at the j th step:

P j (X = ANA) = P j−1(X = ANA)
Qi

Q̂
j−1
i

(6)

where

Q̂
j−1
i =

∑
N∈{A,C,G,T }

P j−1(X = ANA). (7)

All terms not included in this sum (i.e., triplets not matching ANA) are iterated as follows:

P j (X = VNW) = P j−1(X = VNW)
1 − Qi

1 − Q̂
j−1
i

(8)

for VNW such that V = A or W = A, N ∈ {A, C, G, T }.
Note that enforcing satisfaction of a constraint at step j may cause a previous constraint to be unsatisfied

until the previous constraint is applied again. This process is iterated until convergence or until a sufficiently
accurate approximation is obtained.

2.5. Ranking position dependencies

As the iterations proceed, the entropy, H (Equation (1)) of successive distributions p(X) decreases
from the maximum value log2(4λ) to that of the MED. This makes intuitive sense—as more constraints
are applied, the distribution contains more information, hence, lower entropy. For our purposes, we say
the entropy has converged when the difference in entropy between iterations becomes very small (e.g.,
|$H | ≤ 10−7). A KL-divergence criterion gives similar results. We have found that convergence typically
requires about 10–20 complete iterations of the constraints for a cutoff of |$H | ≤ 10−7.

Applying different constraints reduces the entropy of the distribution by different amounts. Therefore,
we can control the rate of convergence by changing the order in which the constraints are applied. We
perform a greedy search to rank constraints by the amount that they reduce the entropy of the solution as
described below.
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2.5.1. Greedy-search entropy-reduction strategy. A first list (“bag of constraints”) is initialized to
contain all specific constraints. A second list, the “ranked list,” is initially empty. At each iteration:

1. Initialize a uniform distribution.
2. Determine the MED consistent with all constraints from the ranked list.
3. Apply the first constraint from the bag of constraints. Determine the reduction in H relative to the

distribution determined in step 2, $Hi . Repeat all the constraints separately, recording $Hi for each
constraint.

4. Place the constraint with the largest $Hi in the ranked list.
5. Repeat steps 1 to 4 until all constraints in the bag of constraints have been placed in the ranked list.

It is important to emphasize that the ranking of a constraint depends on the constraints ranked before, so
that this algorithm is not guaranteed to determine the optimal subset of k constraints for 2 ≤ k ≤ N − 1,
where N is the total number of constraints. Another possible criterion for ranking is $KLi (instead of
$Hi) defined as the reduction in relative entropy (Equation (2)). Constraints can also be ranked in larger
groups, instead of one at a time, thus speeding up the process.

3. SPLICE SITE RECOGNITION

The success of gene-finding algorithms, such as Genscan (Burge and Karlin, 1997), HMMgene (Krogh,
1997) and Genie (Kulp et al., 1996), is critically dependent on finding the signals that mark exon–intron
boundaries, which are recognized in cells by the nuclear pre-mRNA splicing machinery. The two strongest
contributing signals are the donor or 5′ splice site (5′ss) and the acceptor or 3′ splice site (3′ss), which
demarcate the beginning and end of each intron, respectively.
In Thanaraj (2000), a number of algorithms that predict human splice sites were compared, indicating,

as might be expected, that algorithms which use global and/or local coding information and splice signals
(HMMgene and NetGene2) perform better than algorithms that use only the splice signals themselves
(NNSPLICE, SpliceView, and GeneID-3). Here, we focus on modeling the discrete splicing signals of spe-
cific length, with the understanding that once these have been optimally modeled, they can be incorporated
into more complex exon or gene models if desired.
A number of models have been developed that can be estimated from reasonably sized sets of sequences

(Burge, 1998). Weight matrix models (WMMs) assume independence between positions. Although this
assumption is frequently violated in molecular sequence motifs (Bulyk et al., 2002), WMMs are widely
used because of their simplicity and the small number of sequences required for parameter estimation
(SpliceView and GeneID-3 score splice sites based on weight matrix models (Shapiro and Senapathy,
1987)). Inhomogeneous first-order Markov models (I1MMs) account for nearest-neighbor dependencies
which are often present in sequences and usually can discriminate sites more accurately than WMMs.
However, I1MMs ignore dependencies between nonadjacent positions, which may also be present. Higher-
order Markov models account for more distant neighboring dependencies, but the number of parameters
that have to be estimated and, hence, the required number of training samples increases exponentially with
Markov order.
Decision tree approaches, such as the maximal dependence decomposition (MDD) (Burge, 1998) used

in Genscan and GeneSplicer (Pertea et al., 2001) reduce the parameter estimation problem by partitioning
the space of signals such that each leaf of the tree contains a sufficiently sized subset of the sites and the
strongest dependencies between positions are modeled at the earliest branching points when the most data
are available. Cai and colleagues (2000) applied probabilistic tree networks and found that simple first-
order Markov models are surprisingly effective for modeling splice sites. Arita and colleagues (2002) utilize
the Bahadur expansion to approximate training of Boltzmann machines to model all pairwise correlations
in splice sites and found no improvement compared to first-order Markov models for 5′ss, but better
performance for the 3′ss. Our work is related to the latter two approaches in that we introduce a general
family of models in which Markov models appear as natural members. It is worth noting that in addition to
(non)adjacent pairwise dependencies, MEMs can accommodate third-order or higher-order dependencies.
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Table 1. Number of Sequences in 5′ss and 3′ss
Training and Test Sets

Real 5′ss Decoy 5′ss Real 3′ss Decoy 3′ss

Train 8,415 179,438 8,465 180,957
Test 4,208 89,717 4,233 90,494

Total 12,623 269,155 12,698 271,451

3.1. Construction of transcript data

To avoid using computationally predicted genes, available human cDNAs were systematically aligned
to their respective genomic loci by using a gene annotation script called GENOA (L.P. Lim and C.B.B.,
unpublished). To simplify the analysis, genes identified by this script as alternatively spliced were excluded.
We used a total of 1,821 nonredundant transcripts that could be unambiguously aligned across the entire
coding region, spanning a total of 12,715 introns (hence 12,715 5′ss and 12,715 3′ss). Our training and
test datasets comprise disjoint subsets of these data. We use sequences at positions {−3 to +6} of the
5′ss (i.e., the last three bases of the exon and the first six bases of the succeeding intron), which have
the GT consensus at positions {+1, +2}, and the sequences at positions {−20 to +3} of the 3′ss with the
AG consensus at positions {−2, −1} (see Table 1). These splice sites are recognized by the major class
or U2-type spliceosome that is universal in eukaryotes. We excluded 5′ss that have the GC consensus and
5′ss or 3′ss that matched the consensus patterns for splicing by the minor class or U12-type spliceosome.
Decoy splice sites are sequences in the exons and introns of these genes that match a minimal consensus
but are not true splice sites; e.g., decoy 5′ splices sites are nonsplice sites matching the pattern N3GTN4,
and decoy 3′ss are nonsplice sites that match the pattern N18AGN3 (Burge et al., 1999).

4. RESULTS AND DISCUSSION

4.1. Models of the 5′ splice site

The various models tested are listed in Table 2. The text abbreviations are in the first column, where “me”
stands for maximum entropy, “s” stands for skip, and “x” stands for the maximum skip; the first number
is the marginal order, and the second is the skip number or maximum skip number. Figure 1 and Table 2
together illustrate the improvement in performance resulting from use of more complex constraints. From
the ROC analysis (Fig. 1 and Appendix C), it is clear that me2s0 (equivalent to a I1MM) does much better
than the me1s0 (equivalent to a WMM), as has been observed previously (Burge, 1998), indicating that
nearest-neighbor contributions are important in human 5′ss. Our best model according to ROC analysis
and maximum correlation coefficient analysis (Appendix B) for the 5′ site is the me2x5 model, which
takes into account all pairwise dependencies. The MDD model used in Genscan (Burge and Karlin, 1997)
performs slightly better than the me2s0/I1MM model. Analysis using maximum “approximate correlation”
(see Appendix B) rather than maximum correlation coefficient gave similar results.
We observe that the me2x5 model shows significant improvement over the me1s0/WMM model: the false

positive rate at 90% sensitivity was reduced by approximately a factor of 2. The correlation coefficients
are not large, which likely reflects properties of the human pre-mRNA splicing mechanism, in which 5′ss
recognition relies heavily on other signals, such as enhancers and silencers, distinct from the splice signal
itself (Fairbrother et al., 2002; Lam and Hertel, 2002).

4.1.1. Ranked constraints. The top 20 second-order constraints determined for models me2s0 and
me2x5 using the greedy-search algorithm are listed in Tables 3 and 4. Figure 2A illustrates the faster
increase in information content of the model when the constraints were applied in ranked order (Table 3)
versus a random ordering of constraints. Furthermore, higher performance is achieved with ranked con-
straints versus a similar number of randomly ordered constraints (Fig. 2B). Of course, when all the
constraints are used, there is no difference in performance. Clearly, certain pairs of positions contain more
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Table 2. 5′ss Models Ranked by ROC Analysis
(Top to Bottom), and the Corresponding
Maximum Correlation Coefficients (CC)

Models Constraints CC

me2x5 S21,2,3,4,5 0.6589

me2x4 S21,2,3,4 0.6552

me2x3 S21,2,3 0.6533

me5s0 S50 0.6527

me2x2 S21,2 0.6399

me4s0 S40 0.6390

mdd — 0.6493

me2s0 S20 0.6425

me3s0 S30 0.6422

me2s1 S21 0.5971

me2s2 S22 0.6010

me2s4 S24 0.5861

me2s3 S23 0.6031

me2s5 S25 0.5924

me1s0 S10 0.5911

FIG. 1. The 5′ss: ROC curves for me2x5, me2s0, me2s1, me1s0 and MDD. The curves for the other models are not
plotted, but can be inferred from Table 2.
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Table 3. Top 20 Ranked Constraints
for me2s0a

Rank $Hi $KLi

1 .AGgt.... .AGgt....
2 ...gt.AG. ...gt.AG.
3 TA.gt.... TA.gt....
4 ...gtTA.. ...gtTA..
5 ...gt..GT ...gt..GT
6 ...gtGT.. ...gtGT..
7 ...gt.CG. ...gt.CG.
8 ..TgtT... ..GgtG...
9 ...gt.GG. ..AgtC...
10 ...gtGG.. ...gtCG..
11 ...gtCG.. ...gt..AC
12 .TAgt.... ...gtCC..
13 ..AgtC... ..CgtT...
14 ...gt.AT. CT.gt....
15 ...gt.GT. AG.gt....
16 ...gt..CG .TGgt....
17 ...gt..AT ...gt.GT.
18 ...gt..CT .TAgt....
19 ..GgtG... ..TgtC...
20 ..CgtA... ...gtGG..

aLower letters refer to donor consensus positions.
Capitalized letters are positional dependencies. All first-
order constraints were imposed as default.

Table 4. Top 20 Ranked Constraints for
me2x5 for 5′ssa

Rank $Hi Sign

1 ..Ggt..G. -
2 ...gt.AG. +
3 .AGgt.... +
4 C..gt...C +
5 ...gtAA.. -
6 ..GgtT... +
7 ..GgtC... +
8 ..GgtA... -
9 ...gtTA.. -
10 ..Tgt..T. -
11 ..Tgt..A. -
12 .G.gt..C. -
13 ...gtC.G. +
14 .C.gt..C. -
15 .T.gt..C. -
16 ..Cgt..A. -
17 ..Cgt..T. -
18 ..Agt..T. -
19 ..Agt..A. -
20 ..Cgt..G. +

aThe + and - indicate whether the dinucleotide is
more or less frequent than expected under independence
assumption, respectively. All first order constraints were
imposed by default.
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FIG. 2. (A) Information content (I = 18 − H) of me2s0 model as constraints are added. If the constraints are ranked,
the information content increases at a higher rate than if randomly ranked constraints are used. The x-axis corresponds
to the model using the top N constraints. (B): Maximum correlation coefficient as a function of constraints. Ranked
constraints added sequentially led to better performance with fewer constraints, compared to a random ordering of
constraints. All models required G,T at positions +1, +2 (4 bits).

information useful for discrimination. Also, the information content of the distribution is related to the
performance of the model; i.e., the performance increases with increasing information content of the model.
It is useful that the rankings of the dependencies are not just on the level of positions, but also at the level
of (oligo)nucleotide sequence, a feature not seen in Cai et al. (2000). Some of these effects could reflect
preferences of trans-acting factors which may bind cooperatively to different 5′ss positions. Positions −1
and +5 exhibit strong dependencies (Table 4).

4.2. Models of the 3′ splice site

The 3′ss sequence motifs are much longer than the 5′ss, ∼23 bases. For notational simplicity, we define
the index of each position in the sequence from 1 to 21, excluding the invariant AG dinucleotide. To avoid
the impractical task of storing and iterating over 421 ≈ 4 × 1012 possible sequences, we may first break
up the sequences into three consecutive nonoverlapping fragments of length seven each (fragments 1 to 3:
positions 1 to 7, 8 to 14, and 15 to 21, respectively), build individual MEDs for the three fragment subsets
(see Equation (9)), and score new sequences by a product of their likelihood ratios (Equation (4)).

P ′(X) = P (X1, . . . , X7)P (X8, . . . , X14)P (X15, . . . , X21) (9)

However, using Equation (9) ignores dependencies between segments. The resulting loss in performance
is illustrated in Fig. 3 (compare me2s0 and mm1 curves). Again, the me1s0 is equivalent to a WMM. To
retain the dependencies of the nucleotides between the segments while avoiding computer memory issues,
we propose the following approach. Six other fragments are modeled (fragments 4 and 5: positions 5 to 11
and 12 to 18, respectively; fragments 6 to 9: positions 5 to 7, 8 to 11, 12 to 14, 15 to 18, respectively). We
then multiply the likelihood ratios for fragments 1 to 5 and divide by the likelihood ratios of fragments 6
to 9. For dependencies within seven bases, this approach “covers” all the positions.

Poverlap(X) = P ′(X)P ′′(X)

P (X5, . . . , X11)P (X12, . . . , X18)
(10)

where

P ′′(X) = P (X5, X6, X7)P (X8, X9, X10, X11)P (X12, X13, X14)P (X15, X16, X17, X18)

The performance of this “overlapping” maximum entropy model is illustrated in Fig. 3 (labeled modified
me2s0) and performs similarly to the corresponding Markov model. Models me3s0 and me4s0 were
modified analogously. Previous researchers have found that nearest-neighbor dependencies were sufficient
to specify good models for 3′ss sites (Burge, 1998; Cai et al., 2000). In fact, we found that a second-
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FIG. 3. The 3′ss: ROC curves for me2s0, me2s0 modified, me1s0, 0mm (0IMM), and 1mm (1IMM) models of the
3′ss. The curve labeled me2s0 was constructed by segmenting the 21-base-long sequence set into three consecutive
nonoverlapping fragments of length seven each. The curve labeled me2s0 modified was constructed as described in
the text and is equivalent to the first-order Markov model (I1MM).

order Markov model of the 3′ss site performs better than a first-order Markov model, but that a third-order
model performs worse than a first-order Markov model, presumably because of parameter estimation and/or
sample-size issues for third-order transition probabilities of the form P (L|IKJ ) where I, J , and/or K are
purines (low frequency in most 3′ss positions). This observation motivates our procedure for segmenting
the signal into nine fragments, which uses only second-order constraints and neglects some long-range
dependencies (such as between positions 1 and 21). It is possible to segment the signal in a way that
captures such long-range dependencies (not shown). However, we found that adding dependencies beyond
two-nucleotide separations does not significantly change the performance (Table 5 and Fig. 4).

4.3. Clustering splice site sequences

The MDD model (Burge, 1998; Burge and Karlin, 1997) demonstrated that appropriate subdivision of
the data can lead to improved discrimination. Here, we ask whether MEMs can be improved by first
clustering the data into subsets. First, we generated a symmetric dissimilarity matrix D, where dij is the
number of mismatches between splice-site sequences i and j in the list of training-set sequences. Next,
we implemented hierarchical clustering on D using Ward’s method. Results for our set of 5′ss are shown
in Fig. 5 and Fig. 6.
Interestingly, we observe that the highest contributors to the information content (excluding the GT

consensus) in cluster 1 come from the third, fourth, fifth, and sixth bases in the intron, whereas the last
two bases in the exon contribute the most in cluster 2, indicating that clusters 1 and 2 represent “right-
handed” and “left-handed” versions of the 5′ss motif, respectively. These two classes of 5′ss might be
recognized by different sets of trans-factors; e.g., U6 snRNP would generally interact more strongly with
right-handed 5′ss, while U5 snRNP should interact preferentially with left-handed 5′ss (Burge et al., 1999).
We can combine separately trained models in the following manner:

Pcombined(X) = P (X|M1)P (M1) + P (X|M2)P (M2) (11)

where Pcombined(X) is the probability of generating sequence X under the combined model, P (X|M1) and
P (X|M2) are the conditional probabilities of generating X given the model constructed using cluster 1
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Table 5. 3′ss Models Ranked by ROC
Analysis (Top to Bottom), and
the Corresponding Maximum
Correlation Coefficients (CC)

Models Constraints CC

me2x2 S21,2 0.6291

me2x3 S21,2,3 0.6290

me2x4 S21,2,3,4 0.6252

me2x5 S21,2,3,4,5 0.6229

me2x1 S21 0.6259

me3s0 S30 0.6300

me2s0 S20 0.6172

me4s0 S40 0.6075

me1s0 S10 0.5568

FIG. 4. The 3′ss: ROC curves for modified me2x5, me2x4, me2x3, me2x2, me2x1, me4s0, me3s0, me2s0, and
me1s0 models of the 3′ss.

and cluster 2 sequences, respectively, and P (M1) and P (M2) are the prior probabilities of cluster 1 and 2,
respectively. The performance of combined 5′ss models are illustrated in Fig. 7. Separating the sequences
into the two clusters and modeling them separately with WMMs and then combining the models performs
significantly better than using a WMM derived from all the sequences. However, modeling the separate
clusters with me2x5 and I1MM models does not show significant improvements compared to modeling
the entire cluster. Apparently, the more complicated models are able to capture cluster-specific information
using the entire set of sequences. Figure 8 shows the motifs for 3′ss clusters which appear to separate into
T-rich versus C/T-rich pyrimidine tracts. Combined 3′ss models showed a similar effect as with the 5′ss
models (data not shown).
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FIG. 5. Truncated dendrogram for 5′ss sequences (hierarchical clustering using Ward’s method). The two major
clusters contain 7,260 and 5,367 sequences, respectively.

FIG. 6. Sequence motifs for 5′ss cluster 1 (left) and 2 (right) created with the Pictogram program: http://genes.mit.
edu/pictogram.html. The height of each letter is proportional to the frequency of the corresponding base at the given
position, and bases are listed in descending order of frequency from top to bottom. The information content (relative
entropy) for each position relative to a uniform background distribution is also shown.

5. APPLICATIONS OF SPLICE SITE MODELS

The specificity of pre-mRNA splicing hinges on highly conserved base pairing between the 5′ splice
site (5′ss) and U1/U6 small nuclear RNAs as well as interactions with U1C protein (Du and Rosbash,
2002) and U5 snRNA (Newman, 1997). It is unclear whether decoy splice sites are recognized by the
splicing machinery. A study showing that intronic 5′ decoy sites are activated when cells are heat shocked
demonstrates that intronic decoys may be functional under special conditions (Miriami et al., 1994).
Therefore, decoys could potentially be real splice sites, but may be blocked by the presence of RNA
secondary structures (Varani et al., 1999) or have suboptimal location relative to splicing enhancers and
repressors (Fairbrother et al., 2002; Fairbrother and Chasin, 2000). Nevertheless, a good computational
model should generally assign higher scores (i.e., log-likelihood ratios) to real 5′ss and lower scores to
decoys, when all other factors are equal.

5.1. Proximal 5′ss decoys in introns

We have used several measures to compare the performance of different models, all of which involve
comparing the sensitivity of the models for a given false positive rate (Appendices B and C). This
essentially sets a global threshold, C (see Section 2.3), in deciding whether a sequence is or is not a true
splice site. However, the splice site recognition machinery does not appear to use a global setting—in some
cases, weak splice sites are used when positioned in close proximity to splicing enhancers. This suggests a

http://genes.mit.edu/pictogram.html
http://genes.mit.edu/pictogram.html
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FIG. 7. The 5′ss: ROC curves for me2x5, 1IMM, WMM and me2x5 (combined), 1IMM (combined), and WMM
(combined).

FIG. 8. Sequence motifs for 3′ss cluster 1 (top) and 2 (bottom).

local decision rule for splice-site detection; i.e., the most important factor may be whether the true splice
site has a higher score than decoys in its proximity.
We compared models by scoring possible 5′ss in a dataset of ∼12,600 human introns. Better models

should result in a larger number of introns with no higher-scoring decoys downstream of the real 5′ss.
Figure 9 shows that our best 5′ss model, me2x5, results in the greatest number of introns which have no
higher-scoring decoys downstream of the real 5′ss, i.e., 69 introns more than the MDD model and 639
more than the WMM. Moreover, the me2x5 model gives the lowest number of introns that have a first
higher-scoring decoy (fhsd) in the intron within 250 bases from the upstream real 5′ss—me2x5 predicted
75 fewer such introns than MDD and 686 fewer introns than the WMM. The three models result in
approximately the same number of introns when the fhsd occurred further than 250 bases from the real
5′ss. On inspection of the length distribution of these introns, we observed that the median lengths for
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FIG. 9. Bar chart showing the number of introns that have no higher scoring decoy (hsd) than the real upstream
5′ss, and the number of introns that have a first higher scoring decoy (Fhsd) within 250 bases from the real 5′ss or
greater than 250 bases from the real 5′ss.

Table 6. Ranks of 5′ss Sequences by Different Models

Sequence me2x5 MDD me2s0 WMM Odds ratio

ACGGTAAGT 1 2 5 26 184
TCGGTAAGT 2 3 12 114 77
ACGGTGAGT 3 17 18 90 11
GCGGTAAGT 4 14 10 56 3
ACGGTACGT 5 67 14 292 331
TCGGTGAGT 6 28 34 304 9
CAGGTAAGG 7 26 15 3 13
GAGGTAAGT 8 34 6 4 38
ATGGTAAGT 9 12 46 19 95
AAGGTAAGT 10 10 2 2 12
GACGTAAGT 11 41 136 86 10
CCGGTAAGT 12 1 7 17 22
CCGGTGAGT 13 7 22 68 18
CAGGTACGG 14 99 32 79 68
CAGGTAAGT 15 20 1 1 8
CAGGTAAGA 16 25 13 7 14
CGGGTAAGT 17 15 17 15 2
AAGGTACGT 18 54 8 46 233
AACGTAAGT 19 19 101 38 96
CAGGTGAGT 20 27 4 8 21

these introns ranged from ∼2,770–2,900 bases, whereas the rest of the introns had a median length of
∼650–750 bases, suggesting that global optimality of splice site motifs is less important in long introns.

5.2. Ranking and competing 5′ss

The top 20 highest-scoring 5′ss sequences ranked by the me2x5 model are listed in Table 6, with their
corresponding ranks by the MDD, I1MM, and WMM models and, in the last column, the odds ratio
defined as the frequency of occurrence of the sequence as a splice site divided by its occurrence as a
decoy. Different models result in significatly different rankings of the signals. Figure 10 shows that the
top-scoring sequences are well correlated between models, but the lower-scoring sequences vary much
more.
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FIG. 10. Scores of 5′ss sequences by different models plotted against each other. Model names are labeled in the
x- and y-axes.

5.3. Predicing splicing mutations in the ATM gene

Ataxia-telangiectasia (A-T) is an autosomal recessive neurological disorder caused by mutations in
the ATM gene. Recently, our maximum entropy 5′ss and 3′ss models have been utilized to predict the
consequences of genomic mutations in the ATM gene that perturb splicing with good results (Eng et al.,
2004).

6. CONCLUSIONS

We recommend using the maximum entropy distribution as the least biased approximation for the distri-
bution of short sequence motifs consistent with reliably estimated constraints. This approach grants us the
flexibility of generating many different models simply by utilizing different sets of constraints. Our greedy
search strategy ranks constraints at the resolution of paired nucleotides at specific positions. This can be
useful for determining correlations with binding factors. We demonstrate on a simple example that using
the constraints in order of their ranking increases the rate of convergence to the MED, increases the in-
formation content of the distribution, and improves performance much faster than using randomly ordered
constraints. The ranking of these constraints may reflect biological dependencies between nucleotides at
different positions in the motif. Our best models, simply using dinucleotide marginal distributions, outper-
form previous models, e.g., WMMs and IMMs. These models themselves are MEDs when position-specific
frequencies or nearest-neighbor dinucleotide frequencies are used as constraints. MEMs are relatively easy
to use; e.g., the 5′ss model is stored as a 16,384-long vector in lexicographic order. We have developed
a 3′ss “overlapping” maximum entropy model using an approach which combines multiple submodels
that performs better than models utilizing only nearest-neighbor dependencies. MEMs appear to take into
account possible subclustering information in the data. We use a straightforward biologically motivated
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way to compare models in terms of local optimality. Importantly, the MED framework described can be
applied to other problems in molecular biology where large datasets are available, including classification
and prediction of DNA, RNA, and protein sequence motifs.

7. APPENDIX

A. Inhomogeneous Markov models

A kth-order inhomogeneous Markov model can be generated as follows:

pkMM(X) = p(X1, . . . , Xk)

λ∏
i=k+1

p(Xi |Xi−1, . . . , Xi−k) (12)

where X = {X1, X2, . . . Xλ}, k is the order, and p(Xi |Xi−1, . . . , Xi−k) is the conditional probability of
generating a nucleotide at position i given the previous k nucleotides. As before, conditional probabilities
and marginals are estimated from the corresponding frequencies of occurrences of nucleotide combinations
at the specified positions.
It is important to note that the maximum entropy distributions using nearest-neighbor constraints of

marginal order (k + 1) are equivalent to kth-order Markov models. In every case, the performance of the
MED for constraints Sk

0 was equivalent to that of a (k − 1)th order Markov model. Thus the class of
Markov models is a subset of the class of solutions specified by MEM.

B. Performance measures

Table 7 illustrates a confusion matrix, which contains information about how well a model performs
given an independent test set with real splice sites (positives) and decoys (negatives). N is the total number
of test sequences; i.e., N = TP + FP + FN + TN . Standard Measures of accuracy, such as correlation
coefficient (CC), approximate correlation (AC), sensitivity (Sn), and false positive rate (FPR) are defined
below.

CC = (TP × TN) − (FN × FP)

(TP + FN)(TN + FP)(TP + FP)(TN + FN))
1
2

AC = 1

2

(
TP

TP + FN
+ TP

TP + FP
+ TN

TN + FP
+ TN

TN + FN

)
− 1

Sn = TP

TP + FN

FPR = FP

TN + FP

C. ROC analysis

Receiver operating curve (ROC) analysis (Swets, 1988) is an effective way of assessing the performance
of models when used in a binary hypothesis test. In our case, a sequence x is predicted as a splice site
if the likelihood ratio, L, is greater than a threshold, C (Equation (4)). A ROC curve is a graphical

Table 7. Confusion Matrix

Predicted positive Predicted negative

Real positive True positives, TP False negatives, FN
Real negative False positives, FP True negatives, TN
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representation of Sn (on the y-axis) versus false positive rate (FPR) (on the x-axis) as a function of C and
has the following useful properties:

1. It shows the tradeoff between sensitivity and false positive rate (increases in sensitivity are generally
accompanied by an increase in false positives).

2. The closer the curve follows the left-hand border and then the top border of the ROC plot, the more
accurate the model. The area under the curve is a measure of test accuracy.

3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the model.

Analogous to the ROC analysis, we can plot the other standard measures as described above against
changing values of the threshold, C. The maximum point on the curves will indicate the best setting for
C and gives a performance measure which can be used to compare models. Hence, we can define CCmax

to be the maximum correlation coefficient, i.e., the highest point on the curve, and CCCmax is the threshold
where CCmax is obtained; ACmax and CACmax can be defined similarly.
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