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Abstract—Key to recent successes in the field of artificial in-
telligence (AI) has been the ability to train a growing number of
parameters which form fixed connectivity matrices between layers
of nonlinear nodes. This “deep learning” approach to AI has histor-
ically required an exponential growth in processing power which
far exceeds the growth in computational throughput of digital
hardware as well as trends in processing efficiency. New computing
paradigms are therefore required to enable efficient processing of
information while drastically improving computational through-
put. Emerging strategies for analog computing in the photonic
domain have the potential to drastically reduce latency but require
the ability to modify optical processing elements according to the
learned parameters of the neural network. In this point-of-view ar-
ticle, we provide a forward-looking perspective on both optical and
electrical memories coupled to integrated photonic hardware in the
context of AI. We also show that for programmed memories, the
READ energy-latency-product of photonic random-access memory
(PRAM) can be orders of magnitude lower compared to electronic
SRAMs. Our intent is to outline path for PRAMs to become an
integral part of future foundry processes and give these promising
devices relevance for emerging AI hardware.
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I. INTRODUCTION

R ECENT progress in the field of AI has been fueled by
two major research thrusts: 1) finding ways to train in-

creasingly large deep neural networks (DNNs) and 2) applying
new insights from neuroscience to computing algorithms and
hardware, commonly known as “neuromorphic computing.”
These approaches to AI make the shift from specialized “expert
models” which rely on a human understanding of the data to
generalized “neural networks” which typically use a very large
number of free parameters to statistically fit the data [1]. In fact,
the performance of a DNN has been shown to improve when the
number of free parameters exceeds that of the available training
data [2]. The vast and tunable 3D connectivity of billions of
neurons in the brain is similarly considered a key contributor to
intelligence in humans and other animals. Thus, the immense
number of trainable parameters in biological and deep neural
networks leads to both its generality as well as computational
complexity [3].

In both deep learning and neuromorphic computing, the com-
pute operations needed varies drastically from the precise, se-
quential arithmetic operations that have driven digital hardware
design for the past half century. Instead, computation is limited
by memory access bottlenecks rather than processor speed,
leading to memory-centric design approaches (e.g., weight sta-
tionary systolic arrays [4], in-memory computation [5], etc.).
These approaches typically minimize the movement of fixed
parameters to improve latency and energy efficiency. However,
since all electrical processors are fundamentally limited by
an energy-bandwidth tradeoff stemming from the capacitance
of their interconnects [6], this ultimately limits the maximum
compute efficiency achievable (typically measured in operations
per watt, “OPS/W”).

Computation in the optical domain is an exciting alternative
to electrical processors which side-steps the energy-bandwidth
tradeoff [7], [8], [9]. The bandwidth of an optical channel (wave-
guide, fiber, or even free space) is independent of modulation
frequency and therefore extremely high data throughput can be
achieved in the optical domain. Additionally, the wave nature of

1077-260X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: MIT Libraries. Downloaded on February 09,2023 at 12:17:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4795-0284
https://orcid.org/0000-0002-7503-3312
https://orcid.org/0000-0002-5152-4766
https://orcid.org/0000-0002-7233-3918
https://orcid.org/0000-0003-2552-9376
mailto:sar247@pitt.edu
mailto:nathan.youngblood@pitt.edu
mailto:riosc@umd.edu
mailto:jiang60@iu.edu
mailto:mengj@email.gwu.edu
mailto:npeserico@email.gwu.edu
mailto:sorger@gwu.edu
mailto:hujuejun@mit.edu
https://doi.org/10.1109/JSTQE.2023.3239918


6100812 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 2, MARCH/APRIL 2023

optical signals allows passive elements to achieve unitary linear
transformations with no power penalty in lossless materials [10].

Optical computing can be divided into digital and analog
approaches. Digital optical computing represents input and out-
put as discrete values (e.g., 0s and 1s) and has several advantages
over traditional digital electronic computing, including higher
clock speeds and lower power consumption [11], [12]. In con-
trast, analog optical computing represents input and output as
continuous values and co-locates compute and memory which
has the potential to be lower latency and more energy efficient
than digital optical computing at the expense of precision and ac-
curacy. These properties make optical analog computing highly
attractive for ultrafast, low-power linear operations—the major
computational bottleneck in today’s neural networks. However,
for these optical computations to be useful, they must be coupled
to the trained parameters of the neural network through analog
optical memories. Given the importance of energy efficiency,
latency, and the recent exciting advancements in analog optical
computing, we have chosen to focus solely on memories for
analog optical computing in this article.

Storing optical data in digital format requires the use of
additional components such as an optical digital-to-analog con-
verter (DAC), which increases energy consumption and foot-
print. Considering the footprint of electronic integrated systems
and photonic integrated ones, optical counterparts still have a
significant disadvantage. Storing digital information increases
the size of the memory block depending on the number of bits
allocated to each input. Also, based on different technologies
developed for optical memories, achieving multi state memories
are attainable. Thus, Analog optical memories are a realistic
option as they do not require additional components and are
capable of long-term data storage.

In this point of view article, we first identify important features
needed for analog optical memories (i.e., memory devices which
modulate an analog optical signal according to a predetermined
input) and their respective challenges. We then discuss differ-
ent approaches used by the community to implement optical
memory for processing information in the optical domain. Next,
we perform an energy-latency analysis to identify the applica-
tions where these various approaches have a distinct advantage.
Finally, we end our discussion with an outlook of the current
state of optical memory technologies and present a roadmap
identifying the key technological challenges where continued
innovation is most needed.

II. KEY REQUIREMENTS OF PHOTONIC MEMORY TECHNOLOGY

At the highest level, photonic computing strategies can be
most generally divided into two main categories—coherent or
incoherent. These distinct strategies place important physical
constraints on the optical memory cells used since in the case of
coherent photonic architectures, both the amplitude and phase
of the optical signals are used to perform computation [13], [14],
[15]. Incoherent architectures instead use only the amplitude of
the optical signal to perform computation, but require sources
with many different optical frequencies to prevent unwanted
interference effects [16], [17], [18]. Therefore, for coherent

architectures, the insertion loss (IL), amplitude-independent
phase control, and fabrication variability of the memory
cell directly impact the compute accuracy [19]. These strict
requirements are largely reduced for incoherent architectures,
but extinction ratio (ER), crosstalk, and precision of the
memory cell still limit the ultimate accuracy that can be
achieved [12]. Despite these architecture-specific requirements,
several key metrics of the memory cell have similar impact on
the performance of the photonic processor regardless of the
computing strategy. Here, we summarize these metrics and
their importance for photonic computing.

Insertion loss (IL). IL of the memory cell impacts the max-
imum optical power that can be transmitted and read out by
detection circuitry when the memory is in the fully “on” state.
Since computation occurs in the analog domain, the precision
of the optical readout is fundamentally limited by photon shot
noise. Improving the IL, therefore reduces the optical power re-
quired to perform computation. For coherent architectures, if the
IL differs between two interfering optical paths, the interference
contrast will be reduced and limit compute accuracy (sometimes
also referred to as “fidelity” [13]).

Precision. Optical memory cells are typically tuned with a
continuous parameter since they are analog in nature. Therefore,
the maximum achievable precision is typically limited by either
the stability of the memory cell itself, the noise of the control
circuitry, or the optoelectronic noise at detection. Fortunately,
many studies have shown that neural networks require relatively
low precision memory (even as low as 1 or 2 bits [20], [21],
[22]) and that uncorrelated noise can serve as a method for
regularization and improved resilience [23], [24], [25].

Extinction ratio (ER). The ER of the memory cell is linked
to the precision and determines the maximum optical contrast
between the “on” and “off” states. Improving the ER will help
to distinguish between neighboring analog levels of transmis-
sion or phase, increasing the maximum compute precision (and
typically accuracy) achievable. Detecting the difference in in-
tensity between the add and drop ports of a microring resonator
(MRR) or in the relative transmission of two memory cells are
methods for improving ER while also achieving both positive
and negative values for weights [18].

As IL and ER both affect the dynamic range of the output, they
directly affect the signal-to-noise ratio (SNR) and the precision is
therefore dependent on both. Furthermore, the presence of noise
will have a detrimental impact on the precision of computations
performed in an analog system which requires higher optical
power levels to overcome. Thus, bit precision (Nb), IL, and ER
are all interrelated and together determine the energy consump-
tion of the analog processor. The effects of noise present at the
electro-optic (E/O) and opto-electronic (O/E) interfaces have
been explored in detail in prior work [12], [26] and we point the
reader to these resources for further information. In the simple
case of a shot-noise-limited optical signal, the minimum optical
power swing required to resolve a given precision is [12]:

ΔP =
2hυ

η
· fmod · 22Nb (1)
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where hυ is the photon energy, η is the overall quantum
efficiency of the optical circuit (e.g., waveguide loss) and
photodetector, and fmod is the modulation frequency. The
following can be derived for the power swing due to an
amplitude-modulated optical memory cell:

Pmax = Pin · 10− IL
10 (2)

Pmin = Pin · 10− IL+ER
10 (3)

ΔP = Pin · 10− IL
10

(
1− 10−

ER
10

)
(4)

Combining (1) and (4) gives the following result for the
minimum input power required to achieve a precision of Nb:

Pin =
2hυ

η
· fmod

10−
IL
10

(
1− 10−

ER
10

) · 22Nb (5)

Based on (5), as IL increases and ER decreases, the observ-
able change in the output power of the system decreases, and
the minimum input power required for computation increases.
Therefore, IL and ER directly impact the precision and efficiency
of the optical processing unit.

Programming latency. While access and read latency can be
a bottleneck for electronic memory cells, the write speed of
the memory cell is usually the limiting factor for photonics.
Reading the state of memory in the optical domain is funda-
mentally limited by the speed of light traveling through the bus
waveguides, but in practice readout is limited by the speed of
the detection circuitry at the output. Therefore, in the case of
frequent weight updates, the programming latency could dom-
inate (especially in the limit of large matrix operations which
exceed the available on-chip photonic memory [27]). Therefore,
minimizing the latency for frequent weight updates is crucial for
maximizing throughput when faced with realistic constrains on
physical optical hardware.

Programming energy and static power. Similar to the case of
latency, if the computing application requires frequent updating
of the optical weights (e.g., in a photonic tensor core [28]),
the optical memory cell programming energy could potentially
dominate the power consumption of the chip. Additionally,
when using volatile optical responses to store data—such as
thermo-optic, electro-absorptive, or plasma-dispersion effects—
the static power consumption needed to hold a fixed weight can
contribute a significant amount to the overall power budget of
the computing system [12].

Cycling endurance. The minimum number of cycles required
for an optical memory cell will vary greatly depending on the
use case. For example, a fixed-weight architecture that does
not require frequent weight updates (e.g., a small convolutional
layer implemented optically [16], [17]) will have a much lower
cycling requirement compared to a neuromorphic architecture
where accumulation of optical pulses occurs in the memory
cells themselves [29], [30]. As a point of reference, NAND flash
memory used in consumer-grade USB flash drives typically have
endurances ranging from 104 to 106 cycles [31], but these devices
are used for storage rather than computation.

TABLE I
COMPARISON OF METRICS FOR VARIOUS OPTICAL MODULATORS

TABLE II
METRICS OF VARIOUS WAVEGUIDE-INTEGRATED NONVOLATILE OPTICAL

MEMORIES

Footprint. The footprint of the optical memory cell limits
the integration density on chip and can be the limiting fac-
tor for scalability. This has important implications on the ef-
ficiency and latency of the photonic processor since smaller
memory arrays will require more frequent weight updates than
large-scale memory arrays for the same matrix operation [27].
With the CMOS technology pushing the bounds of nanometer
scale channel lengths, electronic memory banks (SRAM banks)
clearly occupy a smaller area in comparison to their optical
counterparts. Due to the diffraction limit, evanescent coupling,
and scattering losses related to minimum bend radii, classical
photonic components typically have dimensions on the micron
scale rather than nanometer scale. This leads to optical memory
banks with a footprint that is many orders of magnitude larger
than electronic memory banks. While optical memory may not
be as efficient in terms of area compared to electronic memory,
this may be an acceptable tradeoff for certain applications when
considering read latency and energy efficiency, as shown in Table
III. Additionally, the compute density can be much greater in the
optical domain due to high-speed analog operations [12].

III. CURRENT IMPLEMENTATIONS OF PHOTONIC MEMORY

A. Electronic Memories Coupled to Optical Components

One common method for implementing optical memory
is to use an optical modulator coupled to electrical memory
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TABLE III
PERFORMANCE TABLE OF PHOTONIC RANDOM-ACCESS MEMORIES (P-RAM,
O-SRAM, AND OPTICAL CACHE) AS COMPARED TO RELEVANT ELECTRONIC

MEMORIES. OPTICAL MEMORIES CAN SHOW SEVERAL

ORDERS-OF-MAGNITUDE HIGHER READ PERFORMANCE THAN THEIR

ELECTRONIC COUNTERPARTS. THIS IS PARTICULARLY RELEVANT FOR

NETWORK EDGE AI WITH SELDOMLY UPDATED WEIGHTS (I.E., RARE WRITE
OPERATIONS), BUT FREQUENT READS. NOTE, THIS DOES NOT INCLUDE ADC
ENERGY OR LATENCY FOR OPTICAL READ OPERATIONS SINCE COMPUTATION

CAN OCCUR OPTICALLY ACROSS MULTIPLE MEMORY CELLS BEFORE ADC.
ADDING THE AREA TO THE READ ENERGY AND LATENCY SHOWS AN ABOUT

5× HIGHER FIGURE-OF-MERIT BASED ON A (AREA×READ ENERGY×READ

LATENCY)−1

(see Fig. 1a). This first involves digital-to-analog conversion
(DAC) of the digital weight, followed by electrical-to-optical
conversion (E/O) of the analog electrical signal. E/O conversion
is most commonly achieved by modulating the real or imaginary
refractive index of a material through different physical effects,
such as thermo-optic, electro-absorption, or plasma-dispersion
[32], [33], [34], [35], [36], [37]. This approach to optical memory
has the notable benefit of foundry compatibility which has en-
abled several key proof-of-concept demonstrations of photonic
processors [8]. It is worth noting, however, that incorporating
electronic memories coupled with optical modulators will in-
crease the complexity and overall cost of fabrication. For a
fully integrated system, there are two viable options. The first
is to use foundries that support hybrid CMOS-silicon photonics
fabrication [38]. The second option is to fabricate two separate
chips, one for the electronic memory and related circuitry (e.g.,
DACs and drivers) and the other for the photonic system [39].
While this places more complexity on packaging, a multi-chip
approach may be beneficial in terms of eliminating thermal
crosstalk or the impact of heat generated by the electronic system
(specifically drivers) on the performance of the photonic system.

An additional benefit of this approach is that by decoupling the
device used for optical modulation from that of data storage, both
devices can independently optimize important metrics that could
be high challenging to optimize in a single material platform
(e.g., programming speed and cycling endurance). However,
most physical effects used for optical modulation are both
volatile and weak (e.g., Δn ∼ 10−3 to 10−4 per volt, ◦C, etc.).
This translates to constant external biasing (e.g., P-N junction)
or power dissipation (e.g., resistive microheater) to maintain the

Fig. 1. Overview figure illustrating various state-of-the-art memory tech-
nologies introduced in this section: (a) electronic memory coupled to optical
components; (b) on-chip memories based on nonvolatile photonics; and (c)
passive optical memories.

state of an optical weight, as well as large device footprints for
non-resonant devices such as MZIs and electro-absorptive mod-
ulators. Below, we briefly describe the most common devices
used to implement optical memory and their operation.

A Mach-Zehnder Interferometer (MZI) is a reconfigurable
2× 2 photonic coupler that uses two pairs of phase shifters
and bidirectional couplers to implement a 2× 2 unitary weight
matrix U (as illustrated in Fig. 2a). Normalized incident field
amplitudes are used to represent the elements of an input vector
�A. The optical output vector from the MZI is then equal to
�B = U �A. To reconfigure the weight matrix U , a pair of phase
shifters are arranged on any two arms of the MZI to control both
the interference and relative phase of the two outputs. Assuming
coherent inputs, 50:50 couplers, and two phase shifters ϕ and θ,
the output amplitudes can be described as:

�B =

[
ejϕsin (θ) cos (θ)
ejϕcos (θ) −sin (θ)

]
�A. (6)

MZIs can be organized into a mesh to serve as an optical
linear unit that performs matrix multiplications [40]. AnN ×N
arbitrary unitary matrix can be deployed on MZIs connected
in various mesh topologies, e.g., triangular [41], rectangular
[42], and binary tree [43]. While mathematically elegant, one
drawback of this approach is the requirement of ∼ N2 MZIs
to implement arbitrary N ×N matrices through the singular
value decomposition approach [40] which can lead to large
footprints and low compute density [12]. In addition to unitary
operations, MZIs can also be used to directly modulate the
optical amplitude of transmitted light in alternative architectures
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Fig. 2. Electronic memories coupled to optical modulators. (a) Schematic of
a reconfigurable MZI implementing the 2×2 unitary matrix U . (b) Schematic
of a programmable add-drop MRR using differential weighting to implement
positive and negative weights.

to the ones mentioned above. This has been used in the case of
coherent crossbar arrays which have the potential to extend to
multiple wavelengths more easily [44].

A Micro-Ring Resonator (MRR) is a reconfigurable optical
device that can be used to tune the relative transmission of its
through and drop ports at specific optical frequencies which
depend on the radius of the ring (illustrated in Fig. 2b) [45].
To implement matrix multiplication, an N ×N array of MRRs
can be used in a wavelength-division multiplexing (WDM)
scheme to form a “broadcast and weight” architecture [18]. Input
vectors are encoded as the modulated light intensities of multiple
wavelengths, while each MRR acts as a filter to selectively
apply attenuation to a specific input wavelength according to
a corresponding matrix element [46]. Crosstalk between MRRs
of similar optical resonance and free spectral range limit the
ultimate size of the N ×N matrix which can be implemented.
Moreover, MRRs also suffer from high sensitivity to temperature
and fabrication variations.

Resistive heaters and P-N junctions are most commonly used
as phase shifters in MZIs and MRRs [33], [34], [35], [37].
These two modulation approaches have certain advantages and
disadvantages for optical memory. For instance, despite having
very low insertion losses, resistive heaters suffer from slow
switching speeds (hundreds of kHz) and high static power con-
sumption (several mW). On the other hand, P-N junctions offer
high switching speeds and typically dissipate very little static
power. However, their insertion loss is high due to free-carrier
absorption and also dependent on the applied bias, making them
unsuitable for photonic processors using the coherent schemes
mentioned above.

When using these volatile optical modulators as memory
units, each modulator requires designated control circuitry to
read digital data from memory and then hold the transmission
or phase of the modulator constant. This not only introduces
complexity to the integrated system, but it also increases static
power dissipation from the DAC and driver blocks needed to hold
the state of each modulator. When combined with the energy
and latency of high-speed DACs, this can increase the overall

power consumption and latency of the photonic processor and
is analyzed in more detail in Section IV.

In recent years several methods have been used to eliminate
the need for DACs and directly use binary data with E/O mod-
ulators. Examples include directly modulating light with binary
inputs using segmented MZIs [36] and MRRs [33] with up to
4 bits of resolution. This is a promising approach for optical
memory as such schemes can even improve the DAC linearity
[33]. We compare the various modulation schemes described
above in Table I.

We also wish to note that there has been a substantial amount
of research conducted on optically-addressable digital memory
cells which are analogous to various electronic memory cell
architectures. This includes optical SRAM [49], optical DRAM
[50], and optical RAM [51], which can be coupled to other
optical components. This opens up the possibility of replacing
electronic memories with their optical counterparts. Section V
is dedicated to various memory technologies, and a comparison
of these memory types is presented in Table III.

B. On-chip Memories Based on Nonvolatile Photonics

A second approach for implementing on-chip photonic mem-
ories involves nonvolatile optical materials or phenomena,
where the stored weights are recorded in the form of erasable
refractive index and/or optical absorption changes (see Fig. 1b).
The examples include: 1) phase change materials (PCMs),
which exhibit giant optical property change upon undergoing a
nonvolatile amorphous-crystalline structural transition [52]; 2)
ferroelectric (FE) crystals exemplified by BaTiO3 (BTO) whose
electric polarization can be switched by an external electrical
field in a nonvolatile manner [53]; and 3) charge accumulation
in a floating gate or charge trapping in a dielectric layer, the
mechanism responsible for data storage in electronic flash mem-
ories, which modifies the optical attributes in a Si waveguide via
free carrier plasma dispersion [54] (Fig. 3). All the schemes are
amenable to electrical writing and optical reading [55], [56],
[57], [58]. Another key feature of these memories is multi-
level operation capacity, where the presence of intermediate
states (corresponding to e.g., mixtures of amorphous/crystalline
phases in PCMs [59] or partial FE domain switching in FE
crystals [60]) can be used to encode multi-bit information in one
single memory cell [61], [62], [63]. In-memory computing based
on nonvolatile photonic memories have been demonstrated in
single memory cells [64] as well as in large crossbar arrays
[65].

Compared to electronic memory driven approaches discussed
in the previous section, nonvolatile photonic memories allow
fixed weight storage with zero static power dissipation while
affording improved long-term data retention. These nonvolatile
photonic memory technologies also each boasts unique advan-
tages with respective technical limitations.

In addition to using variable attenuation to represent weights
as is illustrated in Fig. 3(b), low-loss PCMs [67] can execute
phase-only encoding functions in a coherent network [68].
PCM photonic memory cells are also ultra-compact, only a
few microns in length. However, they require relatively large
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Fig. 3. Nonvolatile optical memory technologies. (a) Schematic illustration
of a PCM-integrated photonic memory; (b) operating mechanism of the PCM-
integrated memory: less optical power is transmitted through the waveguide
if the PCM is in the crystalline state than when it is in the amorphous state
[52]. Write pulses are used to alter the structure of PCMs from crystalline to
amorphous and vice versa, resulting in changes in the amount of optical power
transmitted through these devices. By using modified write pulses, it is possible
to achieve multiple intermediate states between the crystalline and amorphous
phases, enabling a range of optical transmission levels and thus allowing for
variable attenuation. (c) Cross-section structure of a nonvolatile waveguide phase
shifter integrated with FE BTO crystal, which can serve as a basic building block
for photonic memory; (d) schematics depicting progressive FE domain switching
with increasing the voltage applied between the electrodes [53]; (e) tilted and
(f) cross-sectional schematics of a photonic memory device based on charge
accumulation in a floating gate. The black arrows indicate the charge carrier
flow directions during write and erase operations [66].

switching power (sub-nJ for all-optical switching [52] and a few
nJ’s for electrothermal switching [69]). Moreover, their cycling
endurance must be further improved [70]. In comparison, FE
devices claim considerably reduced switching power consump-
tion down to tens of pJ’s [53] as well as enhanced endurance
[71], although they require much larger footprint and a constant
DC bias to maintain electro-optic index change during readout.
Both PCM and FE devices also involve new materials and special
processes (backend deposition for PCMs and wafer bonding for
FE crystals) for integration with standard Si photonic foundry
process. The charge accumulation or trapping devices hold the
advantage of full CMOS compatibility, although they suffer from
similar limitations as their electronic flash memory counterpart
in low write/erase speed and endurance. Table II summarizes
these various optical memory technologies with relevant perfor-
mance metrics.

C. Passive Optical Memories

Controlling signal propagation through delay lines is another
promising approach to implement optical memory. This ap-
proach has been used as volatile optical memory for computing
in both recurrent and convolutional photonic neural networks
[16], [77], [78], [79]. When combined with time-multiplexing
and wavelength dispersion, optical delay lines have been used to
achieve extremely high computational throughput with ultra-low
latencies [16]. The fact that they are fully passive and have
minimal latency (i.e., time of flight of the optical signal) are
two major advantages of using optical delay lines for temporary

data storage. However, optical delay lines require significant area
on-chip—limited by the bending radius and spacing between
neighboring waveguides—which increases with the required
delay. In addition, it is challenging to efficiently tune these
delays after fabrication. Heterogeneous approaches which inte-
grate multiple optical degrees of freedom using WDM, optical
memories, and delay lines is a promising direction for photonic
computing [79].

IV. ENERGY-LATENCY ANALYSIS

In order to establish a comparison between emerging memory
technologies in the optical domain (O) with their electronic (E)
counterparts, we can utilize the figure of merit defined as the
READ-WRITE operations ratio, as well as the overall energy
and latency cost when considering E/O and O/E conversions.

A. READ Operation

For an ideal photonic memory based on PCMs or other
nonvolatile material platform, the READ operation requires
the energies for the creation and detection of a single photon
to access the stored data [80]. Considering a laser source, a
memory insertion loss (0.0075 dB/bit [81]), and photodetector
readout, the READ (access) energy of a photonic random-access
memory (P-RAM) takes <1 fJ/bit for an on-off-keyed signal at
30 GHz data rates, or, about 10 fJ/bit access for a higher bit
resolution (e.g., PAM-16 for a 4-bit one) [82], [83], [84], [85].
State-of-the-art SRAM memory using two inverters, which can
be in one of two bistable states, has an access latency of 0.21
ns and costs about 5 pJ/bit access [86], [87]. Energy and latency
penalties increase when accessing data stored in SRAM cache
memories, costing around 180 pJ and 1.66 ns per access for
FinFET-based technologies [88]. Thus, a generic photonic link
offers MAC operations and memory access of 10–100× higher
MAC/s/J/access than SRAM, highlighting how a P-RAM can
improve the performance of a computational processor.

Table III presents a comparison of various relevant electronic
and optical memory technologies. It is worth noting that these
technologies should be compared on an apples-to-apples basis,
i.e., electronic DRAM (eDRAM cell) with optical DRAM (P-
RAM), SRAM with optical SRAM (O-SRAM), and electronic
cache (SRAM cache) with optical cache. According to the data,
it is clear that optical memories generally have larger footprints
by two or three orders of magnitude compared to their electronic
counterparts. On the other hand, optical memories tend to have
lower latency by two or three orders of magnitude. Finally,
optical memories tend to have lower read energy by an order
of magnitude.

B. WRITE Operation

When writing data to a P-RAM cell, triggering the phase
transition of the chalcogenide material, switching ferroelectric
domains, etc. is required. This leads to a strong modulation
of optical properties (phase for materials such as Sb2Se3 and
BTO, or amplitude for materials such as GST, GSST, and
GSSe). In the case of PCMs, local annealing is used to switch
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Fig. 4. Trend of total energy consumption for writing over time for P-RAM and
SRAM. PCM-based P-RAM does not require additional energy once written,
while FE-based P-RAM requires a DC voltage to read the information. SRAM
requires a constant power to overcome internal leakage, power that becomes
more prominent as DAC and E/O conversion are required to interface the optical
waveguides.

the material—typically either using all-optical heating or an
on-chip electro-thermal microheater (e.g., ITO, doped silicon,
or metal heaters [82], [84], [92]). This multilevel, ultra-compact
approach using PCMs with low IL (such as GSST and GSSe
[80], [81]) enables highly efficient fixed weight banks with low
power consumption. Compared with writing to SRAM cells, the
writing of P-RAM based on (Joule) heating is limited by the
behavior of heat propagation and thus requires higher writing
energies (few pJ to sub-nJ for all-optical approaches [92] and
few nJ for integrated microheaters [93]), as well as higher latency
(sub-μs). In comparison, the SRAM address line, that is operated
for opening and closing the switch and to control the certain
transistors that permits reading, can experience a writing speed
of ∼1 to 2 ns per access with an associated energy down to
<10 pJ/bit. However, unlike the volatile SRAM which needs
constant external voltage applied once the information is written
to preserve from the current leakage (∼2 nW/bit [88], [90]),
PCM based non-volatile P-RAM does not require continuous
external energy after the information is written. Thus, one state
of PCM can be maintained passively long term. From an energy
perspective, PCM based P-RAM is more suitable for applica-
tions which do not require frequent updates and instead require
low-cost, long-term data storage which can be rapidly accessed
once the information is written. In fact, there is a point beyond
which P-RAM becomes more energy efficient compared to the
SRAM energy requirements for storing information (Fig. 4). For
novel PCM materials, researchers might look for any compounds
with lower switching temperatures to further reduce the WRITE
energy of the P-RAM, and so reducing the threshold time where
P-RAM is more efficient for storing information than SRAM.

C. Electrical-Optical Conversion

Conversion between the electrical and optical domains is al-
ready an overhead cost that many systems pay every day. Assess-
ing the cost in terms of power and latency for these conversions
shapes the system design and choice of memory, especially when

Fig. 5. A roadmap for optical computing is presented, emphasizing the current
technologies and future advancements that are necessary to achieve a high-
performance, state-of-the-art computing unit.

considering neural networks. Considering electronic memories
such as SRAM, the electrical signal needs to go through a DAC
(∼1 nJ and ∼3 ns [94]), driving amplifier, and electro-optical
modulator to convert it into an optical signal. In the same
fashion, the detected optical signal requires a trans-impedance
amplifier (TIA) and ADC to convert the processed data back to
the electronic domain [39]. In this kind of architecture, where
each step of the network has to perform a E/O/E conversion, it
is straightforward to realize that scaling to multiple processing
layers can introduce several problems, such as the need to buffer
intermediate information in an SRAM cache, as well as limit the
latency and efficiency of the network due to the DACs and ADCs.

A full optical network, where the weights are stored in a
nonvolatile fashion by means of P-RAM elements [28], [74],
[95], the signals are converted once to the optical domain, and
converted back once at the end of the network, would take
full advantage of the wide bandwidth provided by the optical
domain and extremely low latency and low energy consumption.
However, a lack of efficient, nonlinear optical elements with low
optical threshold powers currently limits the practicality of this
approach for deep neural networks.

V. OUTLOOK AND ROADMAP FOR DATA STORAGE IN OPTICAL

COMPUTING

A. Roadmap for Electronic Memories for Optical Computing

Efficient integration of high-density electronic storage with
analog optical computing platforms is a challenge that re-
quires alleviating (or removing) the energy-consuming digital-
to-analog and electro-optical conversions. The simplest solution
is seemingly to adopt a completely analog technology using,
for instance, memristors in the electrical domain directly inte-
grated to photonic waveguides [96], [97], [98]. DACs for data
input and ADCs for data output are not needed if the optical
processor is communicating with an analog environment and
E/O conversion can be realized employing the same memristive
element. However, the world runs on digital technology and
computing with an analog architecture would certainly require
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data type conversion. The prospect of E/O conversion of digital
signals using optical DACs (see Section III-A and Table I), and
ideally also ADCs, open the possibility of faster operations with
simplified circuitry. The latency can also be further optimized
by bringing the electronic memory bank closer to the photonic
processor using monolithic co-integration of nanoelectronics
and photonics rather than using two separate chiplets [38].

Moreover, novel modulation approaches for electro-optical
conversion are necessary to avoid the widespread use of thermo-
optical control, which faces serious heating issues when scaling
to hundreds of simultaneously operating devices. Similarly,
faster carrier-based modulation faces high IL and large form
factors—both of which are detrimental to computing tasks since
the complexity of the photonic circuitry can afford neither.
Optomechanical modulators [99], while still volatile unless
using latches or bi-stability [100], [101], are potential CMOS-
compatible platforms given their low insertion losses, low pow-
ers, and form factors comparable to thermo-optic modulators.
Provided CMOS integration in the future, optical modulators
based on 2D materials could provide an even closer to optimal
platform for energy-efficient modulation [102].

B. Roadmap for Photonic Memories Based on Nonvolatile
Materials

Photonic integrated technologies, as available in current com-
mercial foundries, must deal with large form factors due to wave-
guide footprints, a fact that could improve in the future by adopt-
ing smaller node CMOS fabrication processes to achieve reliable
nanophotonic structures [12]. The current form-factor limitation
means that electronics’ storage densities of 10 Gb/mm2 [103]
are likely unachievable with photonic memories, especially
those based on material platforms directly embedded into the
photonic circuits. Yet, the prospect of a novel optical memory
class that, despite the lower storage density, can contribute
to and enhance the performance of the memory hierarchy in
hybrid optoelectronic architectures—especially photonic com-
putational memory—is enough to motivate the development of
an “ideal” photonic memory. The target performance metrics for
optical memories (described in detail in Section II) are ultimately
determined by the computing task at hand, just like the different
electronic technologies in a Von Neumann computer’s memory
hierarchy. Whether volatile or nonvolatile, written with higher
or lower frequency, etc., some features that any ideal photonic
memory should have include:

1. CMOS compatibility for guaranteed scalability
2. Low IL comparable to the propagation loss of the platform

(<1 dB/cm)
3. READ and WRITE energy consumption of <fJ and fJ-pJ,

respectively
4. Large modulation depths >10 dB for amplitude modula-

tion and at least 2π for phase modulation
5. WRITE cyclability >108

6. Precision and stability that are not compromised by envi-
ronmental effects such as temperature or material degra-
dation.

Despite the challenges described in Section III, there is still
ample room for improved performance in nonvolatile photonic
memory technologies. For instance, even though the PCM pho-
tonic memories come with limited endurance today (> 5 × 105

cycles [81]), there does not appear to be any intrinsic limitations
that precludes them from reach endurance levels attained in
PCM-based RF switches (1.5× 108 cycles [104]) and electronic
memories (> 2 × 1012 cycles [105]). Their energy consumption
can also be minimized by searching for new PCM compositions
with reduced liquidus temperature and fast crystallization kinet-
ics or by reducing the device’s effective area through thermal
engineering [106]. On the other hand, development of new FE
crystals compatible with CMOS backend processing, such as
HfO2-based oxide alloys [107], [108], could potentially facili-
tate their integration with standard photonic integrated circuits.
Finally, other alternative emerging nonvolatile integrated pho-
tonics platforms may also prove useful for photonic memory
applications [109], [110], [111]. Whether backend, frontend, or
eventually fully integrated into CMOS fabrication processes,
the novel active material-based approaches require a scalable
fabrication to guarantee high density photonic architectures and
mass production.

C. Optical Memories in Edge/Cloud Computing

Alleviating the von Neumann bottleneck, especially if using
fiber optics to store and fetch data—commonly done in data
centers for cloud computing—is the longstanding promise of
optical memories in conventional computers. This task is yet to
be demonstrated given the complexity of realizing high-density
optical storage, mostly due to the lack of fully CMOS compatible
platforms and their large footprints. On the other hand, the de-
velopment of fully integrated optical or electronic memory with
a photonic processor either in a von Neumann [112] or brain-
inspired architectures [8], [13], [113], together with integrated
light sources and photodetectors, can lead to the development of
packaged devices with the portability and processing capacity
required to enhance edge computing. Inference [13], [29] and
high-throughput matrix-vector multiplications [12], [95] have
already led to outstanding, high-performance demonstrations
using on-chip photonic processors—systems that can be inte-
grated to future edge computing devices.
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