Scale-free Networks

Work of Albert-László Barabási, Réka Albert, and Hawoong Jeong Presented by Jonathan Fink

February 13, 2007

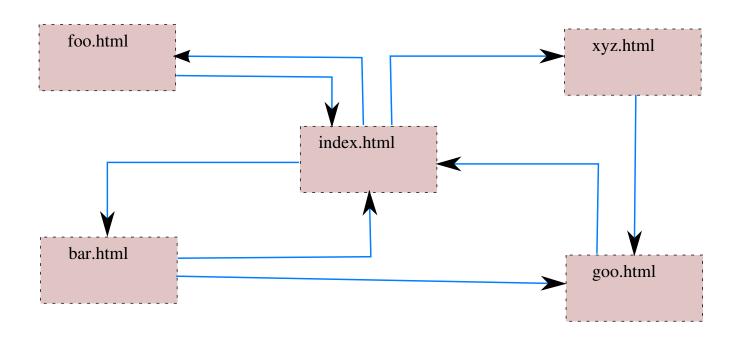
Outline

- \square Case study: The WWW
- □ Barabási-Albert Scale-free model
- □ Does it predict measured properties of the WWW?

Case Study: The WWW

Consider a graph where ...

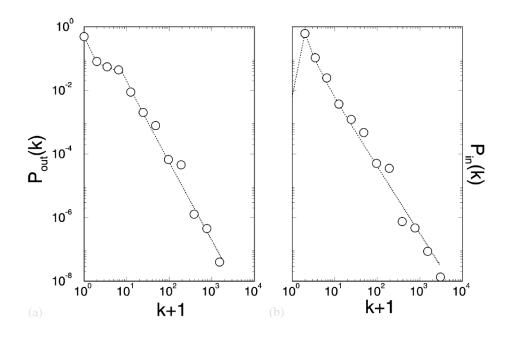
- □ HTML documents are nodes
- \square Links between HTML documents are edges



We are interested in average vertex connectivity as graph grows very large

Empirical measurements of the WWW

- □ Automated agent reads web-pages (in the nd.edu domain)
- □ Recursively follows links and builds graph of system
- \square Calculate link probabilities $P_{\mathsf{out}}(k)$ and $P_{\mathsf{in}}(k)$



$$P_{\mathrm{out}}(k) \sim k^{\gamma_{\mathrm{out}}} \quad P_{\mathrm{in}}(k) \sim k^{\gamma_{\mathrm{in}}}$$

Connectivity and Topological Properties of the WWW

 ℓ : smallest number of links from one node to another

 ℓ is computed by constructing a random graph with

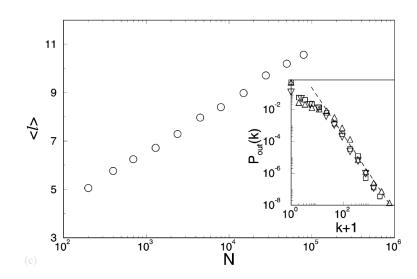
- \square N vertices
- \square k outgoing links from each vertex where k is drawn from empirically determined power-law distribution $P_{\mathsf{out}}(k)$
- \square Destinations determined randomly, $P_{\mathsf{in}}(k)$ satisfied for each vertex
- \square Compute $<\ell>$ to be the average across all vertex pairs

Connectivity and Topological Properties of the WWW

ℓ : smallest number of links from one node to another

 ℓ is computed by constructing a random graph with

- \square N vertices
- \square k outgoing links from each vertex where k is drawn from empirically determined power-law distribution $P_{\mathsf{out}}(k)$
- \square Destinations determined randomly, $P_{\mathsf{in}}(k)$ satisfied for each vertex
- \square Compute $<\ell>$ to be the average across all vertex pairs



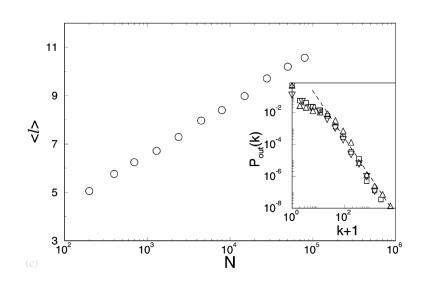
$$<\ell> = 0.35 + 2.06 \log(N)$$

Connectivity and Topological Properties of the WWW

ℓ : smallest number of links from one node to another

 ℓ is computed by constructing a random graph with

- \square N vertices
- \square k outgoing links from each vertex where k is drawn from empirically determined power-law distribution $P_{\mathsf{out}}(k)$
- \square Destinations determined randomly, $P_{\mathsf{in}}(k)$ satisfied for each vertex
- \square Compute $<\ell>$ to be the average across all vertex pairs



$$<\ell> = 0.35 + 2.06 \log(N)$$

 $<\ell_{\mathsf{nd.edu}}> = 11.2 \text{ (data)}$
 $<\ell_{3\times10^5}> = 11.6 \text{ (model)}$
 $<\ell_{8\times10^8}> = 18.59 \text{ (2000 www)}$
 $<\ell_{1.15\times10^{10}}> = 21.07 \text{ (2005 www)}$

Barabási-Albert Scale-free Model

Earlier models

- \square Erdös-Rényi (ER) and Watts-Strogatz (WS) models predict P(k) with exponential decay
- \square Assume networks with a fixed number of nodes N
- ☐ Links are random and uniform

Barabási-Albert Scale-free Model

Earlier models

- $\ \square$ Erdös-Rényi (ER) and Watts-Strogatz (WS) models predict P(k) with exponential decay
- \square Assume networks with a fixed number of nodes N
- □ Links are random and uniform

Barabási-Albert Model

- \square Growth: Initialize with m_0 vertices and add a new vertex at every timestep with m edges to nodes already in the system ($m \le m_0$)
- □ Preferential Attachment: Links for a new vertex are chosen according to

$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$

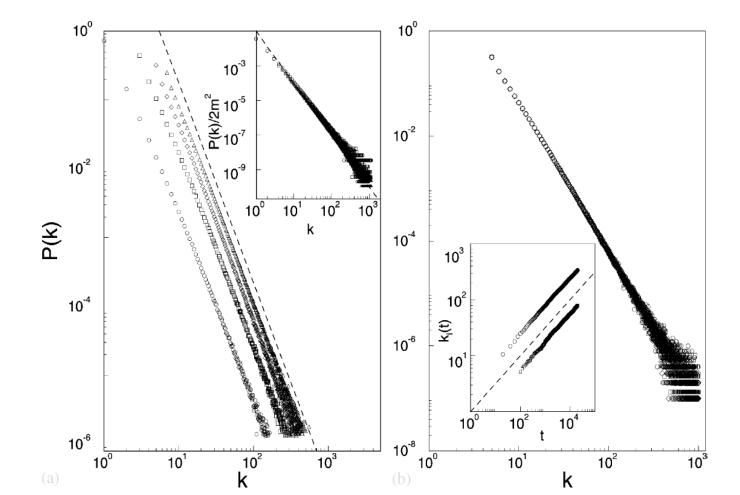
so that links to highly connected nodes are more likely.

Scale-free Stationary State - Numeric

10¹

10°

- $N = t + m_0$ vertices
- mt edges



10³

10¹

10²

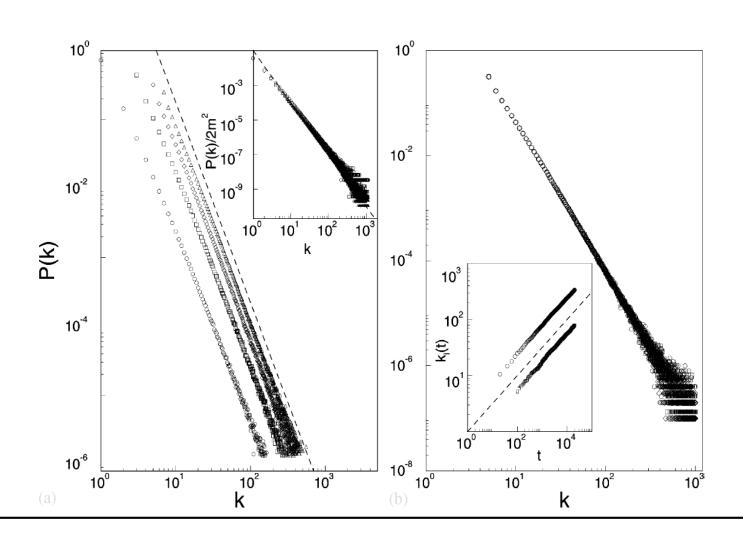
k

10³

Scale-free Stationary State - Numeric

- \square $N = t + m_0$ vertices
- \square mt edges

- - scale-free stationary state



Scale-free Stationary State - Analytic

Connectivity of vertex i

- Vertex i aquires edges at a rate $\frac{\partial k_i}{\partial t} = \frac{k_i}{2t}$ with boundary condition $k(t_i) = m$.
- \square Solution: $k_i(t) = m(\frac{t}{t_i})^{0.5}$

Scale-free Stationary State - Analytic

Connectivity of vertex i

- Vertex i aquires edges at a rate $\frac{\partial k_i}{\partial t} = \frac{k_i}{2t}$ with boundary condition $k(t_i) = m$.
- \square Solution: $k_i(t) = m(\frac{t}{t_i})^{0.5}$

Connectivity distribution

$$P[k_i(t) < k] = P[m(t/t_i)^{1/2} < k]$$

$$= P[t_i > (m/k)^2 t]$$

$$= 1 - P[t_i \le (m/k)^2 t]$$

$$= 1 - \frac{m^2 t}{k^2 (t + m_0)}$$

Then,

$$P(k) = \frac{\partial P(k_i(t) < k)}{\partial k} = \left(\frac{2m^2t}{m_0 + t}\right) \left(\frac{1}{k^3}\right) \to 2m^2k^{-3}$$

Which yields a stationary power-law distribution with $\gamma=3$

Do we need Growth & Preferential Attachment?

- ☐ *Growth* Only
 - $\Pi(k) = 1/(m_0 + t 1)$
 - $P(k) \sim \exp(-\beta k)$
- □ Preferential Attachment Only
 - Start with N vertices, no edges
 - $\Pi(k_i) = k_i / \sum_j k_j$
 - P(k) is not stationary eventually all vertices are connected
- □ **Both** *Growth* and *Preferential Attachment* are necessary

Matching WWW with Barabási-Albert Model

Discrepancies

- \square $\gamma_{\mathsf{model}} = 3$
- \square $\gamma_{\text{out}}=2.45$, $\gamma_{\text{in}}=2.1$

Matching WWW with Barabási-Albert Model

Discrepancies

- \square $\gamma_{\mathsf{model}} = 3$
- \square $\gamma_{\mathsf{out}} = 2.45$, $\gamma_{\mathsf{in}} = 2.1$

Possible Reasons

- ☐ Graph is not simply growing
- \square Non-unique model (vertex ordering affects γ)
- \square Model of $\Pi(k)$ may be wrong
- ☐ Rewiring of links competes with growth

Summary

Barabási-Albert model is one step closer to representing systems like the WWW that have a power-law distribution on links.

In general, there may be several possible absorbing states:

- Scale-free state growth sufficiently exceeds link reattachment
- □ Fully connected state probability of adding links is too high
- \square Ripened state popular vertices get *all* connections