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Abstract

Large Language Model (LLM) inference, where a trained model generates text one word
at a time in response to user prompts, is a computationally intensive process requiring ef-
ficient scheduling to optimize latency and resource utilization. A key challenge in LLM
inference is the management of the Key-Value (KV) cache, which reduces redundant com-
putations but introduces memory constraints. In this work, we model LLM inference with
KV cache constraints theoretically and propose a novel batching and scheduling algorithm
that minimizes inference latency while effectively managing the KV cache’s memory.

More specifically, we make the following contributions. First, to evaluate the perfor-
mance of online algorithms for scheduling in LLM inference, we introduce a hindsight optimal
benchmark, formulated as an integer program that computes the minimum total inference la-
tency under full future information. Second, we prove that no deterministic online algorithm
can achieve a constant competitive ratio when the arrival process is arbitrary. Third, moti-
vated by the computational intractability of solving the integer program at scale, we propose
a polynomial-time online scheduling algorithm and show that under certain conditions it can
achieve a constant competitive ratio. We also demonstrate our algorithm’s strong empirical
performance by comparing it to the hindsight optimal in a synthetic dataset. Finally, we
conduct empirical evaluations on a real-world public LLM inference dataset, simulating the
Llama2-70B model on A100 GPUs, and show that our algorithm significantly outperforms
the benchmark algorithms. Overall, our results offer a path toward more sustainable and
cost-effective LLM deployment.

Keywords: online optimization, LLM inference, scheduling, competitive ratio

1 Introduction

Large Language Models (LLMs) [Brown et al., 2020, Chowdhery et al., 2023, OpenAI, 2023, Ka-
plan et al., 2020, Wei et al., 2022] represent a significant advancement in AI, enabling machines
to generate human-like text across various languages and contexts. Trained on vast datasets,
these models are becoming critical for applications such as chatbots [Anthropic, 2023, Char-
acter, 2021, OpenAI, 2019, 2023], search engines [Microsoft, 2023, Google, 2023, Komo, 2023,

∗Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Email:
jaillet@mit.edu.

†HKUST. Email: jsjiang@ust.hk.
‡Microsoft Research. Email: kmellou@microsoft.com.
§Microsoft Research. Email: mmolinaro@microsoft.com.
¶Sloan School of Management, Massachusetts Institute of Technology. Email: podimata@mit.edu.
‖Operations Research Center, Massachusetts Institute of Technology. Email: zhou98@mit.edu. Part of this

work was done during a summer internship at Microsoft Research – Redmond.

1

ar
X

iv
:2

50
2.

07
11

5v
5 

 [
cs

.L
G

] 
 1

5 
Ja

n 
20

26

https://arxiv.org/abs/2502.07115v5


Figure 1: Example of online batching and scheduling.

Perplexity, 2022, You.com, 2020], code assistants [Amazon, 2023, GitHub, 2021, Replit, 2018],
and healthcare services [Cascella et al., 2023, Peng et al., 2023, Sallam, 2023].

LLM Inference and the KV Cache. LLMs pose substantial computational challenges,
particularly during the inference process where inputs are processed to generate responses. In
LLM inference, a “prompt” is the input text provided to initiate a model’s response generation.
These prompts are broken down into smaller units called “tokens”, which may consist of words,
sub-words, or punctuation marks based on the model’s vocabulary. For instance, the prompt
“What color is the sky?” can be tokenized into six units: “What,” “color,” “is,” “the,” “sky,”
and “?”. Similarly, a response like “The color is blue.” would be divided into five tokens: “The,”
“color,” “is,” “blue,” and “.”. When a prompt request is processed, typically it is not answered
all-at-once; instead, it requires multiples rounds of processing to generate the tokens of the
answer sequentially; in the previous example, the output token “blue” can only be generated
after the preceding one “is” is produced by the model.

Each token is associated with two vectors: the Key (K), which represents the token’s signifi-
cance to other tokens based on its relevance, and the Value (V), which stores information that
is used in the output if the token is deemed relevant. These KV pairs are computed based only
on the token content and its absolute position, and once computed, they remain fixed for the
entire process.

During inference, the Transformer attention mechanism [Vaswani et al., 2017] uses the stored
keys and values to determine how tokens relate to one another. Without optimization, gener-
ating each new token would require recalculating the attention scores over all previously seen
tokens, leading to a quadratic increase in computation as the sequence grows. To avoid this,
modern LLMs use a KV cache, which stores all previously computed keys and values. This
allows the model to reuse past computations efficiently, reducing the cost of generating each
token to linear in the sequence length. However, the KV cache causes memory usage to grow
linearly with the number of tokens, and unmanaged growth can result in the GPU running out
of memory [Hooper et al., 2024, Kang et al., 2024].

Put together, there are three unique challenges posed by LLM inference: (i) each token can only
be generated after its predecessor; (ii) the memory usage grows linearly during inference; and
(iii) given the scale of real-world LLM inference, decisions must be made within milliseconds,
thus making linear or mixed-integer programming solutions unusable.

Batching and Scheduling. When multiple prompt requests are in the queue, batching re-
quests together (rather than handling them one-by-one) and scheduling their processing im-
proves GPU efficiency. For example, Figure 1 illustrates the online batching and scheduling
process for two distinct prompts, P1 (“What color is the sky?”) and P2 (“How are you do-
ing?”), during LLM inference on a single GPU. Initially, P1 is processed within its own batch.
When P2 arrives, it must wait, as simultaneous processing of prompts is limited by worker avail-
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ability. Once P1 is processed and generates its first output token, “The,” the worker batches
this token from P1 and the prompt P2 together and processes them together. After P2 produces
its first output token, “I”, and P1 produces the next token “sky”, both tokens, “sky” and “I”,
are then batched together for efficient token processing, facilitating the subsequent generation
of “is” for P1 and “am” for P2.

Our focus. Our focus in this work is to provide scheduling algorithms for LLM inference.
Scheduling for LLM inference differs from classical scheduling problems primarily because of
the bottlenecks introduced by the KV cache as we articulated above (i.e., the linear memory
usage growth, and the KV cache’s dynamic behavior). These challenges were also outlined in
the recent survey of Mitzenmacher and Shahout [2025]. We also include further explanations of
the challenges of scheduling for LLM inference (compared to standard scheduling problems) in
Appendix A.2.

Importance. Beyond its theoretical importance, optimizing the scheduling policy in LLM
inference is crucial in practice for three reasons. First, it can lead to reduced operational costs;
the average daily cost of LLM inference for platforms like ChatGPT is approximately $700,000
[GilPress, 2024, Sun, 2023]. Second, it can enhance user satisfaction by minimizing response
times. Last but not least, more efficient scheduling promotes sustainability, as LLM inference
currently uses vast amounts of electricity and water daily [Gordon, 2024]. For example, Chat-
GPT’s daily electricity usage exceeds half a million kilowatt-hours (equivalent to the energy
consumption of nearly 180,000 U.S. households) and a single conversation uses approximately
fifty centiliters of water, akin to the volume of a standard plastic bottle. By optimizing the
scheduling policy, we can reduce the number of GPUs required, conserving resources and con-
tributing to sustainability efforts. In fact, designing environmentally-friendlier LLM inference
is an active area of research in systems and engineering, see e.g., [Li et al., 2025b].

1.1 Results Roadmap

In this work, we make the following contributions.

Mathematical model for online batching and scheduling in LLM inference. While
many studies have focused on improving LLM inference efficiency via engineering [Agrawal
et al., 2023, Kwon et al., 2023, Patel et al., 2023, Pope et al., 2023, Sheng et al., 2023, Yu
et al., 2022, Zhong et al., 2024], there are very few formal models in this space. To address this
gap, we propose a model (Section 2) for optimizing the batching and scheduling policy in LLM
inference. Batching entails selecting which requests to process concurrently, while scheduling
determines their timing.

Hindsight optimal benchmark via Integer Programming (IP). In Section 3, we intro-
duce a hindsight optimal benchmark that assumes complete knowledge of future request arrivals
and output lengths. We formulate this as an IP that computes the globally optimal scheduling
policy minimizing total end-to-end latency under GPU memory constraints. Our IP captures
operational constraints, including non-preemptive execution, per-token memory growth, and
memory limits. This optimization benchmark serves as a gold standard for evaluating the
quality of online scheduling algorithms.

Online batching and scheduling algorithm. In Section 4, we propose a practical online
batching and scheduling algorithm: Memory Constrained Shortest First (MC-SF). The algo-
rithm prioritizes partially completed requests to reduce latency, and then selects additional
waiting requests to fill each batch by maximizing batch size while respecting KV cache memory
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constraints throughout token generation. We characterize the feasibility of our algorithm by
introducing constraints that anticipate future KV cache memory usage, ensuring that the al-
gorithm only schedules batches that remain within memory limits throughout their execution.
While we prove that no deterministic online algorithm can in general have bounded competi-
tive ratio, we show that under some assumptions in the structure of the arrivals, our proposed
algorithm has constant competitive ratio, providing theoretical underpinning for its practical
performance. For our theoretical analysis, we assume that the algorithm has access to (rela-
tively reliable) predictions of the output length of the prompt response; see e.g., [Zheng et al.,
2024] for practical implementation of obtaining such predictions.

Synthetic-data experiments. In Section 5.1, we conduct numerical experiments on synthet-
ically generated instances to evaluate the performance of our proposed MC-SF relative to the
hindsight optimal. We design two arrival models to disentangle the sources of performance
loss: one where all requests arrive at time zero (eliminating information asymmetry), and one
with online stochastic arrivals (reflecting real-world uncertainty). In the first model, MC-SF has
nearly optimal performance, with an average latency ratio of 1.005 and exact optimality in 114
out of 200 instances. In the second model, where future arrivals are unknown, the average ratio
remains competitive at 1.047.

Experiments on public conversation dataset. In Section 5.2, we perform numerical sim-
ulations using the conversation dataset from Zheng et al. [2023], collected from over 210,000
unique IP addresses via the Vicuna demo and Chatbot Arena website. We evaluate our algo-
rithm against benchmark parametrized algorithms with six parameter configurations in both
high- and low-demand settings. In both the high- and low- demand settings, our algorithm
significantly outperforms the benchmark algorithms. These gains can be translated to reduced
energy consumption and lower costs, supporting more sustainable and efficient LLM deployment.
Our experimental results in the synthetic and real-world datasets validate the performance of
our algorithm beyond the assumptions that we placed in the theoretical part of the work.

1.2 Related Work

Our work is primarily related to two streams of literature; online scheduling and LLM inference.
Both streams include plethora of papers on variations of the main problem and it is virtually
impossible to survey them all in this paper. We include the most relevant and/or representative
papers below. Section 6 includes some related works pertaining to potential future directions
stemming from our model.

Online Scheduling. In online scheduling, a decision-maker needs to decide the optimal timing
for job processing as jobs arrive sequentially. There is a large literature on this subject, where
different objectives and input models have been studied; see the books/surveys Albers [2003,
2009], Roughgarden [2020], Leung [2004]. A particularly relevant set of studies are those that
extend beyond processing individual jobs, where jobs of the same type can be grouped into
batches and processed simultaneously [Lucier et al., 2013, Im and Moseley, 2013, Liu and Lu,
2015, Li et al., 2020]. Another relevant line of work considers precedence constraints, either
within parts of the requests or between different requests Garg et al. [2019], Azar and Epstein
[2002], Robert and Schabanel [2008], Agrawal et al. [2016]. Yet, the unique demands of LLM
inference (in particular the growing memory usage in the KV cache and the combination of
both batching and the dynamics of sequential token generation) limit the applicability of the
existing algorithms.

LLM Inference from an Engineering Perspective. LLM inference is a developing field
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with numerous engineering-oriented studies emerging within systems research. For instance, in
scheduling, Patel et al. [2023], Zhong et al. [2024] proposed to use separate GPUs for processing
only the prompt and the token phases of a request. Regarding batching, works like Yu et al.
[2022], Agrawal et al. [2023, 2024b] examine methods for statically or dynamically grouping
pending requests for batch execution. Liu et al. [2024] boosts LLM inference efficiency by
introducing multi-head latent attention, which reduces the KV cache through low-rank key-
value joint compression. Zhu et al. [2023] proposed approximate caching and dynamic choice
of model size to accelerate LLM inference. Another problem in modern LLM inference is head-
of-line blocking, where long-running jobs delay shorter ones, thus increasing the average and
tail latency. Wu et al. [2023] tackle this by assigning priority queues for the prompts based on
their input length and (re)assigning prompts to different queues as time goes by. Although all
of the aforementioned papers boast significant performance gains practically, they are do not
come with formal theory bounds. As such, they may be prone to pathological instances. Our
approach in this work has been to center the need for theoretical advancements in scheduling
for LLM inference.

LLM Inference from a Mathematical Perspective. Recently, there has been a flurry of
works from the operations research and optimization community on the theoretical underpinning
of scheduling for LLM inference. Similarly to our work, Bari et al. [2025] model LLM serving
as an online batching/scheduling problem that must coordinate prompt inputs and responses
all while respecting inference-system constraints. Unlike our KV-centric model, they use a
more GPU-execution–driven iteration model. Ao et al. [2025] model optimization for LLM
inference as a multi-stage optimization problem. Li et al. [2025a] study a model for scheduling
in LLM inference centered on throughput/maximal stability, with service times driven by an
empirically motivated (piecewise-linear) function of total tokens per batch rather than KV-
memory feasibility being the primary constraint as is the case in our paper. Finally, there has
also been some recent work on caching for LLM inference [Zhang et al., 2025].

2 Model

We study a batching and scheduling problem within a discrete time horizon for a single compu-
tational worker (GPU). The worker has a memory constraint M > 0.1 Let I denote the instance
consisting of unprocessed prompt requests arriving over the discrete time horizon. Each request
i ∈ I has an associated size si, representing the number of tokens in the prompt, and response
length oi, indicating the number of tokens in its response.

Request Processing. Each request is processed online and undergoes two primary phases:

1. Prompt Phase: The prompt is processed in order to generate the initial output token. During
this phase, the memory required for request i is si, accounting for the storage of key and value
matrix for all tokens in the prompt within the KV cache.

2. Token Phase: Subsequent tokens are produced sequentially. In this phase, the memory
needed to process the jth token of request i (j ∈ {1, 2, . . . , oi}) is si + j. This increment
accounts for each new token’s key and value, which adds 1 to the existing KV cache memory.
Consequently, the peak memory usage for processing the final token of request i reaches si + oi.
After the completion of the last token, the KV cache clears all related memory usage si + oi for
that request.

1M depends on the memory of the GPU and the complexity of the large language model in use.
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Batch Processing. A batch may include any unprocessed prompt or output token of different
requests; when a prompt request is processed in a batch, its first output token is generated, and,
similarly, processing an output token results in the generation of the subsequent token upon
batch completion. We assume each batch’s processing time is one unit of time, and only one
batch can be processed at a time. Moreover, we assume that this process is non-preemptive,
meaning that once a prompt request i is added to a batch, it must be processed continuously
for oi periods until its final output token is processed. The memory constraint ensures that
for all ongoing requests (those not fully processed or pending final output tokens), the total
memory usage at any given moment does not exceed M , i.e., if S(t) is the set of ongoing

requests at time t and o
(t)
i is the index of the output token of such request i, then it holds that∑

i∈S(t)(si + o
(t)
i ) ≤ M. The scheduler’s task is to decide when (i.e., in which batch) to start

processing each incoming request.

Prompt Arrival Process. In this paper, we consider an online arrival model in which un-
processed prompt requests are assigned to the scheduler sequentially over time. An instance
I consists of prompt requests that arrive one by one, where each request i is associated with
an arrival time ai; the arrival time ai, as well as the request sizes (si, oi) are revealed only at
the moment when request i arrives. At any time t, the decision-maker has complete knowl-
edge of (ai, si, oi) for all requests i such that ai ≤ t, and no information about requests with
ai > t, which have not yet arrived. In fact, our proposed algorithm works with only a prediction
õi ≥ oi of the true output sizes; see Section 4 for more details. We remark that methods for
high-accuracy output-size prediction are a very active area of research (e.g., [Jin et al., 2023, Hu
et al., 2024, Cheng et al., 2024, Qiu et al., 2024b,a, Fu et al., 2024, Shahout et al., 2025]); see also
Mitzenmacher and Shahout [2025] for a survey and open problems from a queuing-theory and
optimization perspective. For example, Zheng et al. [2024] present a method with prediction
accuracy up to 80%.

Evaluation Metrics. We evaluate an algorithm A’s performance through its end-to-end la-
tency. For each request i, its end-to-end latency is computed as ci(A) − ai, where ci(A) is the
time the last output token for request i is processed and ai is the time that request i arrives.
We use TEL(I;A) :=

∑
i∈[n] ci(A) − ai to denote the total end-to-end latency of algorithm A

for a request sequence I.

3 Hindsight Optimal Benchmark and Integer Programming

To evaluate the performance of an online scheduling algorithm, we introduce a natural bench-
mark known as the hindsight optimal. This benchmark represents an idealized scheduling policy
that has complete foresight, i.e., it knows all future request arrivals ai’s and their corresponding
prompt and output lengths si and oi at the start of the time horizon. Although such information
is not available to any real-world system, the hindsight optimal serves as a gold standard: it
represents the best possible performance that any algorithm could achieve given perfect future
knowledge.

Define T̄ as an upper bound on the time when all jobs are completed; for instance, we can take
T̄ =

∑
i∈[n](ai + oi). We formulate an Integer Program that computes the minimum possible
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total end-to-end latency achievable by any scheduling policy:

min
∑
i∈[n]

 ∑
t={ai,...,T̄}

t · xi,t + oi − ai

 (1)

s.t.
∑

t={ai,...,T̄}

xi,t = 1, ∀i ∈ [n] (2)

n∑
i=1

t−1∑
k=max{ai,t−oi}

(si + t− k)xi,k ≤ M, ∀t ∈ [T̄ ] (3)

xi,t ∈ {0, 1}, ∀i ∈ [n],∀t ∈ [T̄ ] (4)

In this formulation, the only decision variable is xi,t ∈ {0, 1}, which indicates whether request
i begins processing at time t. Since the system operates under a non-preemptive scheduling
regime, each request i must be processed without interruption for oi consecutive rounds once it
starts. The objective function (1) minimizes the total end-to-end latency over all requests. For
each request i, the latency is defined as the time of its last token completion minus its arrival
time, i.e., (t+oi)−ai, if the request starts processing at time t. This is equivalent to minimizing∑T̄

t=ai
t · xi,t + oi − ai across all i, where xi,t determines the start time.

Constraint (2) ensures that each request is scheduled exactly once after its arrival. Constraint (3)
enforces the GPU memory limit M at each time step t, by summing over the memory usage of
all requests that are active at that time. Specifically, a request i, if scheduled to start at time k,
will be active at time t for k+ 1 ≤ t ≤ k+oi, which is equivalent to k ∈ [t−oi, t−1]. Moreover,
since i cannot be scheduled before its arrival time ai, we have k ∈ [max{ai, t − oi}, t − 1]. If
request i starts at time k, then it contributes to memory usage at time t ∈ [k, k + oi] with an
amount equal to si + t− k, reflecting both the prompt memory si and the token-wise KV cache
growth over time. Lastly, constraint (4) enforces the binary nature of the scheduling decisions.

This integer program provides an exact characterization of the optimal non-preemptive schedul-
ing policy under complete future information. It jointly captures the timing, memory, and la-
tency structure of the system while remaining compact and interpretable. As such, it serves as a
hindsight benchmark for evaluating the performance of online algorithms under both stochastic
and adversarial arrival models.

4 Efficient Batching and Scheduling Algorithm and Theoretical
Results

In this section, we consider the online arrival model described in Section 2, under an adversarial
setting where the number of arrivals, the arrival time and size of each prompt, and the output
lengths are all chosen by an adversary.

We start by establishing a hardness result for this general online problem. The standard metric
for evaluating the performance of an online algorithm is the competitive ratio: an algorithm A
has competitive ratio α if for every instance I, the algorithm’s latency TEL(I;A) is at most α
times that of the hindsight-optimal solution OPT(I).

We show that unfortunately no deterministic online algorithm can achieve a competitive ratio
better than order

√
n, i.e., in the worst-case, the gap between any algorithm and the optimal
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solution needs to grow with the number of requests. The proof of Theorem 4.1 can be found in
Appendix B.

Theorem 4.1. Every deterministic algorithm has a competitive ratio at least Ω(
√
n).

Despite this impossibility result, we propose the scheduling algorithm MC-SF that has demon-
strable effectiveness across a wide range of arrival instances, via both theoretical analysis (below)
and numerical experiments (Section 5.1).

Algorithm MC-SF. As discussed in Section 2, upon the arrival of request i, we observe its input
length st and also a prediction õi that overestimates the true output length oi, i.e., õi ≥ oi. This
ensures the algorithm can (over)estimate memory consumption and create feasible batches.

At each round t, let R(t) represent the set of all requests that have not yet been processed, while
S(t) denotes the set of requests that are currently in progress but not yet completed (i.e., some
output tokens have been generated, but not all of them). Our algorithm prioritizes processing
requests in S(t) first. After processing all the requests currently in S(t), there may still be
unused memory in the KV cache, so our algorithm chooses a subset of requests, U (t) ⊂ R(t) to
add to the batch in order to maximize memory utilization and minimize total latency. To be
more precise, our algorithm tries to process as many requests as possible within each batch; for
that, it aims to maximize the number of requests in U (t), provided that they satisfy memory
constraints.

Specifically, for a subset U ⊂ R(t), let tmax(U) := maxi∈U{t + õi} represent the maximum
predicted completion time for all requests in U if they are added to the batch at time t. To
ensure U is feasible, the KV cache memory limit must not be exceeded at any t′ ∈ [t+1, tmax(U)].
This requires that:∑

i∈S(t)

(si + t′ − pi) · 1{õi≥t′−pi} +
∑
i∈U

(si + t′ − t) · 1{õi≥t′−t} ≤ M, ∀t′ ∈ [t + 1, tmax(U)] (5)

where pi is the starting time to process request i. The first sum accounts for predicted memory
usage from ongoing requests in S(t), while the second captures new requests in U . As long as
this inequality is satisfied for all t′ ∈ [t + 1, tmax(U)], U is feasible to add to the batch. Thus,
our selection rule is the following: 1) We sort the set of waiting requests R(t) in non-decreasing
order of predicted output lengths õi’s, and 2) select the largest prefix that satisfies the allowed
memory usage imposed by inequality (5):

U (t) = argmaxU prefix of R(t) sorted by õi’s

{
|U | : inequality (5) is satisfied ∀t′ ∈ [t + 1, tmax(U)]

}
(6)

We prioritize adding requests with smaller õi values, as we predict these requests to complete
more quickly. Additionally, the predicted peak memory usage of each request is si + õi. In
many situations, prompts processed by a single worker tend to have similar input sizes si, with
relatively low variance, while the output length exhibits greater variability due to the stochastic
nature of response generation. As a result, õi plays a more critical role in determining memory
usage, and selecting requests with smaller õi values typically reduces peak memory consumption,
enabling more requests to be packed into each batch.

We continue adding requests in this order, checking the feasibility condition of inequality (5).
Importantly, we only need to check this constraint at the predicted completion times of ongoing
or new requests, specifically pj + õj for j ∈ S(t) ∪ U (t). This is because (i) memory usage
potentially peaks at these completion times, as a request’s memory demand increases until it
finishes, and (ii) since memory usage varies linearly between start and end times, satisfying
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the constraint at these peak points ensures feasibility throughout the interval. The complete
algorithm is detailed in Algorithm 1. Since this algorithm adds requests to each batch in a
shortest-first manner while smartly checking memory constraints over the near future, we refer
to it as Memory-Constrained Shortest-First (MC-SF).

Algorithm 1: Memory Constrained Shortest First (MC-SF)

for each round t = 1 to T do
Let S(t) be the set of requests that have already started processing and R(t) be the remaining
(waiting) requests at time t. Set U (t) = ∅

for each request i ∈ R(t) in ascending order of predicted output length õi do
Set a list with the times t′ = pj + õj for each j ∈ S(t) ∪ U (t) ∪ {i}
if all inequalities in Equation (5) hold for all t′ in this list then

Add request i to U (t)

else
Break the for loop

Process the requests in S(t) ∪ U (t)

The following proposition states that the computational complexity of each round of MC-SF is
actually independent of the number of requests, and the proof can be found in Appendix B.

Proposition 4.2. Given that the memory limit of the KV cache is M , MC-SF has a computa-
tional complexity of O(M2) at each round t ∈ [T ].

Next, we formally analyze the algorithm MC-SF for the special case in which all prompts have
identical size si = s2 and arrive simultaneously at time t = 0. This case zooms in on the
performance of the algorithm for the important scenario where prompt size variation is small
and demand is high, meaning many requests are typically waiting to be processed at any given
time. Under this setting, we show that MC-SF achieves a constant competitive ratio, long as the
predictions õi are also within a constant factor of the true output sizes oi.

Theorem 4.3. Consider instances where all requests arrive at time 0 and have the same prompt
size. Assume the predicted output lengths satisfy oi ≤ õi ≤ αoi for some constant α ≥ 1. Then
the algorithm MC-SF is O(1)-competitive for such instances, as long as the memory available M
is at least twice the maximum predicted memory occupation of a single request in the instance,
i.e., M ≥ 2 maxi(si + õi).

Proof of Theorem 4.3. In order to illustrate the key ideas of the analysis, we present here the
proof for the case of exact output length predictions, i.e., when õi = oi for all requests i. The
proof in the presence of prediction errors is identical and just tracks how these errors percolate
to the final bound, and details are presented in Appendix B.3. We have also not optimized the
constants in the O(1), and opted to prioritize simplicity of exposition.

Fix throughout an instance satisfying the assumption of the theorem. Without chance of con-
fusion, we also use MC-SF to denote the total latency of this algorithm. Also recall that OPT is
the latency of the optimal solution in hindsight.

For an output length size o, let no be the number of requests in the instance with this output
length. Also, let volo := s · o + o·(o+1)

2 denote the volume of memory that a request of this
output length o occupies; the first summand (s · o) is because the input tokens s have to stay
in the memory until the end of the processing, and the second term is the memory occupied

2A follow-up paper [Wang et al., 2025] builds on our model and presents methods for dealing with variable
input and output prompt lengths.
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every time that one more token is process until the total o tokens (i.e.,
∑

j∈[o] j tokens in the
memory). We will bound the total latency of MC-SF and OPT based on these quantities.

Upper bound on the total latency of MC-SF.

Lemma 4.4 (UB on MC-SF). The total latency incurred by the algorithm MC-SF is at most

1536

M

∑
o

no ·
∑
o′≤o

no′ · volo′ + 24
∑
o

no · o

To prove this lemma, we will group the possible output lengths 1, . . . , omax in powers of 2. More
precisely, let Uℓ for ℓ = 0, . . . , ⌊log omax⌋ denote the set of requests that have output length in
the interval [2ℓ, 2ℓ+1). Slightly abusing notation, let volℓ(I) be the total amount of memory
that the requests Uℓ occupy in MC-SF’s schedule added up over all times in the interval I.

Lemma 4.5. Consider one of the sets of requests Uℓ, and let oℓ := 2ℓ and ōℓ := 2ℓ+1−1 denote
the smallest and largest possible output length for requests in this set. Let t and t̄ be the first
and last time the algorithm MC-SF processes a request in Uℓ. Then the distance between these
times can be upper bounded as

t̄− t ≤ 192

M
·

ōℓ∑
o=oℓ

no · volo + 5ōℓ.

Proof. (For the remainder of the proof we omit the subscript ℓ in oℓ and ōℓ.) To prove this, let
us partition the interval {t, . . . , t̄} into disjoint subintervals I1, I2, . . . , Iw of length ō (where Iw
is the only exceptional interval that can be smaller than ō). For an interval I ⊆ [T ], let peak(I)
be the peak memory use by MC-SF during this interval. The next lemma essentially says that
if the peak memory utilization of an interval Ij+1 is large, then the total volume of requests in
Uℓ scheduled “around” that point has to also be large.

Claim 4.6 (Peak to volume). Consider any 3 consecutive intervals Ij , Ij+1, Ij+2 of length ō.
Then volℓ(Ij ∪ Ij+1 ∪ Ij+2) ≥ 1

4 peak(Ij+1) · volō
s+ō .

Proof of Claim 4.6. Let t̃ ∈ Ij+1 be the time when the peak memory occupation peak(Ij+1)
happens. Since the interval Ij+1 is strictly between times t and t̄, by definition of the algorithm
it only processes requests of Uℓ (i.e., with output lengths between 2ℓ = o and 2ℓ+1 − 1 = ō in
Ij+1), and so only those contribute to the memory occupation at time t̃. If k of these requests
contribute to this peak occupation, then each contributes at most s + ō to it; thus, we have

k ≥ peak(Ij+1)
s+ō . Each such request is completely contained in the bigger interval Ij ∪ Ij+1 ∪ Ij+2,

each such request contributes with at least volo to the memory volume volℓ(Ij ∪ Ij+1 ∪ Ij+2),
which then gives volℓ(Ij ∪Ij+1∪Ij+2) ≥ k ·volo. Finally, since o ≥ 1

2 ō, a quick calculation shows
that volo ≥ 1

4volō. Combining these threes inequalities gives the claim.

We now conclude the proof of Lemma 4.5. Suppose for contradiction that t̄− t > 192
M

∑ō
o=o no ·

volo + 5ō. First, since ō ≤ 2o, a quick calculation shows that volo ≥ 1
4volo for all o between o

and ō. Then since |Uℓ| =
∑ō

o=o no, our assumption implies that t̄− t > 48
M · |Uℓ| · volō + 5ō.
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This further implies that w (the number of the intervals Ij of length ō in this period) is at least

w ≥
⌊ 48

M · |Uℓ| · volō + 5ō

ō

⌋
≥ 48

M
· |Uℓ| ·

volō
ō

+ 4.

Every such interval Ij other than Iw has peak memory utilization more than M − (s + ō),
otherwise the algorithm would have scheduled one more request Uℓ in it. Then applying the
previous claim to the first ⌊w−1

3 ⌋ groups of 3 consecutive intervals Ij ’s, we obtain that

volℓ({t, . . . , t̄}) ≥
⌊
w − 1

3

⌋
· 1

4
· (M − (s + ō)) · volō

s + ō

≥ 4

M
· |Uℓ| ·

volō
ō

· M
2

· volō
s + ō

> |Uℓ| · volō, (7)

where the second inequality uses the assumption M is twice as big as the maximum single request
occupation, i.e., s + ō ≤ M

2 , and the last inequality uses volō = s · ō + ō·(ō+1)
2 > 1

2 ō · (s + ō).

However, each request Uℓ contributes at most volō to volℓ({t, . . . , t̄}), and thus volℓ({t, . . . , t̄}) ≤
|Uℓ| · volō; this contradicts Equation (7), and concludes the proof of the lemma.

Proof of Lemma 4.4. Let tℓ be the first time a request in Uℓ is (starting to be) processed by
MC-SF (let ℓmax := ⌊log omax⌋ and let tℓmax+1 be the last time the algorithm is processing
something). The latency for each request in Uℓ is at most tℓ+1 + ōℓ (i.e., if the algorithm starts
processing requests from the next group then is has already started to process all requests in Uℓ,
which take at most +ōℓ time to complete); thus, the total latency is at most

∑
ℓ |Uℓ| ·(tℓ+1 + ōℓ).

However, from the Lemma 4.5 we know that

tℓ+1 − tℓ ≤ 192

M
· |Uℓ| · volōℓ + 5ōℓ + 1 ≤ 192

M
· |Uℓ| · volōℓ + 6ōℓ,

and so tℓ+1 ≤ 192
M

∑
ℓ′≤ℓ |Uℓ′ | · volōℓ′ + 6

∑
ℓ′≤ℓ ōℓ′ .

This gives that the total latency of MC-SF can be upper bounded as

MC-SF ≤ 192

M

∑
ℓ

|Uℓ|
∑
ℓ′≤ℓ

|Uℓ′ | · volōℓ′︸ ︷︷ ︸
A

+6
∑
ℓ

|Uℓ|
∑
ℓ′≤ℓ

ōℓ′︸ ︷︷ ︸
B

. (8)

Concluding the proof of the lemma requires just a bit of algebra to clean up the bound.

To upper bound the term A, let Oℓ := {oℓ, . . . , ōℓ} be the possible output lengths of the requests
in Uℓ. We first observe that since ōℓ ≤ 2oℓ, we have volō ≤ 4volo for every o ∈ Oℓ. Moreover,
since |Uℓ| =

∑
o∈Oℓ

no, we have

|Uℓ|2 · volōℓ ≤ 2

( ∑
o∈Oℓ

no

∑
o′∈Oℓ,o′≤o

no′

)
· volōℓ ≤ 8

∑
o∈Oℓ

no

∑
o′∈Oℓ,o′≤o

no′ · volo′

and for ℓ′ < ℓ

|Uℓ| · |Uℓ′ | · volōℓ′ ≤
( ∑

o∈Oℓ

no

∑
o′∈Oℓ′

no′

)
· volōℓ′ ≤ 4

∑
o∈Oℓ

no

∑
o′∈Oℓ′

no′ · volo′ ,
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which combined give

|Uℓ|
∑
ℓ′≤ℓ

|Uℓ′ | · volōℓ′ ≤ 8
∑
o∈Oℓ

no

∑
o′≤o

no′ · volo′ ,

and so adding up over all ℓ gives the upper bound A ≤ 8
∑

o no
∑

o′≤o no′ · volo′ .

To upper bound the term B in (8), we observe that since the ōℓ’s grow exponentially,
∑

ℓ′≤ℓ ōℓ′ ≤
2ōℓ. Then since ōℓ ≤ 2o for every o ∈ Oℓ, we have

B ≤ 2
∑
ℓ

|Uℓ| · ōℓ = 2
∑
ℓ

∑
o∈Oℓ

no · ōℓ ≤ 4
∑
ℓ

∑
o∈Oℓ

no · o = 4
∑
o

no · o.

Plugging these upper bounds on A and B on (8), we get

MC-SF ≤ 1536

M

∑
o

no

∑
o′≤o

no′ · volo′ + 24
∑
o

no · o.

This concludes the proof of Lemma 4.4.

Lower bound on the total latency of OPT.

Lemma 4.7. We have the following lower bound on the total optimal latency OPT:

OPT ≥ 1

6M

∑
o

no ·
∑
o′≤o

no′ · volo′ +
1

6

∑
o

no · o.

To lower bound the total latency of OPT we consider the following LP relaxation. Let Uo denote
the set of requests with output length o. Let āto be the number of requests in Uo that finish at
time t in the optimal solution. The memory volume of all requests that finish up to time t need
to fit in the total memory t ·M available up to that time, and hence

∑
t′≤t

∑
o ā

t
o · volo ≤ t ·M .

Moreover,
∑

t ā
t
o = no (all requests in Uo finish at some time). Finally, the

∑
o ā

t
o requests

that finish at time t have latency (recall all requests are released at time 0) equal to t, and the
optimal latency OPT is given by

∑
t t ·

∑
o ā

t
o. Together these observations show that OPT can

be lower bounded by the following Linear Program with variables ato, where in particular we
relax the requirement that āto’s are integers:

OPTLP := min
∑
t

t ·
∑
o

ato

s.t.
∑
t′≤t

∑
o

ato · volo ≤ t ·M, ∀t (9)

∑
t

ato = no, ∀o

ato ≥ 0, ∀t, o.

We then lower bound OPTLP . Consider the optimal solution {a∗to }t,o for this LP. For a given
output size o, let t∗o be the first time t where a∗to > 0, i.e., where a request Uo is assigned to
time t.

Indeed we can see the above LP as the problem of, for each o, (fractionally) assigning no units
over the timesteps 0, 1, . . . subject to the constraint that the timesteps have a limited receiving
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capacity, and assigning a unit to time t incurs a cost of t. Since volo is increasing over o, we
observe that the optimal solution to this LP is to first try to assign all requests with the smallest
o (call it omin) to time 1; if the constraint

∑
o a

1
o · volo ≤ M does not allow all nomin requests

to be assigned to time 1, the remaining ones are assigned to time 2, and so on; otherwise we
move to the 2nd smallest o and assign the requests Uo to time 1. This optimizes the above
LP because it maximizes the number of items assigned to time 1, which has the smallest cost
(the analogous argument holds for the other times). In summary, we have that the “first time”
values t∗o are non-decreasing, namely t∗o ≤ t∗o′ when o < o′.

Let t∗omax+1 be the last time such that
∑

o a
∗t
o > 0. Using this observation we will prove the

following lower bound on the “first times” t∗o.

Claim 4.8. For all o we have t∗o+1 ≥ 1
M

∑
o′≤o no′ · volo′ .

Proof. By the observation above, in the optimal solution {a∗o′t }o′,t all items with output length
at most o are assigned to times ≤ t∗o+1, i.e., no later than when the next output length is

assigned; thus,
∑

t′≤t∗o+1
a∗t

′
o′ = no′ for all o′ ≤ o. Then considering (9) to time t∗o+1 we get∑

o′≤o

no′ · volo′ =
∑

t′≤t∗o+1

∑
o′≤o

a∗t
′

o′ · volo′ ≤ t∗o+1 ·M,

and rearranging we get the claim.

We are now able to prove the lower bound on OPT from Lemma 4.7.

Proof of Lemma 4.7. By definition of t∗o, we know that a∗to = 0 for all t < t∗o, and so
∑

t t · a∗to ≥
t∗o ·

∑
t≥t∗o

a∗to = t∗o · no. Plugging the bound on t∗o from the previous claim and adding over all o
we can lower bound OPTLP (and thus OPT) as

OPT ≥ OPTLP =
∑
t

t ·
∑
o

a∗to

≥
∑
o

no · t∗o

≥
∑
o

no ·
(

1

M

∑
o′<o

no′ · volo′

)
=

1

M

∑
o

no

∑
o′≤o

no′ · volo′ −
1

M

∑
o

n2
o · volo. (10)

To remove the negative term in the right-hand side (and add a new one, to match that of
Lemma 4.4), we provide two other lower bounds on the original OPT (not the LP).

The first is that for any output length o, due to memory constraints, at most no
2 of them can

be finished in the optimal schedule by time no
2

volo
M , since the total memory available up to this

time is no
2 · volo and each such request consumes volo memory; thus, the total latency on the

optimal solution for the request of output length o is at least no
2 · no

2
volo
M . Adding this over all

o, the total latency OPT has the lower bound

OPT ≥ 1

4M

∑
o

n2
o · volo. (11)
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Finally, since each request of output length o takes (o + 1) units of processing/time to finish
(and thus has latency at least o), we also have OPT ≥

∑
o no · o (which is at least

∑
o no).

Adding this bound plus 4 times (11) plus (10) we get

6 OPT ≥ 1

M

∑
o

no

∑
o′≤o

no′ · volo′ +
∑
o

no · o. (12)

This concludes the proof of Lemma 4.7.

Combining the bound on MC-SF from Lemma 4.4 and the lower bound on OPT from Lemma
4.7, we obtain MC-SF ≤ O(1) · OPT, thus proving Theorem 4.3.

5 Numerical Simulation

In this section, we conduct numerical simulations using both synthetic data and real-world
traces to evaluate the performance of our proposed scheduling algorithm MC-SF.

In the first of these experiments (Section 5.1), the primary goal of is to assess the performance
of MC-SF within the framework of the mathematical model introduced in Section 2, comparing
it against the hindsight-optimal policy from Section 3. The second set of experiments (Sec-
tion 5.2) evaluates the practical effectiveness of MC-SF using a large-scale, open-source dataset
derived from real LLM inference traces. Due to the size and complexity of this dataset, it
is computationally infeasible to compute the hindsight optimal-solution, and we instead com-
pare MC-SF against several baseline scheduling policies that are representative of those used in
real-world LLM inference systems. Additional experimental results are provided in Appendix C.

5.1 Synthetic Data Numerical Simulations

We first evaluate the performance of MC-SF on synthetic datasets. These experiments aim to
quantify the two primary sources of performance gap between the algorithm and the hindsight
optimal: (i) the information asymmetry between online and offline algorithms, and (ii) the in-
herent suboptimality of the algorithm itself. To partially disentangle these effects, we consider
two different arrival models, which we describe below. To obtain the hindsight-optimal solution,
we solve the integer programming model from Section 3 using the Gurobi solver. Since solv-
ing the Integer Program is computationally expensive, we limit this comparison to small-scale
synthetic instances to meet reasonable memory and time limits.

Experimental Setup. For each experiment, the memory capacity M is drawn uniformly
from the integers between 30 and 50. For each request, the prompt size si is drawn uniformly
from the integers between 1 and 5, and the output length oi from the integers between 1 and
M − si. We run 200 independent trials under each of the following arrival models:

1. Arrival Model 1 (All-at-once arrivals). All n requests arrive at time t = 0, where n is a
random integer between 40 and 60. This model allows both MC-SF and the hindsight optimal
to access the full set of requests at the beginning of execution, eliminating any information
gap. Therefore, any observed performance difference is solely due to the algorithm’s structural
approximation.

2. Arrival Model 2 (Online stochastic arrivals). Requests arrive over a discrete time horizon
[1, T ], where T is drawn uniformly from the integers between 40 and 60. The arrival process
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Figure 2: Histogram of latency ratio: MC-SF vs Hindsight Optimal. Left: Arrival Model 1.
Right: Arrival Model 2.

follows a stationary Poisson distribution with rate λ ∈ [0.5, 1.5], sampled uniformly. This now
introduces online uncertainty, which the algorithm must respond to without knowing future
arrivals.

Performance Metric. We evaluate performance using the ratio between the total end-to-end
latency incurred by MC-SF and that of the hindsight-optimal policy. A ratio of 1 indicates that
the algorithm achieves the optimal schedule, while larger values reflect a performance gap.

Results for Arrival Model 1. Across 200 trials, the best-case ratio is 1.000 (meaning the al-
gorithm produces the optimal schedule), the worst-case ratio is 1.074, while the average ratio is
1.005. The left figure of Figure 2 displays the distribution of latency ratio of MC-SF vs. Hindsight
Optimal under Arrival Model 1. These results show that in this setting, MC-SF performs almost
optimally. In 114 of the 200 trials, the algorithm exactly matches the optimal latency, demon-
strating that its design closely approximates the structure of the hindsight-optimal policy. Since
in this first arrival model there is no information gap between MC-SF and hindsight-optimum,
both having full knowledge of the input, these ratios close to 1 indicate that our proposed
algorithm has a very small structural suboptimality.

Results for Arrival Model 2. Across 200 trials, here the best-case ratio is 1.000, the worst-
case ratio is 1.227, and the average ratio is 1.047. The right figure of Figure 2 displays the
distribution of latency ratio of MC-SF vs. Hindsight Optimal under Arrival Model 2. Since the
requests are no longer known a priori by the algorithm, the performance ratio captures both
the effect of information asymmetry and the algorithm’s structural approximation error. The
resulting ratios are still quite close to 1, indicating strong performance of MC-SF and establishing
it as an effective and practically viable scheduling policy. The difference of the ratios between
the two models can be partially attributed to the cost of online decision-making.

5.2 Real Data Numerical Experiments

Dataset Overview. We use a conversational dataset3 by Zheng et al. [2023] from over 210,000
distinct IP addresses via the Vicuna demo and Chatbot Arena platforms. To manage its size,
we selected a random subset of 10,000 conversations for analysis. Each conversation includes
a user-generated question and a response from an LLM. We define the question as the prompt
input and each word in the response as an output token. Figure 7 in Appendix C shows the

3Publicly available at https://huggingface.co/datasets/lmsys/lmsys-chat-1m.
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distribution of the sizes (word count) of prompts (mean: 40.62 and median: 11) and output
tokens (mean: 85.32 and median: 45).

Simulation Setup. In our simulation, we operate over a continuous time horizon, with 10,000
prompts arriving according to a stationary Poisson process. Let λ denote the arrival rate per
second, where we consider two cases: Case 1: High Demand λ = 50 and Case 2: Low
Demand λ = 10. In both scenarios, we simulate the performance of the Llama2-70B model
on two linked A100 GPUs (operating collectively as a single worker) and consider the memory
limit M = 16492; additional details can be found in Appendix C.

At a high level, the simulation works as follows: prompts chosen from the conversational dataset
arrive continuously via the chosen Poisson arrival process. To calculate the processing time of a
batch created by an algorithm, we use an LLM inference simulator from Agrawal et al. [2024a].4

We then report the average end-to-end latency, i.e., the total end-to-end latency divided by the
number of requests.

Benchmark Algorithms. Currently, most LLM inference research is built on vLLM, a widely
recognized high-performance inference engine designed to enhance the efficiency of Large Lan-
guage Model (LLM) inference [Kwon et al., 2023]. Since LLM inference is a relatively new field,
scheduling algorithms in both academia and industry primarily rely on those implemented in
vLLM. The scheduling algorithm in vLLM follows a first-come, first-served (FCFS) strategy:
when the machine is idle, it prioritizes requests based on their arrival time. However, instead of
maximizing the number of requests in a batch, vLLM uses a predefined threshold for memory
occupation. Once the KV cache occupancy exceeds this threshold, no additional requests are
added to the batch. This motivates us to define the following benchmarks:

α-protection greedy algorithms. We begin with a class of parameterized algorithms called α-
protection greedy scheduling algorithms, where α ∈ (0, 1). These algorithms maintain a protec-
tion memory threshold of αM , serving as a safeguard against memory overflow. When forming
each batch, the algorithm gives priority to existing token jobs. For new prompt requests, it
checks if adding a new prompt i with initial memory si + 1 would cause the memory usage to
exceed (1 − α)M . If the memory limit is exceeded, no further prompts are added to the batch.
In the event that the KV cache memory overflows during the processing of the requests, the
α-protection greedy scheduling algorithms will clear all active requests sending them back to
the waiting queue as unprocessed.

α-protection, β-clearing algorithms. α-protection greedy scheduling algorithms can cause unnec-
essary evictions; to address this, we define a new class of benchmark algorithms: α-protection β-
clearing algorithms. These algorithms follow the same principles as α-protection greedy schedul-
ing but, when the KV cache memory limit is exceeded, each active request is cleared and sent
back to the scheduler with an independent probability β.

Memory Constrained Benchmark (MC-Benchmark). Beyond the benchmarks discussed above,
we introduce an additional benchmark algorithm, denoted as MC-Benchmark, which is partially
inspired by the vLLM scheduling policy and partially by the memory feasibility checks used in
MC-SF. Following the vLLM structure, MC-Benchmark forms batches by processing requests in
ascending order of their arrival times. While constructing a batch, it decides whether to include
each request based on a prospective memory check used in MC-SF: it only adds a request if the
future memory usage, including KV cache growth, remains within the memory limit M . The
detailed pseudocode for MC-Benchmark is provided in Appendix C (Algorithm 2).

4Publicly available at https://github.com/microsoft/vidur/.
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Figure 3: Average End-to-End Latency Across Scheduling Algorithms. Left: High Demand.
Right: Low Demand.

5.2.1 Results: High vs. Low Demand

We evaluate the performance of MC-SF and baseline algorithms under two demand regimes:
high demand (λ = 50) and low demand (λ = 10).

First, we examine memory usage over time. Figures 8 and 11 show that MC-SF consistently stays
within the memory limit M across both settings. Despite batch processing durations varying
in practice, the memory check in Equation (6) reliably prevents overflow by ensuring feasibility
over future memory usage. Under low demand, memory usage remains close to full utilization,
suggesting a stable system state.

We also investigate the performance of the α-protection and α-protection–β-clearing heuristics.
We observe that for very small protection levels α, the α-protection heuristic may lead to
repeated evictions and infinite processing loops, therefore we perform a grid search with step
size 0.01 to identify the smallest possible α: α = 0.21 in the high-demand setting and α = 0.24 in
the low-demand setting. We then evaluate latency across six configurations, including α = 0.3,
α = 0.25, and four combinations of α ∈ {0.2, 0.1}, β ∈ {0.2, 0.1}.

Figure 3 presents the average end-to-end latency across all algorithms for request volumes
{1000, 2000, . . . , 10000}. In the high-demand case (left), average latency increases linearly for
all algorithms, indicating overload. Notably, MC-SF has a slope of approximately 1/6, compared
to 1/2 for the best-performing benchmark, highlighting its superior scalability. In the low-
demand case (right), MC-SF maintains a much lower latency growth rate—about 1/800, which
is over eight times smaller than the best benchmark slope (∼ 1/100).

Although our paper primarily targets latency minimization, we also report throughput as a sec-
ondary performance indicator. Figure 4 plots the instantaneous per-second throughput achieved
by MC-SF and MC-Benchmark for the first 1000 arriving requests. The light green bars show the
per-second arrival workload, measured as the total number of tokens introduced in each sec-
ond (input+output per request). Under this overloaded regime, MC-SF has higher processing
throughput than MC-Benchmark for most time intervals, indicating that its latency improve-
ments do not come at the expense of reduced service rate.

These results confirm that MC-SF remains memory-safe and highly efficient across both regimes.
Additional results are also provided in Appendix C.
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Figure 4: Per-second Throughput Across Scheduling Algorithms.

5.2.2 Performance under Prediction Errors

In the previous experiments, we assumed that the scheduler has access to the true output length
oi for each request i (taken from the dataset). In practice, output length can be predicted and
will inevitably contain error. This subsection evaluates the robustness of MC-SF when only noisy
length predictions are available.

Prediction Model. We replace the true output length oi with a random prediction ôi generated
as

ôi ∼ Uniform
(
(1 − ϵ)oi, (1 + ϵ)oi

)
,

where ϵ ∈ {0.2, 0.5, 0.8} controls the prediction error. The simulation setup (dataset, arrival
process, inference-time estimation via Vidur, and latency metric) is identical to Section 5.2,
except that MC-SF now uses ôi instead of oi when performing memory-feasibility checks and
building batches.

Risk of Overflow and Memory Protection. Because MC-SF is designed to aggressively
utilize available KV-cache memory, an underestimate ôi < oi can cause the realized KV-cache
growth to exceed the physical limit M . In our simulator, such an overflow triggers a clearing
event, where all active requests are evicted and re-queued, increasing latency and potentially
causing repeated retries. To mitigate this underestimation risk, we introduce a simple protection
margin mentioned above: we reserve a fixed fraction αM of memory and run MC-SF as if the
effective budget were (1 − α)M . Concretely, we set α = 0.1 and apply the same selection logic
as before, but with M replaced by (1 − α)M in the feasibility check.

Results. Figure 5 reports the average end-to-end latency under different prediction error levels.
As expected, larger prediction error leads to higher latency, since the scheduler must operate
with noisier length estimates and a more conservative effective memory budget. Importantly,
the α = 0.1 protection margin prevents the instability caused by systematic underestimation and
substantially reduces the frequency and impact of clearing events. Even at ϵ = 0.8, MC-SF with
protection achieves significantly lower latency than the benchmark FCFS policy, highlighting
that MC-SF remains effective under substantial prediction noise.
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Figure 5: Average End-to-End Latency Across Scheduling Algorithms Under Prediction Error.

6 Discussion

In this paper, we developed a formal model for online batching and scheduling in LLM inference
that explicitly captures the dynamic memory growth induced by the KV cache. We introduced a
hindsight-optimal benchmark via an integer programming formulation, established fundamental
limits by showing that no deterministic online algorithm admits a constant competitive ratio
under adversarial arrivals, and proposed a practical polynomial-time algorithm, MC-SF, that
achieves constant competitive ratio under some structured conditions on the prompts that
arrive. Through both synthetic experiments benchmarked against the hindsight optimal and
large-scale simulations using real LLM inference traces, we demonstrated that MC-SF achieves
near-optimal latency and substantial improvements over existing scheduling heuristics while
remaining memory-safe. Together, these results provide an end-to-end theoretical and empirical
framework for understanding and designing scheduling policies for KV-cache-constrained LLM
inference.

There are several research directions that stem from our work.

Our model in Section 2 assumes that upon arrival, each request is accompanied by a prediction
õi that upper bounds its true output length oi. An interesting future direction is to jointly
design prediction mechanisms for output lengths and batching–scheduling policies that operate
simultaneously during inference. Ideally, such predictors would provide not only upper bounds
on oi, but also informative lower bounds, enabling tighter control of memory usage and more
aggressive batching decisions. Our proposed algorithm and analysis can serve as a benchmark
for this setting, characterizing the best achievable competitive performance when output lengths
are either known exactly or upper bounded by a prediction algorithm. In fact, a recent follow-up
work to our paper [Chen et al., 2025] has taken one step closer to this direction by extending
the model that we present in this work to a model where output lengths are predicted to be in
a known interval. Finally, note that the literature on traditional scheduling has also provided
online algorithms that only have “predictions” about the remaining time of jobs when they are
being scheduled [Azar et al., 2021, 2022, Gupta et al., 2026].

Another important direction is to extend our framework to settings with multiple computational
workers operating in parallel. While the availability of multiple GPUs substantially enlarges
the design space of batching and scheduling algorithms, it also introduces new challenges that
are absent in the single-worker setting. For example, workers may be heterogeneous in terms
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of memory capacity or compute throughput, requiring “matching” decisions between requests
and workers to maximize the overall efficiency of the entire system. Moreover, decisions must
now balance load across workers while accounting for the evolving KV-cache footprint of each
active request; see e.g., the recent work of Balseiro et al. [2025] on load balancing for LLM
inference and the work of Jaiswal et al. [2025] for a more applied point-of-view on the subject.
For settings where a prompt needs to be processed by multiple GPUs, it will be interesting to
see how the literature on multi-server job scheduling (e.g., [Grosof et al., 2022]) can provide
insights for scheduling for LLM inference.

Finally, an important direction is to study other arrival models, even in the single-worker setting,
where most requests are generated by an unknown stochastic process but a small fraction of
requests are extreme outliers, being either unusually large or unusually small. Such heavy-tailed
or mixed workloads are commonly observed in real LLM inference systems and pose challenges
that are not well captured by purely adversarial or fully stochastic models. Our empirical results
already suggest that algorithms such as MC-SF remain effective under this type of workload het-
erogeneity. Moreover, our current theoretical analysis can serve as a benchmark for evaluating
the performance of future algorithms designed for these hybrid stochastic–adversarial settings.
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teractive LLM serving with proxy model-based sequence length prediction. arXiv preprint
arXiv:2404.08509, 2024b.

Replit. Replit ghostwriter. https://replit.com/site/ghostwriter, 2018.

Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.
In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22,
2008, pages 491–500. SIAM, 2008. URL http://dl.acm.org/citation.cfm?id=1347082.

1347136.

Tim Roughgarden, editor. Beyond the Worst-Case Analysis of Algorithms. Cambridge Uni-
versity Press, 2020. ISBN 9781108637435. doi: 10.1017/9781108637435. URL https:

//doi.org/10.1017/9781108637435.

Malik Sallam. The utility of ChatGPT as an example of large language models in healthcare
education, research and practice: Systematic review on the future perspectives and potential
limitations. MedRxiv, pages 2023–02, 2023.

Rana Shahout, Eran Malach, Chunwei Liu, Weifan Jiang, Minlan Yu, and Michael Mitzen-
macher. Don’t stop me now: Embedding based scheduling for LLMS. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28,
2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=7JhGdZvW4T.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
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Supplementary Material for paper
“Online Scheduling for LLM Inference with KV Cache

Constraints”

A Background: Online Optimization in LLM Inference

This section provides background in LLM inference using a single computational worker (i.e., a
single GPU).

A.1 LLM Inference Process on a Single Request

We first demonstrate how a single GPU worker processes an incoming prompt, using the example
prompt “What color is the sky?” from Lienhart [2023]. The workflow is illustrated in Figure 6.

Figure 6: An example of LLM inference [Lienhart, 2023].

Upon receiving the prompt, as shown in the top left figure, the worker begins by tokenizing
the prompt and generates key and value vectors. Then, it uses these vectors to calculate the
attention scores, which indicate the relevance of each token, enabling the generation of the first
output token, “The.” To avoid recalculating these vectors with each new token, the worker saves
them in a key-value (KV) cache.

Next, as depicted in the top right figure, after generating “The,” the worker processes this token
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by calculating its key and value and retrieving the key-value vectors of the initial prompt tokens
from the KV cache. Using this combined data, the model generates the next token, “sky.”

The bottom left figure shows that during “sky” generation, the worker calculates the key and
value for “The” and adds them to the KV cache to avoid recalculations. Finally, as illustrated
in the bottom right figure, the worker processes “sky,” continuing this cycle until all output
tokens are generated.

Finally, we note that when a prompt request arrives, the computational worker does not know
the length of its response (i.e., the number of tokens it will generate). However, certain tech-
niques can predict the output length of each prompt before processing begins. For instance,
Zheng et al. [2024] proposes a methodology that achieves an output length prediction accuracy
of up to 81%.

A.2 Illustration of Novel Difficult Aspects of LLM Inference Scheduling

Though scheduling problems have been studied extensively in the previous literature on com-
puting resource allocation (e.g., Pinedo [2012]), we illustrate some of the new dynamics of LLM
inference that separates it from standard scheduling problems. To be specific, due to the au-
toregressive LLM inference process described in Section A.1, the memory size required by a
request keeps growing during the inference procedure, which is fundamentally different from
the previous scheduling models where the size (or the resource occupation) of a job is fixed.

To see this point, suppose that we are following the principle of processing the shortest job first
and there are two prompts P1 and P2, whose sizes eventually grow to t1 and t2. If t1 + t2 > M ,
where M is the memory limit of the KV cache, then the two prompts cannot be processed at
the same time in the classical scheduling model. However, this may not be the case for our
LLM inference model since the sizes are varying over time. Suppose that the initial size for
both prompts is the same, denoted by s, and it satisfies that s ≤ t1 ≤ M/2. The size of both
jobs increases by 1 at each round until reaching t1 and t2. Then, we can process P1 and P2 at
the same time until the time t1 − s when the size of both jobs increases to t1; note that we can
process both P1 and P2 concurrently, since the memory requirement for the two jobs together
is upper bounded 2t1 ≤ M . After time t1 − s, though the size of P2 may be larger than t1,
prompt P1 has finished processing (since we have processed s + t1 − s = t1 tokens), and the
required memory can be released to further process P2. Therefore, P1 and P2 can be processed
at the same time in the LLM inference model.

Moreover, the batching problem in our setting significantly differs from traditional problems
(e.g., Potts and Kovalyov [2000]). When assuming that the KV cache memory limit is the
sole constraint for the batch size, the number of jobs in a batch during each round varies
depending on the specific jobs included in the batch. This is because the memory usage for
each output token increases linearly over time. While some studies (Kashan and Karimi [2008],
Hazır and Kedad-Sidhoum [2014], Yang et al. [2022]) consider batch size constraints as the total
weight of jobs—where weight corresponds to the memory usage of each prompt or token—in our
problem, the situation is more complex. Processing a prompt or token increases the memory
usage. Consequently, the effective weight of jobs at any given time depends on the starting time
to process this token, and the index of this token in the request. This weight dependency also
makes the problem more challenging.
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B Appendix for Section 4

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Fix a deterministic algorithm A. For any M ≥ 1, consider the following
instance I with available memory M and with si = 1 for all request i. First, a request is
released at time 0 with output length o1 = M − 1 (“long request”). Let b be the time A starts

processing this first request. Then M
2 requests are released at time r := b + M −

√
M
2 with

output size oi = 1 (“short requests”). Let n := M
2 + 1 denote the number of requests in this

instance. We claim that the total latency of A on this instance is at least Ω(
√
n) · OPT(I).

For that, we first claim that

OPT(I) ≤ 3.5M. (13)

If r ≥ M , then it is possible to start processing the long request at time 0 and finish by time
M −1 (incurring latency M −1) and then at time r ≥ M start processing all the short requests
(since the maximum memory occupation of each short request is 2, they can all be executed
together), finishing them at time r + 1 (incurring latency 1 for each of these requests); in this
case we have OPT(I) ≤ M − 1 + M

2 ≤ 3.5M as desired.

If r < M , then a possible offline solution is to first do all the short requests and then the
long request, namely start executing all the short requests at time r, finishing them at time
r + 1 (incurring latency 1 for each), and then start to process the long request at time r + 2,
finishing it at time r + 2 + (M − 1) (incurring latency r + 2 + (M − 1)). Therefore, OPT(I) ≤
M
2 + r + 1 + M ≤ 2.5M + 1 ≤ 3.5M , where the second inequality uses the fact we are in the

case r < M and the last inequality uses M ≥ 1. Thus, in both cases we have that (13) holds.

We now lower bound the latency that A experiences over I. In all times between time r =

b + (M − 1) −
√
M
2 and b + (M − 1), the long request occupies memory at least M −

√
M
2 ; thus,

the total memory available for other requests across all those times is at most
√
M
2 ·

√
M
2 = M

4 .
Thus, at least M

2 − M
4 = M

4 of the short requests can only be started by the algorithm A on or

after time b + M , and thus each of them incurs latency at least b + M − r =
√
M
2 . Thus, the

total latency of A is at least M
4 ·

√
M
2 .

Combining this with the upper bound on OPT from (13), we get

TEL(I;A)

OPT(I)
≥

√
M

28
.

Since the number of items in the instance is n = 1 + M
2 , this shows that the competitive ratio

of A cannot be better than Ω(
√
n), thus proving the theorem.

B.2 Proof of Proposition 4.2

Proof of Proposition 4.2. At each time step t ∈ [T ], to solve Eq. (6), we add requests in ascend-
ing order of their indices, stopping the process once any inequality is violated. The memory
limit M is a constant, which implies that we will add at most M/(maxi∈[n] si + 1) = O(M)

requests in U (t). For each request i, to decide whether to add it or not in U (t), one has to check
all inequalities at the completion times pj + oj for j ∈ S(t) ∪ U (t) in Eq. (5). The number of
inequalities we need to check is O(M) since |S(t) ∪ U (t)| = O(M). Therefore, the feasibility
check for each request i has a complexity of O(M). Since we can add at most O(M) number of
requests to a batch, the complexity at time t is at most O(M2).
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B.3 Proof of Theorem 4.3 with Inaccurate Output Length Predictions

Recall that in Section 4 we proved that the algorithm MC-SF is O(1)-competitive when the output
length predictions õi are exact, i.e., õioi for all i. Now we show the required modifications in
the proof to accommodate approximate predictions, namely when oi ≤ õi ≤ αoi for all requests
i for some constant α ≥ 1; this will provide a full proof of Theorem 4.3.

Upper bound on the total latency of MC-SF. First, we define the modified quantity ño

as the number of requests in the instance whose predicted output õi equals o. We analogously
define the modified requests groups Ũℓ, namely for ℓ = 0, . . . , ⌊log õmax⌋ (õmax is the largest õi),
let Ũℓ denote the set of requests that have predicted output length in the interval [2ℓ, 2ℓ+1).

In the presence of imperfect predictions, Lemma B.1 becomes the following.

Lemma B.1. Consider one of the sets of requests Ũℓ, and let oℓ := 2ℓ and ōℓ := 2ℓ+1−1 denote
the smallest and largest predicted possible output length for requests in this set. Let t and t̄ be
the first and last time the algorithm MC-SF processes a request in Ũℓ. Then the distance between
these times can be upper bounded as

t̄− t ≤ 192α2

M
·

ōℓ∑
õ=õℓ

ño · volo + 5ōℓ.

Proof. (For the remainder of the proof we omit the subscript ℓ in oℓ and ōℓ.) The proof follows
the same steps as that of the old Lemma B.1. We start by partitioning the interval {t, . . . , t̄}
into disjoint subintervals I1, I2, . . . , Iw of length ō (where Iw is the only exceptional interval
that can be smaller than ō). Again, for an interval I ⊆ [T ], let peak(I) be the actual (not
predicted) peak memory use by MC-SF during this interval. Slightly abusing notation, also let
volℓ(I) be the total actual amount of memory that the requests Ũℓ occupy in MC-SF’s schedule
added up over all times in the interval I. The next claim is the “peak-to-volume” Claim 4.6 in
the presence of uncertain predictions.

Claim B.2 (Peak-to-volume). Consider any 3 consecutive intervals Ij , Ij+1, Ij+2 of length ō.
Then volℓ(Ij ∪ Ij+1 ∪ Ij+2) ≥ 1

4α2 peak(Ij+1) · volō
s+ō .

Proof of Claim B.2. Let t̃ ∈ Ij+1 be the time when the peak memory occupation peak(Ij+1)
happens. Since the interval Ij+1 is strictly between times t and t̄, by definition of the algorithm
it only processes requests of Ũℓ, and so only those contribute to the memory occupation at time
t̃. If k of these requests contribute to this peak occupation, then each contributes at most s+ ō
to it (recall that the true output length is always at most the predicted output length, which

is at most ō for requests in Ũℓ); thus, we have k ≥ peak(Ij+1)
s+ō . Since such request is completely

processed in the bigger interval Ij ∪ Ij+1 ∪ Ij+2, each such request contributes with at least
volo/α to the memory volume volℓ(Ij ∪ Ij+1 ∪ Ij+2) (recall that the true output length is always

at least 1
α of the predicted output length); hence, volℓ(Ij ∪ Ij+1 ∪ Ij+2) ≥ k · volo/α. Finally,

since o/α ≥ 1
2α ō, a quick calculation shows that volo/α ≥ 1

4α2 volō. Combining these threes
inequalities gives the claim.

We now conclude the proof of Lemma B.1. Suppose for contradiction that t̄−t > 192α3

M

∑ō
o=o ño ·

volo + 5ō. First, since ō ≤ 2o, again we have volo ≥ 1
4volo for all o between o and ō. Then since

|Ũℓ| =
∑ō

o=o ño, our assumption implies that t̄− t > 48α3

M · |Ũℓ| · volō + 5ō.
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This further implies that w (the number of the intervals Ij of length ō in this period) is at least

w ≥
⌊ 48α3

M · |Ũℓ| · volō + 5ō

ō

⌋
≥ 48α3

M
· |Ũℓ| ·

volō
ō

+ 4.

Every such interval Ij other than Iw has real peak memory utilization more than 1
α(M−(s+ ō)):

otherwise even using the predicted output lengths õi ≤ αoi, which is what effectively the memory
constraint check in MC-SF uses, there would be a time in this interval where the algorithm would
have scheduled an additional request from Ũℓ. Then applying Claim 4.6 to the first ⌊w−1

3 ⌋ groups
of 3 consecutive intervals Ij ’s, we obtain that

volℓ({t, . . . , t̄}) ≥
⌊
w − 1

3

⌋
· 1

4α2
· (M − (s + ō))

α
· volō
s + ō

≥ 4

M
· |Ũℓ| ·

volō
ō

· M
2

· volō
s + ō

> |Ũℓ| · volō, (14)

where the second inequality uses the assumption M is twice as big as the maximum single request
predicted occupation, i.e., s+ō ≤ M

2 , and the last inequality uses volō = s·ō+ ō·(ō+1)
2 > 1

2 ō·(s+ō).

However, each request Ũℓ contributes at most volō to volℓ({t, . . . , t̄}), and thus volℓ({t, . . . , t̄}) ≤
|Ũℓ| · volō; this contradicts Equation (14), and concludes the proof of the lemma.

We then get the following upper bound on MC-SF that generalizes Lemma 4.4.

Lemma B.3 (UB on MC-SF). The total latency incurred by the algorithm MC-SF is at most

1536α3

M

∑
o

ño ·
∑
o′≤o

ño′ · volo′ + 24
∑
o

ño · o

Proof. Let tℓ be the first time a request in Ũℓ is (starting to be) processed by MC-SF (let
ℓmax := ⌊log õmax⌋ and let tℓmax+1 be the last time the algorithm is processing something). The
latency for each request in Ũℓ is at most tℓ+1+ ōℓ (i.e., if the algorithm starts processing requests
from the next group then is has already started to process all requests in Ũℓ, which take at most
+ōℓ time to complete); thus, the total latency is at most

∑
ℓ |Ũℓ| · (tℓ+1 + ōℓ). However, from

Lemma B.1 we know that

tℓ+1 − tℓ ≤ 192α3

M
· |Ũℓ| · volōℓ + 5ōℓ + 1 ≤ 192α3

M
· |Ũℓ| · volōℓ + 6ōℓ,

and so tℓ+1 ≤ 192α3

M

∑
ℓ′≤ℓ |Ũℓ′ | · volōℓ′ + 6

∑
ℓ′≤ℓ ōℓ′ . This gives that the total latency of MC-SF

can be upper bounded as

MC-SF ≤ 192α3

M

∑
ℓ

|Ũℓ|
∑
ℓ′≤ℓ

|Ũℓ′ | · volōℓ′︸ ︷︷ ︸
A

+6
∑
ℓ

|Ũℓ|
∑
ℓ′≤ℓ

ōℓ′︸ ︷︷ ︸
B

. (15)

Concluding the proof of the lemma requires just a bit of algebra to clean up the bound.

To upper bound the term A, let Õℓ := {oℓ, . . . , ōℓ} be the possible predicted output lengths of
the requests in Ũℓ. Again we observe that since ōℓ ≤ 2oℓ, we have volō ≤ 4volo for every o ∈ Õℓ.
Moreover, since |Ũℓ| =

∑
o∈Õℓ

ño, we have

|Ũℓ|2 · volōℓ ≤ 2

( ∑
o∈Õℓ

ño

∑
o′∈Õℓ,o′≤o

ño′

)
· volōℓ ≤ 8

∑
o∈Õℓ

ño

∑
o′∈Õℓ,o′≤o

ño′ · volo′
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and for ℓ′ < ℓ

|Ũℓ| · |Ũℓ′ | · volōℓ′ ≤
( ∑

o∈Õℓ

ño

∑
o′∈Õℓ′

no′

)
· volōℓ′ ≤ 4

∑
o∈Õℓ

ño

∑
o′∈Õℓ′

ño′ · volo′ ,

which combined give

|Ũℓ|
∑
ℓ′≤ℓ

|Ũℓ′ | · volōℓ′ ≤ 8
∑
o∈Õℓ

ño

∑
o′≤o

ño′ · volo′ ,

and so adding up over all ℓ gives the upper bound A ≤ 8
∑

o ño
∑

o′≤o ño′ · volo′ .

To upper bound the term B in (15), we observe that since the ōℓ’s grow exponentially,
∑

ℓ′≤ℓ ōℓ′ ≤
2ōℓ. Then since ōℓ ≤ 2o for every o ∈ Õℓ, we have

B ≤ 2
∑
ℓ

|Ũℓ| · ōℓ = 2
∑
ℓ

∑
o∈Õℓ

ño · ōℓ ≤ 4
∑
ℓ

∑
o∈Õℓ

ño · o = 4
∑
o

ño · o.

Plugging these upper bounds on A and B on (15), we get

MC-SF ≤ 1536α3

M

∑
o

ño

∑
o′≤o

ño′ · volo′ + 24
∑
o

ño · o.

This concludes the proof of Lemma B.3.

Lower bound on the total latency of OPT. In the presence of incorrect predictions, we
have the following lower bound on the optimal latency, which mirrors Lemma 4.7.

Lemma B.4. The total optimal latency OPT satisfies:

OPT ≥ 1

6Mα2

∑
o

ño ·
∑
o′≤o

ño′ · volo′ +
1

6α

∑
o

ño · o.

For this, we consider the same LP relaxation as before, with the required adjustments. Namely,
let Ũo denote the set of requests with predicted output length o (so |Ũo| = ño); thus the true
volume of each such request is at least volo/α ≥ volo

α2 . Let āto be the number of requests in

Ũo that finish at time t in the optimal solution. The memory volume of all requests that
finish up to time t need to fit in the total memory t ·M available up to that time, and hence∑

t′≤t

∑
o ā

t
o · voloα2 ≤ t·M . Moreover,

∑
t ā

t
o = ño (all requests in Ũo finish at some time). Finally,

the
∑

o ā
t
o requests that finish at time t have latency (recall all requests are released at time 0)

equal to t, and the optimal latency OPT is given by
∑

t t ·
∑

o ā
t
o. Together these observations

show that OPT can be lower bounded by the following Linear Program with variables ato, where
in particular we relax the requirement that āto’s are integers:

OPTLP := min
∑
t

t ·
∑
o

ato

s.t.
∑
t′≤t

∑
o

ato · volo ≤ t ·Mα2, ∀t (16)

∑
t

ato = ño, ∀o

ato ≥ 0, ∀t, o.

31



We then lower bound OPTLP . Consider the optimal solution {a∗to }t,o for this LP. For a given
output size o, let t∗o be the first time t where a∗to > 0, i.e., where a request Uo is assigned to
time t. Using exactly the same argument as in the proof of Lemma 4.7 we have that the “first
time” values t∗o are non-decreasing, namely t∗o ≤ t∗o′ when o < o′.

Let t∗omax+1 be the last time such that
∑

o a
∗t
o > 0. Using this observation we will prove the

following lower bound on the “first times” t∗o.

Claim B.5. For all o we have t∗o+1 ≥ 1
Mα2

∑
o′≤o ño′ · volo′ .

Proof. By the observation above, in the optimal solution {a∗o′t }o′,t all items with output length
at most o are assigned to times ≤ t∗o+1, i.e., no later than when the next output length is

assigned; thus,
∑

t′≤t∗o+1
a∗t

′
o′ = ño′ for all o′ ≤ o. Then considering (16) to time t∗o+1 we get∑

o′≤o

ño′ · volo′ =
∑

t′≤t∗o+1

∑
o′≤o

a∗t
′

o′ · volo′ ≤ t∗o+1 ·Mα2,

and rearranging we get the claim.

We are now able to prove the lower bound on OPT from Lemma B.4.

Proof of Lemma B.4. By definition of t∗o, we know that a∗to = 0 for all t < t∗o, and so
∑

t t ·a∗to ≥
t∗o ·

∑
t≥t∗o

a∗to = t∗o · ño. Plugging the bound on t∗o from the previous claim and adding over all o
we can lower bound OPTLP (and thus OPT) as

OPT ≥ OPTLP =
∑
t

t ·
∑
o

a∗to

≥
∑
o

ño · t∗o

≥
∑
o

ño ·
(

1

Mα2

∑
o′<o

ño′ · volo′

)
=

1

Mα2

∑
o

ño

∑
o′≤o

ño′ · volo′ −
1

Mα2

∑
o

ñ2
o · volo. (17)

To remove the negative term in the right-hand side (and add a new one, to match that of
Lemma B.3), we provide two other lower bounds on the original OPT (not the LP).

The first is that for any predicted output length o, due to memory constraints, at most ño
2 of

them can be finished in the optimal schedule by time ño
2

volo
Mα2 , since the total memory available

up to this time is ño
2 · volo

α2 and each such request consumes at least volo
α2 memory; thus, the

total latency on the optimal solution for the request of predicted output length o is at least
ño
2 · ño

2
volo
Mα2 . Adding this over all o, the total latency OPT has the lower bound

OPT ≥ 1

4Mα2

∑
o

ñ2
o · volo. (18)

For the second additional lower bound, since each request of predicted output length o takes at
least o

α + 1 units of processing/time to finish (and thus has latency at least o
α), we also have

OPT ≥
∑

o ño · o
α .
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Adding this bound plus 4 times (18) plus (17) we get

6 OPT ≥ 1

Mα2

∑
o

ño

∑
o′≤o

ño′ · volo′ +
∑
o

ño ·
o

α
. (19)

This concludes the proof of Lemma B.4.

Combining the bound on MC-SF from Lemma B.3 and the lower bound on OPT from Lemma
B.4, we obtain MC-SF ≤ α5 ·O(1) ·OPT, which is O(1) ·OPT as α is taken to be constant. Thus,
this concludes the proof of Theorem 4.3.

C Appendix for Section 5

All experiments were conducted on a Microsoft Surface Laptop with Snapdragon® X Elite (12
Core) processor.

Algorithm 2: Memory Constrained Benchmark (MC-Benchmark)

Input: Memory capacity M , time horizon T
Output: Schedule for processing requests
for each round t = 1 to T do

Let S(t) be the set of requests that have already stated processing, and let R(t) be the set of
waiting requests at time t. Also set U (t) = ∅

for each request i ∈ R(t) in ascending order of arrival time ai do
Set a time list t′ = pj + oj for j ∈ S(t) ∪ U (t) ∪ {i}
if all inequalities in Equation (5) hold for all t′ then

Add request i to U (t)

else
Break the for loop

Process the requests in S(t) ∪ U (t)

In this section, we provide additional details for the numerical experiments with real data. We
take the memory capacity as 16,492 as observed in real experiments reported to us by systems
engineers through private communication.

We next summarize the figures that support our key findings in the numerical experiments. Fig-
ure 7 displays the empirical distributions of input prompt lengths and output response lengths
from the dataset used in our study. Figures 8 and 11 show that our algorithm consistently
utilizes most of the available memory per batch, under both high-demand and low-demand con-
ditions respectively. Figures 9 and 12 report the total latency for various values of the protection
level parameter α, and identify recommended ranges for its selection in high- and low-demand
scenarios, respectively. Finally, Figures 10 and 13 evaluate the impact of the KV cache clearing
probability β on total latency, highlighting appropriate ranges of β for high- and low-demand
settings respectively.

In Figure 9, we varied α while fixing β = 0.1 and β = 0.2. For both settings, α ∈ [0.15, 0.25]
minimizes average latency. When α < 0.1, performance degrades significantly as the protected
memory is insufficient, necessitating frequent clearing and rescheduling of requests, which leads
to redundant computation.

Figure 10 illustrates average latency for various values of β with fixed α values of 0.1 and 0.2.
In both cases, the algorithm performs well with β ∈ [0.05, 0.25]. For extremely low β, the
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Figure 7: Distribution of the number of words of input prompt and output response respectively

Figure 8: Memory Usage over Time for Algorithm 1 in the High Demand Case

Figure 9: Average End-to-End Latency for Different α Values under the High Demand Case

algorithm underperforms as insufficient clearing of requests limits memory availability. This
may keep the memory usage be above the limit after clearing the processing requests. To clear
enough memory with extremely small β, this requires a significant time. Conversely, higher β
values are inefficient due to excessive request clearing, resulting in increased recomputation.

In Figure 12, we vary α while fixing β at 0.1 and 0.2. For both settings, values of α in the range
[0.10, 0.25] minimize average latency, while α < 0.1 leads to significant performance degradation.
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Figure 10: Average End-to-End Latency for Different β Values under the High Demand Case

Figure 11: Memory Usage over Time for Algorithm 1 in the Low Demand Case

Figure 12: Average End-to-End Latency for Different α Values under the Low Demand Case

Figure 13 shows the average latency across various β values with α fixed at 0.1 and 0.2. In both
cases, the algorithm achieves stable performance for β values between 0.05 and 0.20. These
trends are consistent with those observed in the high-demand scenario, indicating that similar
parameter tuning benefits both models.

Finally, we provide a table with relevant statistics for the case of 1000 requests with arrival rate
λ = 50 for 50 independent runs.
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Figure 13: Average End-to-End Latency for Different β Values under the Low Demand Case

Table 1: Relevant statistics among 50 independent experiments of different algorithms where
there are 1000 requests, and the arrival rate λ = 50

Algorithm Average Std. Dev. Max Min

MC-SF 32.112 0.354 33.097 31.505
MC-Benchmark 46.472 0.310 47.135 45.838
Benchmark α = 0.3 51.933 0.324 52.532 51.204
Benchmark α = 0.25 51.046 0.351 51.757 50.279
Benchmark α = 0.2, β = 0.2 50.401 0.343 51.035 49.700
Benchmark α = 0.2, β = 0.1 50.395 0.360 51.083 49.586
Benchmark α = 0.1, β = 0.2 53.393 1.457 56.357 49.488
Benchmark α = 0.1, β = 0.1 50.862 0.946 53.978 49.086
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