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Abstract— The technological advancements in Intelligent
Transport Systems have made it possible to acquire large
amounts of traffic data in real-time. As a result, various
data-mining techniques are being used to extract useful traffic
patterns. The research presented in this article focuses on the
detection of disruptive traffic events such as congestion. In most
transportation studies, traffic parameters are typically modeled
as time series. However, these techniques fail to incorporate the
spatial dependencies between different traffic variables. In this
work, the traffic quantities such as speeds are considered as
the signals defined at the vertices of a network line graph.
Furthermore, the graph wavelet operators are applied to the
spatial signals to generate the wavelet coefficients at different
wavelet scales. By analyzing these wavelet coefficients, useful
information such as origin, propagation, and the span of traffic
congestion are inferred.

For analysis, we consider two major expressways in
Singapore. The analysis shows that the abrupt changes in
the speed can be captured by using the wavelet coefficients
at the higher scales. On the other hand, the high magnitude
coefficients at the lower wavelet scales reflect the smooth flow
of the traffic across the network.

I. INTRODUCTION

Intelligent Transport Systems (ITS) can play a vital role
in developing sophisticated control strategies for optimal
usage of the road infrastructure of a land-scarce city like
Singapore. The technological advancements in ITS and
sensor developments enabled the availability of extensive
data related to the on ground traffic conditions. Consequently,
data driven approaches are being widely used for applications
such as traffic sensing, congestion control, traffic forecasting,
and route guidance [1]–[5].

In this work, we focus on detecting disruptive traffic
events such as unexpected traffic speed fluctuations, traffic
slowdown, and congestion that hinder normal traffic flow.
The early detection of such traffic events can be useful in
issuing early warnings that will eventually help the drivers
to plan alternate routes.

Previous studies have proposed various methods to detect
congestion and other disruptive events. These methods
include Principal Component Analysis (PCA), Robust
Principal Component Analysis (RPCA), Fourier transform,
and wavelets. However, such approaches typically model
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traffic parameters such as speed and flow as time series
variables [6]–[12], [12]–[20]. In [6], Lakhina et al. applied
PCA to generate subspaces of normal and abnormal traffic
conditions in the communication network. Further, they
used Fourier and exponential weighted moving average
schemes to detect anomalies. The major drawback of the
conventional PCA based detection systems is that it is not
robust to the outliers. Moreover, tuning the parameters such
as dimensionality of the normal subspaces and the detection
threshold is challenging as it leads to high false-positive
alarms [21].

Yang et al. proposed Coupled Bayesian Robust Principal
Component Analysis for road traffic event detection which
is an extension to Bayesian RPCA [7]. This method couples
multiple data streams of nearby sensors so that they share
a sparse structure. Furthermore, they used sparsity sharing
to detect events in space and time. However, the data from
different sensors were modeled as time series. Kerner et
al. used Floating Car Data (FCD) to detect congestion in
a traffic network [22]. This method relies on the collection
and processing of travel time data sent by the FCD vehicles.
The emergence and dissolution of congestion is detected
by assessing the increase and decrease in the travel time
on different road segments respectively. Thajchayapong et
al. proposed a traffic anomaly detection and classification
algorithm that utilizes the temporal changes in variance and
the changes in spatial covariances of microscopic traffic
variables [23].

Wavelet transforms have also been used for anomaly
detection with applications to the communication networks.
However, the variables are modeled as time series. We would
refer to these techniques as classical wavelet transforms.
For instance, Huang et al. had studied the network traffic
anomaly detection problem in the temporal domain with the
aid of classical wavelet transforms [8]. Barford et al. used
similar techniques for Internet Protocol (IP) flow and Simple
Network Management Protocol (SNMP) measurements to
evaluate denial-of-service (DoS) attack and other abnormal
events [9]. The authors in [24] proposed undecimated
discrete wavelet transform and Bayesian analysis to detect
network anomalies by considering the time-varying nature
of the data. In addition, Xunyi et al. in [10], and Handi
and Boudriga in [11] used classical wavelets to detect DoS
attacks.

Other time series based detection systems are based
on supervised learning [12]–[14], unsupervised learning
[15]–[19], and Time-based Inductive learning Machine
(TIM) [20]. Heller et al. in [12] proposed One Class Support
Vector Machine (OCSVM) to identify anomalous windows



Fig. 1: The map G for wavelet analysis displaying the
subnetworks G1 and G2.

registry access. This method constructs a model from the
training data consisting of normal events and then classifies
the test data as normal or anomalous. Lakhina et al. employed
unsupervised learning techniques, i.e., clustering to classify
the normal and disruptive events [15].

This paper proposes spectral graph wavelet transforms
[25] for the detection of disruptive events such as traffic
congestion. In contrast to the above mentioned time-series
based approaches, the graph wavelet based method considers
traffic parameters such as speed as the signal lying on
the graph. It incorporates the relationship between the data
defined over the network and the underlying topology;
where the data is expected to be influenced by the network
topology. Spectral graph wavelet transforms have been
found application in areas such as transportation network,
and neuronal network where network topology plays an
important role [25], [26]. In this study, we apply this
technique to road network.

In this method, we obtain scaling functions using the
spectral decomposition of the discrete graph Laplacian (L ).
This is done by calculating the eigenvalues and eigenvectors
of L . The graph Laplacian is the graph analogue to the
Fourier transform. The wavelet operator T s

g is then defined
as T s

g = g(sL ) for a given wavelet generating kernel g
and scale parameter s. Furthermore, the wavelet coefficients
are computed by applying this operator to the input graph
signal defined at the vertices of the graph. These wavelet
coefficients are then used to analyze the disruptive traffic
events such as congestion.

Land Transport Authority (LTA) of Singapore provided
the data for experimental purpose. The test network consists
of expressway sections around the downtown area. With the
help of spectral graph wavelet transforms, we would be able
to detect the occurrence, spread, propagation, and the span
of disruptive events.

The remainder of this paper is structured as follows.
In Section II, we briefly describe spectral graph wavelet
transforms. In Section III, we explain the data set. In Section
IV, we describe and discuss how graph wavelets can be used
to model events in the transportation network. In Section V,
we provide concluding remarks.

Fig. 2: The subnetwork G1 showing road segments from East
Coast Parkway.

Fig. 3: The subnetwork G2 showing road segments from
Central Expressway.

II. SPECTRAL GRAPH WAVELET TRANSFORM -
THEORETICAL OVERVIEW

In this section, we first review the theoretical aspects
of classical wavelet transform, particularly, the Continuous
Wavelet Transform (CWT). We then describe the forward
transform, its inversion, and define scaling in Fourier domain.
Finally, we discuss how these mathematical concepts and
intuitions can be extended to signals defined on graphs. A
more rigorous treatment on spectral graph wavelet transforms
can be found in [25] and [26]. We will use the same notations
as introduced in [25].

A. Classical Wavelet Transform

Classical wavelets ψs,a of a function f (x) at scale s and
location a are constructed from the translated and scaled
versions of the mother wavelet ψ:

ψs,a(x) =
1
s

ψ
(

x−a
s

)
. (1)

For a given function f , the wavelet coefficients Wf (s,a)
are calculated by convolving the input functions with the
functions generated by the mother wavelet:

Wf (s,a) =
∫ ∞

−∞

1
s

ψ∗

(
x−a

s

)
f (x)dx. (2)

The inverse CWT can be written as [27]:

f (x) =
1

Cψ

∫ ∞

0

∫ ∞

−∞
Wf (s,a)ψs,a(x)

dads
s

, (3)



where Cψ is defined as:

Cψ =
∫ ∞

0

|ψ(ω)|2

ω
dω < ∞, (4)

where ψ(ω) is the Fourier transform of the mother wavelet
ψ(x). This equation is also called the admissibility condition.

It is challenging to directly apply the fundamental aspects
of defining wavelets to the data defined over irregular,
non-Euclidean spaces such as graph settings. In such settings,
translation and contraction carry no meaning. An alternate
way to perform Fourier transform on graphs is to use the so
called Laplacian operators (L ) [25].

Before explaining the notion of the Laplacian operator,
we will briefly discuss how scaling functions are defined
in Fourier domain for the classical wavelet transform. We
will also see how the resulting expression will help us to
formulate an analogous transform on graphs. The wavelet
transform for a fixed scale s may be considered as an
operator T s which takes the function f and returns the
function T s f (a) = Wf (s,a). Here, the translation parameter
is considered as the independent variable of the function
returned by the operator [25]. Therefore,

ψ̄s(x) =
1
s

ψ∗

(
−x
s

)
. (5)

The operator T s can be expressed as:

(T s f )(a) =
∫ ∞

−∞

1
s

ψ∗

(
x−a

s

)
f (x)dx (6)

=
∫ ∞

−∞
ψ̄s(a− x) f (x)dx

= (ψ̄s ⋆ f )(a).

By taking the Fourier Transform and applying the
convolution theorem, we get:

T̂ s f (ω) = ˆ̄ψs(ω) f̂ (ω). (7)

Taking into account the scaling properties of the Fourier
Transform and (5), we arrive at the following expression:

ˆ̄ψs = ψ̂∗(sω). (8)

Combining (5), (6), and (7), and inverting the transform
yields:

(T s f )(x) =
1

2π

∫ ∞

−∞
eiωxψ̂∗(sω) f̂ (ω)dω. (9)

The scaling s appears only in the argument of ψ̂∗(sω),
implying that the scaling can be defined in Fourier domain.
The expression is used to derive spectral graph wavelet
transforms discussed later in this section.

B. Weighted Graph and Graph Signal

1) Weighted Graph: Consider a connected, weighted
graph G = {V,E,w} with a set of vertices V , |V | = N < ∞,
a set of edges E, and weight function w : E → R

+. The
adjacency matrix A for the weighted graph G is the N ×N
matrix with entries am,n where

am,n =

{
w(e) if e ∈ E connects the vertices m and n

0 otherwise.
(10)

The edge weights are defined by using a thresholded
Gaussian kernel weighting function. Moreover, it reflects
similarity or strength of correlation between the signals
defined on vertex m and n.

2) Graph Signal: A graph signal is defined as a collection
of a finite number of samples, each defined at the vertices of
the graph and is represented as f : V → R

N , where the mth

component of the signal f represents the traffic speed value
at the mth vertex in V . For a road network, the signal on
each vertex is the average speed on a particular road during
a certain time interval. For our data set, the interval is 5
minutes.

C. Graph Laplacian

The non-normalized graph Laplacian is defined as L =
D − A, where the diagonal matrix D denotes the degree
matrix. The mth diagonal element dm of D is equal to the
sum of the weights of all edges incident to the vertex m. For
any signal f ∈ R

N , L satisfies:

(L f )(m) = ∑
m∼n

wm,n. [ f (m)− f (n)] , (11)

where m ∼ n represents all vertices n that are connected to
the vertex m. The eigenvectors χl satisfying:

L χl = λlχl, (12)

for l = 0,1, . . . ,N − 1 are associated with real, non-negative
eigenvalues, {λl}l=0,1,...,N−1.

The entire spectrum is thus denoted by σ(L ) =
{λ0,λ1,. . . ,λN−1}. In any graph, the Laplacian eigenvectors
are analogous to the Fourier vectors and its eigenvalues, the
frequencies [25].

D. Graph Fourier Transform

The classical Fourier Transform:

f̂ (ξ ) = 〈 f ,e2πiξ x〉=
∫

R

f (x)e−2πixξ dx, (13)

is the expansion of a function f in terms of complex
exponentials. These exponentials are the eigenfunctions of
the one-dimensional Laplacian operator d2

dx2 . The graph
Fourier transform can be defined in a similar manner using
the graph Laplacian eigenvectors. Hence, the graph Fourier
transform f̂ of any function f ∈ R

N on the vertices of G:

f̂ (l) = 〈χl, f 〉=
N

∑
n=1

χ∗
l (n) f (n), (14)



is an expansion of f in terms of the graph eigenvectors of
the graph Laplacian. The inverse graph Fourier transform is
thus determined as:

f (n) =
N−1

∑
l=0

f̂ (l)χl(n). (15)

E. Spectral Graph Wavelet Transform

The spectral graph wavelet transform is generated by
operator-valued functions of the Laplacian, called wavelet
operators. The wavelet operator at scale s, for a wavelet
generating kernel g, is defined as T s

g = g(sL ). The wavelet
operator Tg = g(L ) at scale s = 1 acts on a given function
f by modulating each Fourier mode as:

T̂g f (l) = g(λl) f̂ (l). (16)

On applying inverse Fourier transform, we get

(Tg f )(m) =
N−1

∑
l=0

g(λl) f̂ (l)χl(m). (17)

The kernel g is analogous to wavelet function ψ̂∗ in
(7). It should be noted that the kernel g is defined in the
continuous domain even though the spatial domain for the
graph is discrete. Thus, the scaling can assign any positive
real number s.

The spectral graph wavelets are calculated by applying the
wavelet operator to a delta impulse δn at a single vertex n
as given below:

ψs,n = T s
g δn, (18)

which yields:

ψs,n(m) =
N−1

∑
l=0

g(sλl)χ∗
l (n)χl(m). (19)

Finally the wavelet coefficients of the function f is calculated
by performing the inner product with the individual graph
wavelets as:

Wf (s,n) = 〈ψs,n, f 〉. (20)

On the other hand, the wavelet coefficients can directly be
generated from wavelet operators (see (17)) by making use
of the orthonormality of the eigenvectors χl . It is given as:

Wf (s,n) = (T s
g f )(n) =

N−1

∑
l=0

g(sλl) f̂ (l)χl(n). (21)

III. EXPERIMENTAL DATA

The road network G considered in this study comprises
of several expressways and downtown roads in Singapore
(Fig. 1). We use the data provided by LTA for the month of
August 2011. The data set contains average speed values
for individual links (road segments) sampled at 5 min
intervals. These speed values represent the average speed of
all the vehicles traversing the road segment during the given
sampling interval.

The graph G is the network line graph where the variables
are defined on the vertices or nodes. In the line graph, each
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(a) wavelet traces: ECP-1.
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(b) wavelet traces: ECP-2.
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(c) Speed traces: ECP-1.
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(d) Speed traces: ECP-2.

Fig. 4: One-day traffic wavelet traces (s = 5) for ECP in
either direction ((a) and (b)). The average spatial traffic speed
profiles (km/h) for each road (vertex) are given in (4c) and
(4d) respectively.

road segment is represented by a vertex. If the two road
segments m and n are connected with each other such that a
vehicle can go from m to n, then an edge will exist between
the nodes m and n in the line graph G. For convenience, we
will refer a road segment as link.

For demonstration purposes, we consider the road
segments from East Coast Parkway (ECP) and Central
Expressway (CTE) (see Fig. 2 and Fig. 3). These two
expressways are among the busiest roads of Singapore.

We apply graph wavelets to illustrate the variations in the
traffic conditions during the whole day (speed values sampled
at 5 min intervals from 12:00 a.m. to 11:55 p.m.).
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Fig. 5: The graph wavelet decomposition for an example
link 01 from subnetwork G1. The high magnitude variation
corresponds to speed fluctuations. The anomaly is indicated
in Red. A and C indicate the start of the morning and evening
congestions respectively. B is another anomaly that occurred
at sample 154 (Time: 12 : 45 p.m.).
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(a) wavelet traces: CTE link-24.
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(c) Speed traces: CTE subnetwork
consisting of link ids 20,21,...,28.
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(d) Speed traces: ECP subnetwork
consisting of link ids 01,02,...,10.

Fig. 6: Wavelet coefficients during traffic congestion and
normal flow. The wavelet decomposition for a sample traffic
link affected by congestion in CTE and the corresponding
speed traces of the subnetwork during the affected time
(from 06:35 a.m. (sample=80) to 08:15 a.m. (sample=100))
are given in (6a) and (6c) respectively. The wavelet traces
for ECP link during normal traffic and the corresponding
speed traces (from 06:10 a.m. (sample=75) to 10:20 a.m.
(sample=125)) of the subnetwork are given in (6b) and (6d).

IV. RESULTS AND DISCUSSIONS

In this section, we demonstrate how graph wavelets can be
applied to detect disruptive traffic events in the network. For
the sake of simplicity in visualization and interpretation, we
restrict ourselves to two small subnetworks G1 and G2 (see
Fig. 2 and Fig. 3). We employ the Spectral Graph Wavelets
Toolbox (SGWT) [28] to implement the method outlined in
Section II.

The traffic speed reported during the measurement period
(12:00 a.m. to 11:55 p.m. with 5 min interval) is analyzed
using graph wavelets at different scales s = 1,2,..,20.

Fig. 4a and Fig. 4b depict link level wavelet traces

of the ECP subnetwork in either direction. The wavelet
decomposition at scale s = 5 of the graph signals
(average speed) collected from individual links during the
measurement period is also shown. The x-axis represents
time instances of the day in terms of samples, i.e., 1 to
288 (here, the samples 1 and 288 correspond to 12:00 a.m.
and 11:55 p.m. respectively). The magnitudes of the wavelet
coefficients are plotted along the y-axis.

The high magnitude coefficients are observed to be
concentrated in the vicinity of 08:15 a.m. (sample 100) and
06:40 p.m. (sample 225). These include the morning peak
hours (7:00 a.m. to 9:00 a.m.) and the evening peak hours
(5:00 p.m. to 7:00 p.m.). It can be seen from the Fig. 4c
that the traffic speed across the links (link id 01, 02,...,10)
drops to 40 km/h from a constant 80-85 km/h near the
sample 125. Accordingly, the wavelet coefficients report high
magnitude corresponding to this time instance, 10:20 a.m.
(see Fig. 4a). The interesting point here is to note that the
graph wavelets capture signal variation across the spatially
related links rather than the variation at individual links (as in
time-series based wavelet approach). In this way, it provides
summarized information regarding the traffic condition in
the network. Moreover, it avoids the necessity to analyze
individual links in the network to infer and detect the event in
the underlying network path. In addition, the graph wavelets
report low magnitudes between sample 1 and 72 implying the
absence of any unusual traffic speed variation during the time
(12:00 a.m. to 05:55 a.m.). These findings further imply that
the variations in the coefficient magnitude are the direct result
of speed fluctuation across the network. Similar inferences
can be made by analyzing the traffic flowing in the other
direction (see Fig. 4b and Fig. 4d).

Once an unusual event (for example congestion) is
detected in the network, it is possible to examine how it
propagates through the neighboring links by analyzing that
particular neighborhood. The wavelet decomposition for a set
of topologically related links is displayed in Fig. 4a, and Fig.
4b. In Fig. 4a, the links 01, 02, and 03 show abnormal traffic
between samples 100 and 125 (08:15 a.m. and 10:20 a.m.).
It shows that the congestion originated in link 01 tends to
propagate through link-02, link-03, and link-04. On the other
hand, the congestion generated in link-11 vanishes from the
neighborhood after traversing through link-12 and link-13.
These results demonstrate how graph wavelets can be used
to examine the propagation of the event detected (see Fig.
4a and Fig. 4b).

Next, to demonstrate the life span of an event, we perform
link-level graph wavelet analysis. As shown in Fig. 5, the link
exhibits anomaly traffic at 06:25 a.m. for a period of around
10 min (indicated as ‘A’). Another abnormal event appeared
at 12:45 p.m. spans for around 5 min (‘B’). The tendency
for the traffic to show significant variation becomes visible
after 04:25 p.m. (‘C’).

Let us now discuss the significance of different wavelet
scales in capturing the traffic trend of the network.

We further analyze the subnetworks in Fig. 2 and Fig. 3
at wavelet scales of s =1 to 20. The wavelet traces in Fig. 6a



are examined along with speed traces of the neighborhood
(see Fig. 6c). The traffic speed variation across the links
(link id=20, link id=22,.., link id=28) in the CTE subnetwork
corresponding to the time from 06:35 a.m. to 08:15 a.m.
(samples 80 to 100) during when the wavelet traces report
unusual behavior is shown in Fig. 6c. It is to be noted
that, from 06:35 a.m. to 08:15 a.m., the traffic speed across
the links fluctuates between 65 km/hr and 75 km/hr. These
fluctuations are picked up by the wavelets at higher scales.
Thus, the higher scales capture the abrupt changes in the
signal.

In contrast, the traffic speed varies smoothly across the
links in the ECP subnetwork (see Fig. 6d) and therefore,
the lower scale wavelet coefficients are large (see Fig. 6b).
Thus, the lower scale wavelet coefficients capture the slow
varying nature of the signal. These results demonstrate the
significance of graph wavelet analysis with different scales
to infer the nature of the disruptive event.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we demonstrated the use of spectral graph
wavelets to analyze unusual traffic conditions. To this end,
we modeled traffic speed as a signal lying on a graph.
The spectral graph wavelet transforms can be highly useful
in understanding various characteristics of disruptive events
such as traffic congestion. These characteristics include
occurrence, spread, propagation, and span. In the future, the
insights obtained from this study could be used for automatic
event detection.
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