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Abstract

We study a market mechanism that sets edge prices to incentivize strategic agents to effi-
ciently share limited network capacity. In this market, agents form coalitions, with each coalition
sharing a unit capacity of a selected route and making payments to cover edge prices. Our focus
is on the existence and computation of market equilibrium, where challenges arise from the
interdependence between coalition formation among strategic agents with heterogeneous pref-
erences and route selection that induces a network flow under integral capacity constraints. To
address this interplay between coalition formation and network capacity utilization, we intro-
duce a novel approach based on combinatorial auction theory and network flow theory. We
establish sufficient conditions on the network topology and agents’ preferences that guarantee
both the existence and polynomial-time computation of a market equilibrium. Additionally, we
identify a particular market equilibrium that maximizes utilities for all agents and the outcome
is equivalent to the classical Vickrey-Clarke-Groves mechanism. Furthermore, we extend our
results to multi-period settings and general networks, showing that when the sufficient condi-
tions are not met, an equilibrium may still exist but requires more complex, path-based pricing
mechanisms that set differentiated prices based on agents’ preference parameters.

1 Introduction

Transportation and logistics networks often face losses from congestion caused by inefficient use
of limited capacity. One effective approach to improve resource utilization and reduce costs is to
incentivize users to form resource-sharing coalitions. This can be done through a market-based
approach that sets appropriate prices for capacity usage at specific times and locations. For exam-
ple, setting edge toll prices for using road networks can incentivize agents to organize carpooling
trips, reduce the number of vehicles on the road, and minimize congestion. Similarly, flexible and
on-demand shipping applications can optimize deliveries and routes, reducing the number of car-
goes and the fleet size required. By leveraging the complementarity between resource sharing and
pricing, we can achieve substantial improvement in cost, time, and reducing environmental impacts
for transportation and logistics networks.
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The goal of this paper is to analyze a market mechanism that incentivizes strategic agents to
share network capacities by forming coalitions. We begin with a basic static model that considers
a network composed of resources modeled as directed edges with finite capacity. Agents form
coalitions, and each coalition selects a route (a sequence of edges) that connects a source to a sink.
We refer to the combination of an agent coalition and a route as a trip. Each trip utilizes one unit
of capacity on all edges along the route, with the edge capacity limiting the number of trips that
can use that edge. We consider trip value functions that are affine in the time cost with private
and heterogeneous preference parameters that represent agents’ sensitivity to travel time and the
disutility of sharing capacity with others in the coalition.

The basic model considers a simple edge-based homogeneous pricing scheme: Each coalition
pays a price for using a unit of capacity of an edge. The price is the same for all coalitions, and
acts as the “invisible hand” that governs agents’ coalition formation and edge capacity utilization.
When the price of an edge increases, agents are incentivized to either form coalitions to share trips
and split the cost or switch to using the capacity of a less expensive route. Agents in each coali-
tion make payments to cover the total cost of the chosen path. A competitive market equilibrium
is defined by the trip allocation, edge prices, and agent payments that satisfy the following con-
ditions: (i) individual rationality—ensuring all agents have non-negative equilibrium utility; (ii)
stability—no coalition of agents has an incentive to deviate from the equilibrium trip; (iii) budget
balance—agents’ payments cover the edge prices; and (iv) market clearing—prices are charged only
on edges where the edge capacity is saturated.

A central feature of our model is the interplay between coalition formation and capacity uti-
lization in terms of the induced flow in the network. Each coalition corresponds to a group of
agents jointly selecting a route and sharing one unit of capacity along that route. These trip-level
decisions naturally induce a flow over the network. However, unlike classical flow models where the
optimal network flow is determined independently of agent groupings, here the coalition structure
and the induced flow are tightly coupled: the value of a trip depends on both the route chosen and
the identity and preferences of the agents in the coalition. Conversely, edge prices affect not only
the agents’ route choices but also their incentives to form coalitions, since sharing costs alters their
utility. This interdependence poses a major challenge: capacity utilization in terms of the network
flow cannot be determined without simultaneously considering how coalitions form in equilibrium,
and vice versa.

Our focus is on the existence and computation of market equilibrium. We identify sufficient
conditions under which a market equilibrium with homogeneous edge-based pricing exists and can
be computed in polynomial time. Specifically, these conditions include a series-parallel network
topology and homogeneous disutilities of capacity sharing among agents. To illustrate the ”tight-
ness” of these conditions, we provide two counterexamples (Examples 1 and 2), each violating
one of the conditions and resulting in the failure of equilibrium existence. When these sufficient
conditions do not hold, we explore extensions to the pricing schemes that restore equilibrium exis-
tence. In particular, we show that equilibrium can still exist in general networks when path-based
pricing is applied. Furthermore, for agents with heterogeneous capacity-sharing disutilities, equi-
librium can be achieved by segmenting agents into separate markets based on their disutilities and
differentiating pricing accordingly. Table 1 provides a summary of these findings.

We next present our approach for addressing equilibrium existence and computation, highlight-
ing the distinct role each condition plays in ensuring existence and tractability. Our starting point
is to formulate the optimal trip allocation problem as an integer program, and show that the ex-
istence of a market equilibrium is equivalent to the zero integrality gap in its associated linear
relaxation (Proposition 1). This connection between a zero integrality gap and market equilibrium
has been established in various market design settings involving both divisible and indivisible goods.
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Series-parallel
network

Non-series-parallel
network

Homogeneous
capacity sharing

disutility

Edge-based pricing;
homogeneous across
agents (Theorem 1)

Path-based pricing;
homogeneous across

agents (Proposition 2)

Heterogeneous
capacity sharing

disutility

Edge-based pricing;
population-specific
(Proposition 2)

Path-based pricing;
population-specific
(Proposition 2)

Table 1: Conditions for market equilibrium existence

Although standard, this initial step allows us to transform the equilibrium existence problem into
the analysis of the integer program and its linear relaxation for optimal trip allocation. However,
since the set of all possible coalitions is exponentially large, the linear relaxation of the optimal trip
allocation problem has exponential size, which is computationally challenging even without integer
constraints.

The series-parallel network condition plays a critical role in decoupling the two intertwined layers
of the optimal trip allocation problem: coalition formation and network flow allocation. We show
that, in series-parallel networks, there always exists an integer route flow that is optimal for all agent
preferences and coalition formations (Lemma 1), and this flow can be computed using a polynomial-
time greedy algorithm (Algorithm 1). This key structural property allows us to compute the optimal
capacity utilization represented as a network flow—independently of coalition formation, which is
computed separately in the next step. In contrast, in non-series-parallel networks, no single route
flow is optimal for all feasible coalition formations. The optimal flow depends on the coalition
structure and may be fractional, leading to a non-zero integrality gap in the linear relaxation of
the trip allocation problem and failure of equilibrium existence, as illustrated in Example 1.

The condition of homogeneous capacity-sharing disutility plays a critical role in the tractabil-
ity of coalition formation. We show that coalition formation and allocation to the constructed
route flow is mathematically equivalent to a Walrasian equilibrium in an auxiliary economy, where
agents act as “indivisible goods” and route capacity units as “buyers” with an augmented trip
value function. The homogeneity assumption ensures that this augmented value function satisfies
monotonicity and the gross substitutes property, even though the original value function does not.
As a result, a Walrasian equilibrium exists in the auxiliary economy (following Gul and Stacchetti
(1999)), which translates directly to a market equilibrium in our setting. In contrast, Example
2 shows that when the homogeneous capacity-sharing disutility condition is violated, even if the
series-parallel network condition holds, an equilibrium may fail to exist.

Furthermore, building on the connection between market equilibrium and the Walrasian equilib-
rium of the auxiliary economy, we identify a particular market equilibrium in which trip organization
and payments align with the Vickrey-Clarke-Groves (VCG) mechanism. This structure enables a
central planner to implement the equilibrium outcome without knowing agents’ private preferences.
Notably, this equilibrium achieves the highest agent utilities among all possible market equilibria
and collects only the minimum total edge prices (Theorem 2). This result leverages the lattice
structure of Walrasian equilibria in the constructed auxiliary economy, as established in Gul and
Stacchetti (1999).

The proof of Theorem 1 also enables a two-step polynomial-time algorithm for computing the
market equilibrium, where we first compute the equilibrium route flow using a greedy algorithm
(Algorithm 1), and then compute the equilibrium coalitions given the route flow capacity as the
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Walrasian equilibrium in the equivalent economy with augmented trip functions (Algorithm 2 in
Appendix A). Several different approaches have been developed for computing Walrasian equilib-
rium in markets with indivisible goods and value functions that satisfy gross substitutes conditions.
These include the original Kelso-Crawford algorithms Kelso Jr and Crawford (1982), sub-gradient
based algorithms (Ausubel and Milgrom (2002); Parkes (1999)), primal-dual algorithms (de Vries
et al. (2007)), ellipsoid method-based algorithm (Nisan and Segal (2006)) and combinatorial algo-
rithms based on discrete convex analysis (Murota and Tamura (2003); Murota (1996); Paes Leme
and Wong (2020)). We build on the well-known Kelso-Crawford algorithm (Kelso Jr and Crawford
(1982)), but modify it to ensure an efficient way to iteratively compute the augmented trip value
functions.

On general networks with multiple origin-destination pairs and heterogeneous capacity-sharing
disutilities, the two sufficient conditions are violated, and market equilibrium may fail to exist
under edge-based pricing that is homogeneous across agents. We show that equilibrium can still
be achieved by adopting route-based pricing and serving agent populations in separate markets
based on their capacity-sharing disutilities. However, computing the optimal capacity allocation
across these populations is NP-hard. To address this, we develop a branch-and-price algorithm
(Algorithm 3 in Appendix F) to compute market equilibrium in such general settings.

Finally, in Section 4, we extend our static model to a multiple-period model, where agents have
heterogeneous preferred arrival times and late arrival penalties, and they form coalitions to choose
both the route and departure time. We show that the same equilibrium existence and computation
results from the static model extend to the multi-period model. In multi-period setting, the series-
parallel network condition again plays a crucial role as we show that a temporally repeated flow
computed by greedy algorithm is the optimal trip route flow on the series-parallel network regardless
of agents’ preferences and coalition formation (Lemma 4). Under the condition of homogeneous
capacity sharing disutility condition, the coalition formation and allocation to routes and departure
times given the computed temporally repeated flow follows from that in the static model. We test
our algorithm in the numerical example of designing a carpool market using the data from the
California Bay Area highway network (Appendix G).

Literature review. Cost sharing in network resource utilization has been studied in various con-
texts. In particular, the competitive market framework was adopted by Ostrovsky and Schwarz
(2019) to model network capacity sharing in the context of autonomous carpooling markets. The
authors considered general trip value function in a static model, and defined the concept of mar-
ket equilibrium. They demonstrated that a market equilibrium, when it exists, maximizes social
welfare by applying the first welfare theorem. However, their article did not investigate the equi-
librium existence and computation complexity. Our paper has a distinct focus on existence and
polynomial time equilibrium computation in both static and multi-period settings. We also studied
the extensions from edge-based homogeneous pricing to more complex pricing mechanisms that
guarantee equilibrium existence in general network and preference parameter settings.

One line of related work concerns cost sharing in cooperative traveling salesman games, where a
group of agents shares a delivery tour and seeks a stable division of costs. The paper Potters et al.
(1992) introduced the traveling salesman game and demonstrated that the core may be empty even
with symmetric costs. Follow-up studies focused on characterizing stable cost sharing and bounding
the budget-balance gap for both symmetric Faigle and Kern (1993); Faigle et al. (1998); Tamir
(1989) and asymmetric traveling salesman games Bläser and Shankar Ram (2008); Toriello and
Uhan (2013). Our model differs from cooperative traveling salesman games in that the underlying
optimization problem in our setting is a network flow problem with capacity sharing on edges,
whereas the traveling salesman games literature centers on constructing traveling salesman tours.
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Additionally, while the traveling salesman game assumes fixed costs (e.g., the length of the optimal
tour), our model features edge prices that are endogenously determined through market equilibrium.
Like the traveling salesman games literature, our analysis leverages linear programming relaxations;
however, our focus lies in identifying conditions under which market equilibrium exists (i.e., when
the integrality gap of the linear programming relaxation is zero), rather than in approximating the
core or analyzing the integrality gap.

Furthermore, a separate line of literature has examined cost sharing in network design, where
agents construct edges to connect source-sink pairs and share the associated costs—either equally
or according to some rule Chekuri et al. (2006); Epstein et al. (2007); von Falkenhausen and Harks
(2013); Anshelevich et al. (2008); Chen et al. (2010); Albers (2009); Hoefer (2011); Harks et al.
(2021). Cost sharing has also been explored in scheduling and congestion games, where the cost
of each resource varies with aggregate agent utilization, and agents may split the costs among
themselves. This involves the cooperative setting (Fotakis et al. (2008); Kollias and Roughgarden
(2011); Rozenfeld and Tennenholtz (2006); Christodoulou et al. (2004); Immorlica et al. (2009);
Cole et al. (2011); Gkatzelis et al. (2016); Holzman and Monderer (2015)) and non-cooperative
routing with proportional cost splitting (Harks and Miller (2011); Johari and Tsitsiklis (2004)).
In cooperative settings, strong Nash equilibrium is proposed as a solution concept, describing
a scenario where no coalition of agents can improve their outcomes (Aumann (1959); Epstein
et al. (2007); Rozenfeld and Tennenholtz (2006); Holzman and Law-Yone (1997); Andelman et al.
(2009); Ferguson et al. (2023)). Previous studies have shown that strong Nash equilibria may
not always exist, and have also characterized the bounds of the price of anarchy and the price of
stability for strong Nash equilibria when they exist, e.g. Epstein et al. (2007); Chen et al. (2010);
von Falkenhausen and Harks (2013). The paper Epstein et al. (2007) showed that strong Nash
equilibrium exists in fair and general network connection games when the network is series-parallel.
Additionally, another paper Hao and Michini (2024) showed that the bound of price of anarchy in
routing games is also lower in a series-parallel network than that in a general network.

Our model and results differ from the existing lines of work in two key aspects. First, in our
model, the network is fixed with edges having fixed and finite capacities, while the price of using
a unit of capacity on each edge is endogenously determined by the market equilibrium outcome.
This contrasts with the cost-sharing literature for network design, where the cost of building an
edge is fixed and agents decide which edges to be constructed. Second, agents with heterogeneous
preferences can form coalitions to share one unit of capacity, with the formation of such coalitions
being influenced by the edge prices and the way these prices are divided among agents to align
their incentives. Such coalition formation leads to reduced capacity usage, an aspect not explored
in previous works on capacity sharing and network routing with cooperative agents. These two
features necessitate developing the new approach in this work to study the market equilibrium that
accounts for both the network flow and coalition formation. Our work establishes new methods
and results on equilibrium existence and computation for market equilibrium in capacity-sharing
networks.

2 The static basic model

For notation brevity, we present our main results in the static basic model. All results extend to
the multi-period model, which is detailed in Section 4.1. We consider a network with a single source
and a single sink connected by a set of resources E modeled as directed edges. The capacity of each
edge e ∈ E is a positive integer qe ∈ N+, and the time cost of traversing the edge is a positive real
number de ∈ R>0. A route r ∈ R is a sequence of edges that connect the source and the sink with
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time cost dr =
∑

e∈r de. The set of all routes is R. A finite set of agents M = {1, . . . , |M |} form
coalitions with coalition size at most A. We denote agent coalition as b ∈ B

∆
=
{
b ∈ 2M | |b| ≤ A

}
,

where B is the set of all feasible coalitions. Each coalition b ∈ B chooses a single route r and
consumes one unit of capacity for each edge e ∈ r. We define a tuple (b, r) as a trip, and the set of
all feasible trips is B × R. We allow an agent to leave the market if that agent does not join any
coalition and does not choose any route.

For each agent m ∈ M , the value of a trip (b, r) such that b ∋ m is an affine function of the
route time cost, and depends on the coalition size:

vm,r(b) = αm − βmdr − (∆αm(|b|) + ∆βm(|b|)dr) . (1)

where αm, βm ≥ 0 are the single-agent trip preference parameters, and ∆αm(|b|),∆βm(|b|) ≥ 0 are
agent m’s capacity sharing disutility parameters for all |b| = 1, . . . , A. We set ∆αm(1) = ∆βm(1) =
0 since coalition size |b| = 1 indicates that agent m does not share the capacity with any other
agent. Moreover, ∆αm(|b|+1)−∆αm(|b|),∆βm(|b|+1)−∆βm(|b|) ≥ 0, and are non-decreasing in
the coalition size |b| for all |b| = 1, . . . , A− 1 and all m ∈M . This indicates that sharing capacity
with other agents in the coalition decreases agent’s valuation of the trip, and the marginal decrease
of valuation increases in the size of the coalition. The total value of each trip (b, r) is the summation
of the trip values for all agents in b:

Vr(b) =
∑
m∈b

vm,r(b). (2)

We consider a market outcome represented by a tuple (x, p, τ), where x is the trip allocation
vector, p = (pm)m∈M is the payment vector, where pm is the payment charged from agent m, and

τ = (τe)e∈E ∈ R|E|
≥0 is the edge price vector, where τe is the price for using a unit capacity of edge e.

Given the edge price vector τ , the price for a trip (b, r) equals
∑

e∈r τe. The trip allocation vector

is x = (xr(b))(b,r)∈B×R ∈ {0, 1}|B|×|R|, where xr(b) = 1 if one unit capacity on route r is allocated
to trip (b, r) and xr(b) = 0 otherwise. A feasible allocation vector x must satisfy the following
constraints: ∑

r∈R

∑
b∋m

xr(b) ≤ 1, ∀m ∈M, (3a)∑
b∈B

∑
r∋e

xr(b) ≤ qe, ∀e ∈ E, (3b)

xr(b) ∈ {0, 1}, ∀(b, r) ∈ B ×R, (3c)

where (3a) ensures that no agent is allocated to more than 1 trip, and (3b) ensures that the total
number of trips allocated to use edge e ∈ E does not exceed the edge capacity qe. Given any
(x, p, τ), the utility of each agent m ∈ M equals to the value of the trip that m takes minus the
payment:

um =
∑
r∈R

∑
b∋m

vm,r(b)xr(b)− pm, ∀m ∈M. (4)

We define the market equilibrium as an outcome (x∗, p∗, τ∗) that satisfies four properties –
individual rationality, stability, budget balance, and market clearing.

Definition 1. A market outcome (x∗, p∗, τ∗) is an equilibrium if it satisfies
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1. Individually rationality: All agents’ utilities u∗ as in (4) are non-negative, i.e.

u∗m ≥ 0, ∀m ∈M. (5)

2. Stability: No coalition in B can gain higher total utility by organizing a different trip:∑
m∈b

u∗m ≥ Vr(b)−
∑
e∈r

τ∗e , ∀(b, r) ∈ B ×R. (6)

3. Budget balance: The total payments of agents in a coalition equals to the sum of the edge
prices of the trip. An agent’s payment is zero if they are not in any coalition:

x∗r(b) = 1 ⇒
∑
m∈b

p∗m =
∑
e∈r

τ∗e , ∀(b, r) ∈ B ×R, (7a)

x∗r(b) = 0, ∀(b, r) ∈ {B ×R|b ∋ m} ⇒ p∗m = 0, ∀m ∈M. (7b)

4. Market clearing: For any edge e ∈ E, the edge price τ∗e is zero when the number of trips
allocated to edge e is below the edge capacity:∑

(b,r)∈{B×R|r∋e}

x∗r(b) < qe ⇒ τ∗e = 0, ∀e ∈ E. (8)

In Definition 1, individual rationality condition (5) prevents agents from opting out of the
market. The stability condition in (6) ensures that the total utility

∑
m∈b u

∗
m for any coalition b

induced by the market equilibrium (x∗, p∗, τ∗) is higher or equal to the maximum total utility that
can be obtained by b taking any feasible trip (b, r), which equals to the trip value Vr(b) minus the
edge prices

∑
e∈r τ

∗
e . Thus, agents have no incentive to form another coalition not in the equilibrium.

The individual rationality condition and the stability condition together guarantee that agents will
follow the equilibrium trip allocation. The budget balance condition guarantees that the payments
cover edge prices, while market clearing ensures existence of non-zero equilibrium edge prices only
on fully utilized edges. The following integer program solves the socially optimal allocation vector
that maximizes the total value S(x) of all trip allocation:

max
x

S(x) =
∑

(b,r)∈B×R

Vr(b)xr(b), s.t. x satisfies (3a) – (3c). (IP)

We introduce the linear relaxation of (IP) as the primal linear program:

max
x

S(x) =
∑

(b,r)∈B×R

Vr(b)xr(b),

s.t.
∑
b∋m

∑
r∈R

xr(b) ≤ 1, ∀m ∈M, (LP.a)∑
b∈B

∑
r∈R

xr(b) ≤ qe, ∀e ∈ E, (LP.b)

xr(b) ≥ 0, ∀(b, r) ∈ B ×R. (LP.c)

Note that the constraint xr(b) ≤ 1 is implicitly included in (LP.a), and thus is omitted. By
introducing dual variables u = (um)m∈M for constraints (LP.a) and τ = (τe)e∈E for constraints
(LP.b), the dual of (LP) can be written as follows:

min
u,τ

U(u, τ) =
∑
m∈M

um +
∑
e∈E

qeτe,
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s.t.
∑
m∈b

um +
∑
e∈r

τe ≥ Vr(b), ∀(b, r) ∈ B ×R, (D.a)

um ≥ 0, τe ≥ 0, ∀m ∈M, ∀e ∈ E. (D.b)

The dual variables u = (um)m∈M and τ = (τe)e∈E can be viewed as agents’ utilities and the edge
prices, respectively. In (D), the objective U(u, τ) equals the sum of all agents’ utilities and the
total collected edge prices, and (D.a) is the same as the stability condition in (6). It is well-
established in the literature that the existence of market equilibrium is equivalent to the primal
linear program (LP) having an integral optimal solution, see for example in the book Vohra (2011).
For completeness, we state this result as the following proposition.

Proposition 1. A market equilibrium (x∗, p∗, τ∗) exists if and only if (LP) has an integer optimal
solution. Any integer optimal solution x∗ of (LP) is an equilibrium trip allocation vector, and any
optimal solution (u∗, τ∗) of (D) is an equilibrium utility vector and an equilibrium edge price vector.
The equilibrium payment vector p∗ is given by:

p∗m =
∑
r∈R

∑
b∋m

x∗r(b)vm,r(b)− u∗m, ∀m ∈M. (11)

Even if we ignore the integer constraints, the linear programs (LP) and (D) cannot be directly
used to compute market equilibrium because the primal (resp. dual) program has an exponential
number of variables (resp. constraints). When (LP) does not have an integral solution, Proposition
1 indicates that even if (IP) is solved, there does not exist an edge price vector and a payment vector
to implement the optimal trip allocation so that agents are willing to optimally share the network
capacity. In Sections 3, we provide conditions that guarantee the existence and tractability of
integer solution in (LP), and algorithms to compute the market equilibrium. We extend the results
of the tractable case to general networks and add the temporal dimension of trip allocation in
Section 4.

3 Existence and properties of market equilibrium

We provide sufficient conditions that guarantee market equilibrium existence in Section 3.1, and
present the equilibrium computation in Section 3.2. In Section 3.3, we identify a market equilibrium
that is equivalent to the outcome of the classical Vickrey–Clarke–Groves (VCG) mechanism. This
equilibrium achieves the maximum utility of each player among all market equilibria.

3.1 Sufficient conditions for equilibrium existence

Before we present the results, we first introduce the definition of a series-parallel network:

Definition 2 (Series-parallel network Duffin (1965); Valdes et al. (1979)). A series-parallel network
is a graph that can be recursively constructed from a single-edge network using a finite number of
series and parallel compositions. Formally, (i) a single-edge network is a series-parallel network;
(ii) Series composition merges the sink of one series-parallel sub-network to the source of another
series-parallel sub-network; (iii) Parallel composition combines two series-parallel sub-networks by
merging their respective sources and sinks.

Milchtaich (2006) showed that a network is series-parallel if and only if a Wheatstone structure
as in Figure 1 cannot be embedded in the network.
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Figure 1: A Wheatstone network.

Theorem 1. Market equilibrium (x∗, p∗, τ∗) exists if (i) the network is series-parallel, and (ii) the
capacity sharing disutility parameters are homogeneous among all agents:

∆αm(|b|) = ∆α(|b|), ∆βm(|b|) = ∆β(|b|), ∀|b| = 2, . . . , A, ∀m ∈M. (12)

Theorem 1 shows that the sufficient condition for equilibrium existence includes both the con-
dition on network topology – being series-parallel – and the condition on capacity sharing disutility
parameters – being identical. We note that the homogeneous capacity sharing disutility condition
still allows agents to have heterogeneous trip values – agents can have different parameters αm and
βm in (1).

We next provide two examples illustrating that market equilibrium may fail to exist when
either of the two sufficient conditions in Theorem 1 is violated. In particular, Example 1 consid-
ers a Wheatstone network, which violates the series-parallel condition, while all agents have zero
capacity-sharing disutility. Example 2, on the other hand, considers a simple network with two
parallel routes and two subsets of agents that differ in their capacity-sharing disutilities, thereby
violating the homogeneity condition. In both examples, market equilibrium does not exist.

Example 1. Consider the Wheatstone network as in Figure 1. The capacity of each edge in
{e1, e2, e3, e4} is 1, and the capacity of edge e5 is 4. The time cost of each edge is given by
de1 = 1, de2 = 2, de3 = 2, de4 = 1, and de5 = 0.2. The maximum coalition size is A = 2. Three
agents m = 1, 2, 3 have identical preference parameters: αm = 6, βm = 1, ∆αm(|b|) = 0 and
∆βm(|b|) = 0 for any |b| = 1, 2 and any m ∈ M . We define route e1-e2 as r1, e1-e5-e4 as r2,
and e3-e4 as r3. Trip values are: Vr1({m}) = Vr3({m}) = 3, and Vr2({m}) = 3.8 for all m ∈ M ;
Vr1({m,m′}) = Vr3({m,m′}) = 6, and Vr2({m,m′}) = 7.6 for all m,m′ ∈ M . The unique optimal
solution of the linear program (LP) is x∗r1({1, 2}) = x∗r2({2, 3}) = x∗r3({1, 3}) = 0.5, and S(x∗) = 9.8.
That is, (LP) does not have an integer optimal solution, and market equilibrium does not exist
(Proposition 1). □

Example 2. Consider a network with two parallel edges e1, e2. Both edges have a capacity of 1
and a time cost of de1 = de2 = 1. The maximum coalition size is A = 6. Twelve agents participate
in this market. Agents 1, 2, . . . , 6 have the following preference parameters: αm = 50, βm = 1/6,
∆αm(|b|) = 0.25(|b| − 1) for |b| ≤ 5, and ∆αm(|b|) = 0.5(|b| − 1) for |b| = 6. Agents 7, 8, . . . , 12
have parameters αm = 100, βm = 0.5, ∆αm(|b|) = 2(|b| − 1) if |b| ≤ 4 and infinity otherwise.
Furthermore ∆βm(|b|) = 0 for any |b| = 1, 2, 3, 4, 5, 6, and any m ∈ M . The optimal solution to
the LP-relaxation is xe1({1, 2, 3, 4, 5, 6}) = 0.5, xe1({9, 10, 11, 12}) = 0.5, xe2({7, 8, 10, 12}) = 0.5,
xe2({7, 8, 9, 11}) = 0.5. This solution has a value of 662.5. The integer optimal solution schedules
the trip {1, 2, 3, 4, 5, 6} at time 1 on e1, and {9, 10, 11, 12} at time 1 on e2; this solution has value
of 621 < 662.5. This indicates that the LP relaxation does not have an integer optimal solution,
and thus market equilibrium does not exist. □
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Theorem 1 demonstrates that network topology is crucial for the stability and efficiency of
capacity sharing in the market. In step 1 of the theorem proof (Lemma 1), we show that when
the network is series-parallel, an integer route flow computed by a greedy algorithm serves as the
optimal trip flow, regardless of agents’ preferences and how they form coalitions. This effectively
decouples the optimal trip allocation into two independent parts: first, compute the optimal integer
route flow, and then form the optimal agent coalitions that utilize the allocated route capacity
according to the flow. However, the conclusion of Lemma 1 may not hold when the series-parallel
network condition is violated. As shown in Example 1, in a non-series-parallel network, the route
flow induced by the optimal trip allocation might be fractional and cannot be obtained through a
greedy algorithm.

Furthermore, in step 2 of the theorem proof, we show that with homogeneous capacity sharing
disutilites, the optimal agent coalition formation that satisfies the flow capacity constraint in step 1
is also integer (Lemmas 2 – 3). Again, this step may not hold when the condition of homogeneous
capacinteger optimal solutionity sharing disutilites is violated. In Example 2, the route flow induced
by the optimal trip allocation is integer on the two-route parallel network, but the optimal coalition
formation is fractional. The two steps conclude that (LP) has an integer optimal solution, and thus
equilibrium exists following Proposition 1.

In Section 4.1, we show that the same result holds in the multi-period model, where agents can
choose their departure time. The proof of this extension follows similar ideas as Theorem 1 with
step 1 being more complex for the need of computing a dynamic optimal route flow instead of a
static one, which we will go into details later. Moreover, in Section 4.2, we show that when the two
conditions are violated, market equilibrium can still exist if capacity pricing is route-based rather
than edge-based, with differentiated capacity prices for agents with heterogeneous disutilities. In
Section 3.2, we also demonstrate that the homogeneous disutility condition is necessary for the
polynomial-time computation of market equilibrium. For the rest of this section, we present the
two step proof sketch of Theorem 1. The complete proof is included in Appendix C.

Step 1. We construct a flow capacity vector k∗ = (k∗r)r∈R using the greedy Algorithm 1 that
allocates edge capacity (qe)e∈E to routes in increasing order of travel time. In this algorithm, we
begin with computing a shortest route rmin with travel time dmin, and set its capacity to be the
maximum possible capacity k∗rmin

= mine∈rmin qe. Then, we reduce the residual capacity of each
edge on rmin by k∗rmin

, and repeat this process until there exists no route with positive residual
capacity in the network. We denote R∗ = {r ∈ R|k∗r > 0} as the set of routes with positive flow
capacity.

We consider another socially optimal trip organization problem (LPk∗), where trips satisfy the
capacity constraints according to k∗. Problem (LPk∗) is more restrictive than the original problem
(LP), as trip vectors satisfying capacity constraints in (LPk∗.b) must also meet the original network
capacity constraint (LP.b), but not necessarily vice versa. Lemma 1 demonstrates that for series-
parallel networks, an optimal solution of (LPk∗) also optimizes the original problem (LP).

Lemma 1. If the network is series-parallel, then any optimal solution of (LPk∗) is an optimal
solution of (LP):

max
x

S(x) =
∑
b∈B

∑
r∈R

Vr(b)xr(b),

s.t.
∑
b∋m

∑
r∈R

xr(b) ≤ 1, ∀m ∈M, (LPk∗.a)∑
b∈B

xr(b) ≤ k∗r , ∀r ∈ R, (LPk∗.b)
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ALGORITHM 1: Greedy algorithm for computing static route capacity k∗

1 Initialize: Set Ẽ ← E; q̃e ← qe, ∀e ∈ Ẽ; k∗r ← 0, ∀r ∈ R;

(dmin, rmin)← ShortestRoute(Ẽ);
2 while dmin <∞ do
3 k∗rmin

← mine∈rmin q̃e;
4 for e ∈ rmin do
5 q̃e ← q̃e − k∗rmin

;
6 if q̃e = 0 then

7 Ẽ ← Ẽ \ {e};
8 end

9 end

10 (dmin, rmin)← ShortestRoute(Ẽ);

11 end
12 Return k∗

xr(b) ≥ 0, ∀b ∈ B, ∀r ∈ R. (LPk∗.c)

We prove Lemma 1 by construction. We show that for any feasible solution x of (LP) on a
series-parallel network, we can construct another trip vector x̂ satisfying S(x̂) ≥ S(x) and feasibility
in (LPk∗). Optimal values of (LPk∗) and (LP) are equal, making any optimal solution of (LPk∗)
optimal in (LP).

The key step of the proof is to construct such x̂ by redistributing flow of agent coalitions in x,
ensuring that agent coalitions with higher time sensitivity are prioritized for shorter routes. The
series-parallel network condition is used to show that the flow k∗ is a maximum flow in series-
parallel networks (Lemma 9 in Appendix C). Thus, x̂ has the same total flow of each b as in x.
We also prove, using mathematical induction, that x̂ has higher social welfare compared to x (i.e.
S(x̂) ≥ S(x)) when the network is series-parallel: If the inequality holds on any two series-parallel
networks, then it also holds on the network constructed by connecting the two sub-networks in
series or in parallel.

Step 2. In this part, we show that when agents have homogeneous capacity sharing disutilities,
(LPk∗) has an integer optimal solution. Following from Lemma 1 in Step 1, we know that this
solution is also an integer optimal solution of (LP), and thus conclude Theorem 1. In this step, we
need to introduce the monotonicity and gross substitutes definitions.

Definition 3 (Monotonicity). A function f : B → R is monotone if f(b ∪ b′) ≥ f(b), ∀b, b′ ∈ B.

The value of a monotonic function f increases as the set b grows.

Definition 4 (Gross Substitutes Reijnierse et al. (2002)). A function f : B → R satisfies the gross
substitutes condition if
(i) ∀b, b′ ∈ B such that b ⊆ b′ and any i ∈M \ b′, f(i|b′) ≤ f(i|b), where f(i|b) = f(b ∪ {i})− f(b).
(ii) ∀b ∈ B and i, j, k ∈M \ b, f({i, j}|b)+f(k|b) ≤ max {f(i|b) + f({j, k}|b), f(j|b) + f({i, k}|b)},
where f({i, j}|b) = f(b ∪ {i, j})− f(b).

We note that the trip value function Vr(b) defined on the feasible coalition set B in (2) does not
satisfy the monotonicity condition because the size of the combined coalition b∪ b′ may exceed the
capacity limit A and the value Vr(b∪b′) may be less than Vr(b) when the capacity sharing disutility
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is sufficiently high. We denote all coalitions (with sizes both within A or larger than A) as B̄
∆
= 2M .

Then, we define the augmented value function V̄r : B̄ → R, where V̄r(b̄) takes the maximum value
of Vr(b) with coalition b ⊆ b̄. We denote a feasible coalition in b̄ that achieves this maximum value
as the representative coalition, hr(b̄), and denote the set of all such feasible coalitions as Hr(b̄):

V̄r(b̄)
∆
= max

b⊆b̄, b∈B
Vr(b), Hr(b̄)

∆
= argmax

b⊆b̄, b∈B
Vr(b), ∀(b̄, r) ∈ B̄ ×R. (14)

The augmented value function V̄ satisfies the monotonicity condition. When all agents have
homogeneous capacity sharing disutilities, V̄ also satisfies the gross substitutes condition.

Lemma 2. For any r ∈ R, the augmented value function V̄r(·) is monotone. Additionally, V̄r(·)
satisfies the gross substitutes condition for all r ∈ R if agents have homogeneous capacity sharing
disutilities.

By replacing the original value function V with the augmented value function V̄ in (LPk∗), we
show that the corresponding linear program has an integer optimal solution x̄∗ when V̄ satisfies
the monotonicity and gross substitutes conditions. Furthermore, we show that we can construct an
integer optimal solution x∗ of the original (LPk∗) by replacing the augmented coalition with the
represented coalition in all trips in x̄∗.

Lemma 3. The following linear program has an integer optimal solution x̄∗ =
(
x̄∗r(b̄)

)
(b̄,r)∈B̄×R

if

the augmented value function V̄ satisfies monotonicity and gross substitutes:

max
x̄

S(x̄) =
∑
b̄∈B̄

∑
r∈R

V̄r(b̄)x̄r(b̄),

s.t.
∑
b̄∋m

∑
r∈R

x̄r(b̄) ≤ 1, ∀m ∈M, (LPk∗.a)

∑
b̄∈B̄

x̄r(b̄) ≤ k∗r , ∀r ∈ R, (LPk∗.b)

x̄r(b̄) ≥ 0, ∀b̄ ∈ B̄, ∀r ∈ R. (LPk∗.c)

Furthermore, given an integer optimal solution x̄∗, any x∗ that satisfies the following constraints
is an integer optimal solution of (LPk∗):∑

b∈Hr(b̄)

x∗r(b) = x̄∗r(b̄), x∗r(b) ∈ {0, 1}, ∀(b, r) ∈ B ×R, ∀(b̄, r) ∈ B̄ ×R. (16)

To prove that (LPk∗) has an integer optimal solution, we view each unit capacity of route r as
a “slot”. Thus, given k∗, there are |Lr| = k∗r number of slots for each r ∈ R∗. The total number
of slots is |L| =

∑
r∈R k∗r . We demonstrate that the agent assignment problem is equivalent to the

good allocation problem in an auxiliary economy, where agents are indivisible goods and slots are
buyers. Following a similar primal and dual analysis as in Proposition 1, we show that the existence
of an integer solution in (LPk∗) is equivalent to the existence of Walrasian equilibrium (Kelso Jr and
Crawford (1982), see Definition 5 in Appendix C) of our constructed economy. With monotonicity
and gross substitutes conditions satisfied, the Walrasian equilibrium exists, and (LPk∗) has an
integer optimal solution x̄∗. Thus, x∗ in (16) is an integer optimal solution of (LPk∗) and, by
Lemma 1, also of (LP), concluding the proof of Theorem 1.
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3.2 Computing Market Equilibrium

Computing optimal trip organization. We compute the optimal trip vector x∗ in two steps
following the proof of Theorem 1: (Step 1) Compute the optimal route capacity vector k∗ from
Algorithm 1. In each iteration of Algorithm 1, the shortest route of the network is computed by
Dijkstra algorithm in time O(|N |2), where |N | is the number of nodes in the network. Moreover,
since the capacity of at least one edge is completely allocated to the shortest route of every iteration,
the number of iterations in Algorithm 1 is less than or equal to |E|. Therefore, the time complexity
of step 1 is O(|E||N |2).

(Step 2) Compute x∗ as an integer optimal solution of (LPk∗) by allocating agents to the set
of slots L given by k∗. Following Lemmas 2 and 3, we know that the second step of computing
the integer optimal solution of (LPk∗) cinteger optimal solutionquivalently turned into computing
the allocation x̄∗ in a Walrasian equilibrium of the auxiliary economy with the augmented value
function V̄r for each r ∈ R. The actual equilibrium allocation x∗ can then be recovered from (16).

Several approaches have been proposed for computing Walrasian equilibrium in an economy
with indivisible goods including the pseudo-polynomial time algorithms (Kelso Jr and Crawford
(1982); Ausubel and Milgrom (2002); Parkes (1999); de Vries et al. (2007)), and the polynomial time
algorithms (Nisan and Segal (2006); Murota (1996); Paes Leme and Wong (2020)). All of the above
methods can be used for computing the solution in step 2 of our problem. These algorithms require
the knowledge of the augmented value function and the oracle that can efficiently compute the set
argmaxb̄∈B̄{V̄r(b̄) −

∑
m∈b̄ um}. In our setting, since the augmented value function V̄r(b̄) satisfies

monotonicity and gross substitutes conditions (Lemma 2), we compute the set argmaxb̄∈B̄{V̄r(b̄)−∑
m∈b̄ um} by iteratively adding agents into the solution set greedily according to their marginal

contribution to the value of the objective function V̄r(b̄)−
∑

m∈b̄ um (Gul and Stacchetti (1999), also
included in Appendix B). We note that the greedy approach can be used to compute this set if and
only if V̄r satisfies the monotonicity and gross substitutes conditions (Gul and Stacchetti (1999)).
Therefore, the homogeneous capacity sharing disutility condition is essential for the polynomial
time complexity of the algorithm. To make the paper self-included, we provide the details of
our algorithm that computes x∗ in step 2 in Appendix A. Our algorithm is based on the Kelso-
Crawford algorithm (Kelso Jr and Crawford (1982)) with the modification that enables us to
efficiently compute V̄r(·) and hr(·) in an iterative manner only for a subset of (b̄, r) when needed.
Algorithm 2 is pseudo-polynomial in the number of agents |M | and the number of unit capacity
flow slot |L| =

∑
r∈R k∗r . We remark that other Walrasian equilibrium computation algorithms can

also be used to compute the trip allocation in this step.
Computing equilibrium payments and edge prices. Given the optimal trip vector x∗,

we compute the set of agent payments p∗ and edge prices τ∗ such that (x∗, p∗, τ∗) is a market
equilibrium. Recall from Proposition 1, the equilibrium utilities and edge prices (u∗, τ∗) are optimal
solutions of the dual program (D). We can use the Ellipsoid method to compute (u∗, τ∗) given
that the separation problem – identifying a violated constraint in (D) for any (u, τ) – can be
solved (Nisan and Segal (2006); Grötschel et al. (1993)). To verify constraints (D.a), we need to
check whether or not maxb∈B{Vr(b) −

∑
m∈b um} ≤

∑
e∈r τe is satisfied for all r ∈ R. We note

that maxb∈B{Vr(b)−
∑

m∈b um} = maxb̄∈B̄{V̄r(b̄)−
∑

m∈b̄ um}. Under the monotonicity and gross
substitutes conditions, maxb̄∈B̄{V̄r(b̄)−

∑
m∈b̄ um} can be computed by greedily adding agents to the

set b̄ (Algorithm 2 Line 3-29 in Appendix A). Thus, constraints (D.a) can be verified in O(|M ||R|)
time. Additionally, constraints (D.b) are straightforward to verify. Thus, an equilibrium utility
vector u∗ and an edge price vector τ∗ can be computed by the ellipsoid method in polynomial time
in |M | and |R|. Based on x∗ and (u∗, τ∗), we can compute the payment vector p∗ using (11).
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3.3 Equivalence to VCG mechanism

In this section, we identify a particular market equilibrium (x∗, u†, τ †) that induces the same out-
come as the classical VCG mechanism. We also show that u† achieves the maximum utility for
all agents and τ † charges the minimum total edge price among the set of equilibrium (u∗, τ∗).
Throughout this section, we assume that the network is series-parallel and agents have homoge-
neous capacity sharing disutilities, and thus market equilibrium exists following Theorem 1.

A VCG mechanism is defined as (x∗, p†), where x∗ is a socially optimal trip organization vector,

and payment p†m of each agent m ∈M is the difference of the total trip values for all other agents
given the socially optimal trip organization with and without agent m:

p†m = S−m(x∗−m)− S−m(x∗), ∀m ∈M, (17)

where x∗−m is the optimal trip vector for the trip organization problem with agent set M \
{m}. The optimal social welfare with x∗−m is S−m(x∗−m) given by (IP), and S−m(x∗) = S(x∗) −∑

r∈R
∑

b∋m vm,r(b)x
∗
r(b) is the social welfare for agents M \ {m} with the original optimal trip

vector x∗. Given x∗ and p†, the utility of each agent m ∈M is the difference of the optimal social
welfare with and without m:

u†m
(4)
=
∑
b∋m

∑
r∈R

vm,r(b)x
∗
r(b)− p†m

(17)
= S(x∗)− S−m(x∗−m), ∀m ∈M. (18)

From the classical theory of mechanism design Ausubel et al. (2006), we know that a VCG mecha-
nism is strategyproof. That means, if there exists a market platform that centrally organizes trips
based on agents’ reported preference parameters, then given the socially optimal trip organization
x∗, and the VCG payment p†, all agents will truthfully report their preferences to the platform. To
show that there exists a strategyproof market equilibrium, it suffices to demonstrate that we can
find a price vector τ † such that

(
x∗, p†, τ †

)
is a market equilibrium. Next, we show that such τ †

exists. Moreover, all agents’ equilibrium utilities given by u† are the highest of all market equilibria,
and the total collected edge price is the minimum.

Theorem 2. If the network is series-parallel, and agents have homogeneous capacity sharing disu-
tilities, then a strategyproof market equilibrium

(
x∗, p†, τ †

)
exists, and the equilibrium utility vector

is u†. Moreover, given any other market equilibrium (x∗, p∗, τ∗),

u†m ≥ u∗m, ∀m ∈M, and
∑
e∈E

qeτ
†
e ≤

∑
e∈E

qeτ
∗
e .

Theorem 2 shows that there exists a market equilibrium that can be implemented by platforms
in a centralized manner – agents report their private preference parameters to the platform, and
the platform mediates the market on the agents’ behalf. Our result shows that the platform has to
implement the equilibrium that maximizes agents’ utilities in order to ensure that agents will not
lie about their preferences.

We prove Theorem 2 in two steps that can be viewed as the dual of the two steps in the proof
of Theorem 1: Firstly, we show that a utility vector u∗ is an equilibrium utility (i.e. there exists a
price vector τ∗ such that (u∗, τ∗) is an optimal solution of (D)) if and only if there exists a vector
λ∗ = (λ∗

r)r∈R such that (u∗, λ∗) is an optimal solution of (Dk∗) – the dual of (LPk∗) (Lemma 10).

min
u,λ

∑
m∈M

um +
∑
r∈R

k∗rλr,
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s.t.
∑
m∈b

um + λr ≥ Vr(b), ∀(b, r) ∈ B ×R, (Dk∗.a)

um ≥ 0, λr ≥ 0, ∀m ∈M, ∀r ∈ R. (Dk∗.b)

Here, λ is the dual variable of constraint (LPk∗.b), which can be viewed as the price for routes
(instead of for edges as in τ). In particular, λr is the price for using a unit capacity on route r.
Thus, step 1 indicates that the set of agents’ equilibrium utilities with edge-based pricing in the
original network is the same as the set of equilibrium utilities achieved with route-based pricing
when trips are organized according to the flow capacity k∗. Secondly, we demonstrate that u† is
a part of an optimal solution of (Dk∗), and the set of all equilibrium utility vectors is a lattice
with the maximum element being u† (Lemma 11). This step leverages the connection between the
equilibrium coalition formation given k∗ and the Walrasian equilibrium of the auxiliary economy,
and follows the results in Gul and Stacchetti (1999).

4 Extensions of the basic model

4.1 Extension I: Capacity sharing over time

In this section, we extend the static capacity sharing problem to multiple time steps t ∈ [T ] :=
{1, 2, . . . , T}. Agents, after forming a coalition b, choose a route r and a departure time z ∈ [T ].
Thus, a trip is defined as (b, r, z). Agent m’s valuation of a trip (b, r, z) is given by:

vzm,r(b) = αm − βmdr −∆αm(|b|)−∆βm(|b|)dr − ℓm((z + dr − θm)+),

where θm is agent m’s preferred latest arriving time, (z + dr − θm)+ = max{z + dr − θm, 0} is the
amount of time agent m being late, and ℓm((z+dr−θm)+) is agent m’s cost of delay. The function
ℓm : R≥0 → R≥0 can be any non-decreasing function specific to agent m, and ℓm(0) = 0 for all
m ∈M . The value of a trip (b, r, z) is V z

r (b) =
∑

m∈b v
z
m,r(b).

Similar to that in the static model, the outcome of the market is represented by the tuple
(x, p, τ). In the multi-period model, a trip allocation vector x = (xzr(b))r∈R,b∈B,z∈[T ] is feasible if
the flow induced by x that enters each edge e at time t is less than or equal to the edge capacity:∑

r∈R

∑
b∈B

x
t−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t ∈ [T ],

where dr,e is the time cost from the origin to the beginning of edge e along the route r. Moreover,
the edge price vector τ = (τ te)e∈E,t∈[T ] specifies the price of using a unit capacity when entering edge

e at time t. Thus, the price for a trip (z, b, r) equals
∑

e∈r τ
z+dr,e
e . Following Proposition 1, market

equilibrium exists if and only if the linear relaxation of the optimal trip allocation in multi-period
model has an integer optimal solution:

max
x

S(x) =
T∑

z=1

∑
r∈R

∑
b∈B

V z
r (b)x

z
r(b),

s.t.

T∑
z=1

∑
r∈R

∑
b∋m

xzr(b) ≤ 1, ∀m ∈M, (20a)∑
r∈R

∑
b∈B

x
t−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t = 1, . . . , T, (20b)
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xzr(b) ≥ 0, ∀z = 1, . . . , T, ∀r ∈ R, ∀b ∈ B. (20c)

All results in Section 3 can be extended to the multi-period model. In particular, market equilibrium
exists under the same conditions that the network is series-parallel, and all agents have homogeneous
capacity sharing disutilities (Theorem 1).

Similar to that in the static model, we take a two-step approach in the proof. First, in series-
parallel networks, we can construct a flow vector w∗ = (wt∗

r )r∈R,t∈[T ] such that an optimal trip
allocation restricted to allocating wt∗

r capacity to each route r with each departure time t is also an
optimal solution of the original problem (Lemma 4). This result is an extension of Lemma 1 in the
static model. Interestingly, w∗ is a temporally repeated flow of the static flow vector k∗ computed
in Algorithm 1, i.e.

wt∗
r = k∗r , ∀r ∈ R, ∀t = 1, . . . , T − dr.

Lemma 4. If the network is series-parallel, then any optimal solution of (21) is an optimal solution
of (20):

max
x

S(x) =

T∑
z=1

∑
r∈R

∑
b∈B

V z
r (b)x

z
r(b)

s.t.
T∑

z=1

∑
r∈R

∑
b∋m

xzr(b) ≤ 1, ∀m ∈M, (21a)∑
b∈B

xzr(b) ≤ k∗r , ∀r ∈ R, ∀z = 1, . . . , T − dr, (21b)

xzr(b) ≥ 0, ∀b ∈ B, ∀r ∈ R, ∀z = 1, 2, . . . , T. (21c)

The proof of Lemma 4 follows the similar idea of constructing an optimal trip allocation x̂ that
satisfies the flow capacity constraint associated with w∗ from an optimal fractional solution x that
may violate the capacity constraint associated with w∗. However, the construction of x̂ is more
complex than that of Lemma 1 in the static model due to the need of re-arranging trip start time
in x̂. We construct such x̂ by redistributing flow of agent groups in x, ensuring no group has later
arrival time in x̂ compared to x and that agent groups with higher time sensitivity are prioritized for
shorter routes. The series-parallel network condition is used to show that the temporally repeated
flow w∗ is the earliest arrival flow in series-parallel networks (Lemma 12 in Appendix F). Thus, x̂
has the same total flow of each b as in x, and the flow arriving before each time step t in x̂ is no
less than that in x. We also prove, using mathematical induction, that x̂ has higher social welfare
compared to x (i.e. S(x̂) ≥ S(x)) when the network is series-parallel: If the inequality holds on
any two series-parallel networks, then it also holds on the network constructed by connecting the
two sub-networks in series or in parallel.

In the second step of the proof, we follow the arguments analogous to Lemma 2 – 3 to verify the
gross substitutes condition and prove equilibrium existence in the multi-period model. This also
indicates that the equilibrium computation follows a similar procedure to that in the static model:
We first compute the temporally repeated flow w∗, and then compute the Walrasian equilibrium in
the auxiliary market of allocating agents to the flow capacity. Furthermore, Theorem 2 also holds
for the multi-period model: there exists a market equilibrium that achieves the highest utility of
all agents, and that equilibrium also coincides with the outcome of a VCG mechanism. The details
of the proofs are included in Appendix F.
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4.2 Extension II: General networks and agent preferences

In this section, we generalize the equilibrium existence and computation results to general networks
with multiple sources and sinks and agents with heterogeneous capacity sharing disutilities. We
discuss extensions on the pricing mechanism such that the equilibrium still exists in the general set-
ting. We include an equilibrium computation algorithm in Appendix F. Additionally, in Appendix
G, we demonstrate the effectiveness of this algorithm in computing equilibrium in a general setting
through a numerical experiment on carpool pricing, using data collected from the California Bay
Area.

For simplicity, we still consider the static model but all results can be extended to the multi-
period model as in Section 4.1. In this generalized setting, the set of all agents M is partitioned
into a finite number of populations {Mi}i∈I , where agents in different populations are associated
with different source-sink pairs and capacity sharing disutilities. For each i ∈ I, we denote the set
of routes connecting the origin and destination as Ri. Examples 1 – 2 demonstrate that market
equilibrium may not exist in the general setting. To overcome this issue, we consider (i) setting
route-based pricing instead of edge-based pricing; (ii) creating separate market for each population
Mi, i.e. agents in Mi only share trips with others in the same subset, and the set of feasible trip
groups of market i is Bi.

Proposition 2. (i) If the network is series-parallel and |I| > 1, then market equilibrium (x∗, p∗, τ∗)
exists, where agents from the same population form coalitions among themselves, and τ∗i =
(τ∗e,i)e∈E is the population-specific edge price vector for i.

(ii) If the network is not series-parallel and |I| = 1, then market equilibrium (x∗, p∗, λ∗) exists,
where λ∗ = (λ∗

r)r∈R is the route-based price vector in equilibrium.

(iii) If the network is not series-parallel and |I| > 1, then market equilibrium (x∗, p∗, λ∗) ex-
ists, where agents from the same population form coalitions among themselves, and λ∗ =
(λ∗

r,i)r∈R,i∈I is the route-based and population-specific price vector in equilibrium.

In (i) and (iii), when creating separate market for each agent population, we need to determine
an allocation of network capacity to each market associated to a population. Building on Proposi-
tion 2, we formulate the following integer optimization problem that computes the optimal capacity
allocation:

max
x,f

S(x) =
∑
r∈R

∑
i∈I

∑
b∈Bi

Vr(b)xr(b)

s.t.
∑
r∈R

∑
b∋m

xr(b) ≤ 1, ∀i ∈ I, ∀m ∈Mi, (IPmult.a)∑
b∈Bi

xr(b) ≤ fr,i, ∀i ∈ I, ∀r ∈ Ri, (IPmult.b)∑
i∈I

∑
r∈{Ri|r∋e}

fr,i ≤ qe, ∀e ∈ E, (IPmult.c)

xr(b) ∈ {0, 1}, fr,i ∈ Z+ ∀i ∈ I, ∀b ∈ Bi, ∀r ∈ Ri. (IPmult.d)

In (IPmult), f = (fr,i)r∈Ri,i∈I is the route capacity allocation vector, where fr,i is the integer capacity
on route r that is allocated to agents in Mi.

The problem of computing the socially optimal f∗ and equilibrium trip allocation x∗ is NP-hard
even if the network is series-parallel because (IPmult) is a reduction from the NP-hard edge-disjoint
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paths problem. We can develop a Branch-and-Price algorithm to compute the market equilibrium in
the general setting. Let (LPmult) be the LP-relaxation of (IPmult), and let (x∗, f∗) be an optimal LP-
solution. If the capacity allocation vector f∗ is integral, one can efficiently compute an equilibrium
for each submarket via Algorithm 2. Otherwise, there must exist at least one (i, r) such that q∗r,i is
fractional. We then branch on this variable to create two subproblems by including one of the two

new constraints qr,i ≤
⌊
q∗r,i

⌋
, qr,i ≥

⌊
q∗r,i

⌋
, and compute the new optimal solution associated with

the LP relaxation given the added constraint. We note that the computation of the LP relaxation
(which has exponential number of variables) builds on the fact that the trip value function in
each sub-market satisfies gross substitute condition due to the identical capacity sharing disutility
(Lemma 2), and thus can be solved efficiently by column generation. The algorithm terminates
when all q∗r,i variables are integer-valued. A formal description of Algorithm 3 and implementation
details are provided in Appendix F, with numerical experiments on a California Bay Area carpooling
example reported in Appendix G.
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A Agent allocation algorithm

The algorithm is a modified version of the Kelso-Crawford algorithm (Kelso Jr and Crawford
(1982)) for computing Walrasian equilibrium in the equivalent economy with augmented trip value
functions V̄ .

For each r ∈ R∗, we re-write the augmented trip value function (14) with agent coalition b̄ ∈ B̄
and slot l ∈ Lr (with slight abuse of notation) as follows:

V̄l(b̄) =
∑

m∈hl(b̄)

ηm,l − ξl(|hl(b̄)|), ∀b̄ ∈ B̄, ∀l ∈ Lr, (23)

where

ηm,l
∆
= αm − βmdr,

ξl(|hl(b̄)|)
∆
= ∆α(|hl(b̄)|)|hl(b̄)|+∆β(|hl(b̄)|)|hl(b̄)|dr,

and hl(b̄) = hr(b̄) is the representative agent coalition in b̄ in slot l ∈ Lr as in (14).
Algorithm 2 starts with setting the utility of all agents to be zero, and the set of agents assigned

to each slot l ∈ L to be empty (Line 1). The algorithm keeps track of the following quantities:

- um is the utility of each agent m ∈M .

- b̄l is the augmented agent coalition that is assigned to each slot l ∈ L.

- h̄l = hl(b̄l) is the representative agent coalition given b̄l in slot l ∈ L. |h̄l| is the size of the
representative agent coalition.

- ϕl(b̄l) = V̄l(b̄l)−
∑

m∈b̄l um is the difference between the augmented trip value function with

assigned agent coalition b̄l in slot l and the total utility of agents in b̄l.

- Jl = argmaxJ⊆M\b̄l ϕl(b̄∪J)−ϕl(b̄) is the set of agents, when added to b̄l, maximally increases
the value of ϕl.

In each iteration of Algorithm 2, Lines 3-29 compute the representative agent coalition h̄l, and
the set Jl based on the current agent coalition assignment and the utility vector for each l ∈ L. In
particular, the representative agent coalition h̄l is computed by selecting agents from the currently
assigned augmented agent coalition b̄l in decreasing order of ηl,m in (23), and the last selected agent
m̂ (i.e. the agent in h̄l with the minimum value of ηl,m) satisfies ηl,m̂ ≥ ξr(|h̄l|)− ξr(|h̄l| − 1). That
is, adding agent m̂ to the set h̄l \{m̂} increases the trip value, but adding any other agents decrease
the trip value, i.e. ηl,m̂ < ξr(|h̄l| + 1) − ξr(|h̄l|) for all m ∈ b̄l \ h̄l. The value of h̄l, |h̄l| records
the element and size of the representative agent coalition in the current round, and λl records the
value of ηl,m̂. We also compute the value of the function ϕl(b̄l) = V̄l(b̄l)−

∑
m∈b̄l um in Line 12.

Furthermore, since the augmented value function V̄l(b̄) satisfies monotonicity and gross substi-
tutes conditions, we can compute the set Jl = argmaxJ⊆M\b̄l ϕl(b̄∪J)−ϕl(b̄) by iteratively adding

agents not in b̄l into Jl greedily according to their marginal contribution to the value of the func-
tion ϕl(b̄l) (Gul and Stacchetti (1999)). In this step, we do not re-compute the represented agent
coalition or the augmented trip value function every time we add an agent ĵ to b̄l. Instead, we only
need to compare ĵ with λl and the marginal change of ϕl(|h̄l|) to determine if the representative
agent coalition needs to include ĵ (Lines 13-29). In Lines 30-38, if there exists at least one slot
l̂ ∈ L with Jl̂ ̸= ∅, then we choose one such slot l̂, and re-assign agents in coalition Jl̂ to the current
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ALGORITHM 2: Allocating capacity sharing coalitions

1 Initialize: Set um ← 0 ∀m ∈M ; b̄l ← ∅, ∀l ∈ L. Set ϵ ∈ (0, 1/2|M |);
2 while TRUE do
3 for l in L do
4 Jl ← ∅, h̄l ← ∅, |h̄l| ← 0, λl ← 0, ϕl ← 0, ∀l ∈ L;
5 for m̂ in b̄l in decreasing order of ηm,l do
6 if ηm̂,l <

(
ξl(|h̄l|+ 1)− ξl(|h̄l|)

)
dl then

7 break
8 else
9 |h̄l| ← |h̄l|+ 1, h̄l ← h̄l ∪ {m̂}, λl ← ηm̂,l

10 end

11 end
12 ϕl ←

∑
m∈h̄l

ηm,l − ξl(|h̄l|)dl −
∑

m∈b̄l um;

13 for ĵ in S \ b̄l in decreasing order of ηj,l − uj do
14 if ηĵ,l ≥ λl ≥ (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl then
15 |h̄′l| ← |h̄l|+ 1, h̄′l ← h̄l ∪ {ĵ},

ϕ′
l ← ϕl + ηĵ,l − (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl − uĵ − ϵ, λ′

l ← λl

16 else if λl ≥ ηĵ,l ≥ (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl then
17 |h̄′l| ← |h̄l|+ 1, h̄′l ← h̄l ∪ {ĵ}, λ′

l ← ηĵ,l,

ϕ′
l ← ϕl + ηĵ,l − (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl − uĵ − ϵ

18 else if ηĵ,l ≥ λl and (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl ≥ λl then

19 h̄′l ← h̄l ∪ {ĵ} \ {l}, λ′
l ← ηĵ,l, ϕ

′
l ← ϕl + ηĵ,l − λl − uĵ − ϵ

20 else
21 ϕ′

l ← ϕl − uĵ − ϵ

22 end

23 if ϕ
′
l ≤ ϕl then

24 break
25 else

26 (h̄l, |h̄l|, ϕl, λl)← (h̄′l, |h̄′l|, ϕ′
l, λ

′
l), Jl ← Jl ∪ {ĵ}

27 end

28 end

29 end
30 if Jl = ∅, ∀l ∈ L then
31 break
32 else

33 Arbitrarily pick l̂ with Jl̂ ̸= ∅;
34 b̄l̂ ← b̄l̂ ∪ Jl̂;

35 b̄l̂ ← b̄l̂ \ Jl̂, ∀l ̸= l̂;
36 um ← um + ϵ, ∀m ∈ Jl̂.

37 end

38 end
39 Return

(
b̄l
)
l∈L, (h̄l)l∈L
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assignment l̂. We increase the utility um for the re-assigned agents m ∈ Jl̂ by a small number
ϵ > 0. As um increases for each m ∈ M , the algorithm eventually terminates in finite time when
Jl = ∅ for all l ∈ L. The algorithm returns the representative agent coalition of each slot

(
h̄l
)
l∈L

(Line 39). From Lemma 8, we know that
(
h̄l
)
l∈L is a Walrasian equilibrium good allocation in the

auxiliary economy. Then, following from Lemma 3, the corresponding trip organization vector is
given by (16).

B Review of Combinatorial Auction Theory

Consider an economy with a finite set of indivisible goods M and a finite set of buyers L. Each
buyer l ∈ L has a valuation function V̄l : B̄ → R, where each b̄ ∈ B̄ = 2M is a bundle of goods, and
V̄l(b̄) is buyer l’s valuation of b̄. The good allocation vector in this economy is x̄ = (x̄l(b̄))l∈L,b̄∈B̄,
where x̄l(b̄) = 1 if good bundle b̄ is allocated to buyer l and 0 otherwise.

Equivalence between coalition formation and good allocation. Our problem of forming
capacity sharing coalitions without the capacity constraint can be equivalently viewed as the good
allocation problem in the economy with indivisible goods. In particular, the set of agents M is
equivalently viewed as the set of goods M . The set of route slots L is viewed as the set of buyers.
Then, the augmented trip value function V̄r(b̄) is equivalent to any buyer l ∈ Lr’s valuation of good
bundle b̄. Each agent m’s utility is equivalent to the price of good m.

We next define Walrasian equilibrium of the equivalent economy.

Definition 5 (Walrasian equilibrium Kelso Jr and Crawford (1982)). A tuple (x̄∗, u∗) is a Walrasian
equilibrium if

(i) For any l ∈ L, b̄l ∈ argmaxb̄∈B̄ V̄l(b̄)−
∑

m∈b̄l um, where b̄l is the good bundle that is allocated

to l given x̄∗, i.e. x̄∗l (b̄l) = 1

(ii) For any good m ∈ M that is not allocated to any buyer, (i.e.
∑

l∈L
∑

b̄∋m x̄∗l (b̄) = 0), the
price u∗m = 0.

Lemma 5 (Kelso Jr and Crawford (1982)). If the augmented value function V̄r(b̄) satisfies the
monotonicity and gross substitutes conditions for all r ∈ R, then Walrasian equilibrium exists in
the equivalent economy with indivisible goods.

Lemma 6 (Gul and Stacchetti (1999)). If the value function V̄ satisfies the monotonicity and
gross substitutes conditions, then the set of Walrasian equilibrium prices U∗ is a lattice and has a

maximum component u† =
(
u†m
)
m∈M

as in (18).

Lemma 7 (Kelso Jr and Crawford (1982)). Given any price vector u, if the value function V̄l for
any l ∈ L satisfies the monotonicity and gross substitutes conditions, then b̄l ∈ argmaxb̄∈B̄{V̄l(b̄)−∑

m∈b̄ um} can be computed by greedy algorithm.

Lemma 8 (Kelso Jr and Crawford (1982)). For any ϵ < 1
2|M | , if the value function V̄l satisfies the

monotonicity and gross substitutes conditions for all l ∈ L, then (b̄l)l∈L computed by Algorithm 2
is a Walrasian equilibrium good allocation.

C Proof of Proposition 1

First, we prove that the four conditions of market equilibrium (x∗, p∗, τ∗) ensure that x∗ satisfies
the feasibility constraints of the primal (LP), (u∗, τ∗) satisfies the constraints of the dual (D), and
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(x∗, u∗, τ∗) satisfies the complementary slackness conditions. Here, the vector u∗ is the utility vector
computed from (4).

(i) Feasibility constraints of (LP): Since x∗ is a feasible trip vector, x∗ must satisfy the feasibility
constraints of (LP).

(ii) Feasibility constraints of (D): From the stability condition (6), individual rationality (5),
and the fact that edge prices are non-negative, we know that (u∗, τ∗) satisfies the feasibility
constraints of (D).

(iii) Complementary slackness condition with respect to (LP.a): If agent m is not assigned, then
(LP.a) is slack with the integer trip assignment x∗ for some agent m. The budget balanced
condition (7b) shows that p∗m = 0. Since agent m is not in any trip and the payment is zero,
the dual variable (i.e. agent m’s utility) u∗m = 0. On the other hand, if u∗m > 0, then agent
m must be in a trip, and constraint (LP.a) must be tight. Thus, we can conclude that the
complementary slackness condition with respect to the primal constraint (LP.a) is satisfied.

(iv) Complementary slackness condition with respect to (LP.b): Since the mechanism is market
clearing, edge price τ te is nonzero if and only if the load that enters edge e at time t is below
the capacity, i.e. the primal constraint (LP.b) is slack for edge e ∈ E and t. Therefore, the
complementary slackness condition with respect to the primal constraint (LP.b) is satisfied.

(v) Complementary slackness condition with respect to (D.a): From (7a), we know that for any
organized trip, the corresponding dual constraint (D.a) is tight. If constraint (D.a) is slack for
a trip (b, r), then the budget balance constraint ensures that trip is not organized. Therefore,
the complementary slackness condition with respect to the primal constraint (D.a) is satisfied.

We can analogously show that the inverse of (i) – (v) are also true: the feasibility constraints
of (LP) and (D), and the complementary slackness conditions ensure that (x∗, p∗, τ∗) is a market
equilibrium. Thus, we can conclude that (x∗, p∗, τ∗) is a market equilibrium if and only if (x∗, u∗, τ∗)
satisfies the feasibility constraints of (LP) and (D), and the complementary slackness conditions.

From strong duality theory, we know that the equilibrium trip vector x∗ must be an integer
optimal solution of (LP). Therefore, the existence of market equilibrium is equivalent to the
existence of an integer optimal solution of (LP). The optimal trip assignment is an integer optimal
solution of (LP), and (u∗, τ∗) is an optimal solution of the dual problem (D). The payment p∗ can
be computed from (4). □

D Proof of Statements in Section 3.1

Lemma 9 (Bein et al. (1985)). On series-parallel networks, the flow k∗ maximizes the total flow.
That is, for any x that satisfies (LP.a) – (LP.c), we have:∑

r∈R

∑
b∈B

xr(b) ≤
∑
r∈R

k∗r .

Proof of Lemma 1. Consider any (fractional) optimal solution of (LP), denoted as x̂. We denote
f̂(b) =

∑
r∈R x̂r(b) as the flow of coalition b, and F̂ =

∑
b∈B f̂(b) as the total flow. Since x̂ is

feasible, we know that F̂ ≤ C, where C is the maximum capacity of the network. We re-write the
trip valuation as follows:

Vr(b) = z(b)− g(b)dr, ∀ (b, r) ∈ B ×R,
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where g(b) =
∑

m∈b βm +
∑

m∈b∆βm(|b|), and z(b) =
∑

m∈b αm −
∑

m∈b∆αm(|b|).
The set of all coalitions with positive flow in x̂ is B̂

∆
= {b ∈ B|f̂(b) > 0}. We denote the number

of coalitions in B̂ as n, and re-number these coalitions in decreasing order of g(b), i.e.

g(b1) ≥ g(b2) ≥ · · · ≥ g(bn). (24)

We now construct another trip vector x∗ by the following assignment procedure:
Initialization: Set route set R̃ = R∗, initial zero assignment vector x∗r(b)← 0 for all r ∈ R and all
b ∈ B, and residual route capacity q̃r = k∗r for all r ∈ R̃.
For j = 1, . . . , n:

(i) Assign coalition bj to a route r̂ in R̃, which has the minimum travel time among all routes
with flow less than the capacity, i.e. r̂ ∈ argminr∈R̃{dr}.

(ii) If f̂(bj) ≤ q̃r̂, then x∗r̂(bj) = f̂(bj). We update q̃r̂ ← q̃r̂ − f̂(bj).

(iii) Otherwise, assign x∗r̂(bj) = q̃r̂, set q̃r̂ ← 0, R̃← R̃ \ {r̂}, and continue to assign the remaining

weight f̂(bj)← f̂(bj)− x∗r̂(bj) to the next unsaturated route with the minimum cost. Repeat

this process until the condition in (ii) is satisfied, i.e. the weight of b̂j is assigned.

From Lemma 9, we know that F̂ =
∑

r∈R
∑

b∈B x̂r(b) ≤
∑

r∈R k∗r so that the algorithm terminates

with the flow of all B̂ being allocated. We can check that
∑

b∋m
∑

r∈R x∗r(b) =
∑

b∋m f̂(b) ≤ 1
so that (LPk∗.a) is satisfied. Additionally, since in the assignment procedure, the total weight
assigned to route r is less than or equal to k∗r , we must have

∑
b∈B x∗r(b) ≤ k∗r for all r ∈ R, i.e.

(LPk∗.b) is satisfied. Thus, x∗ is a feasible solution of (LPk∗).
It remains to prove that x∗ is optimal for (LPk∗). We prove this by showing that S(x∗) ≥ S(x̂).

The objective function S(x∗) can be written as follows:

S(x∗) =
∑
r∈R

∑
b∈B

Vr(b)x
∗
r(b) =

∑
r∈R

∑
b∈B

z(b)x∗r(b)−
∑
r∈R

∑
b∈B

g(b)drx
∗
r(b). (25)

Since the assignment procedure terminates with all coalitions in x̂ being assigned,
∑

r∈R x∗r(b) =

f̂(b) =
∑

r∈R x̂r(b) for all b ∈ B. Therefore,∑
r∈R

∑
b∈B

z(b)x∗r(b) =
∑
b∈B

z(b)f̂(b) =
∑
r∈R

∑
b∈B

z(b)x̂r(b). (26)

Thus, to prove S(x∗) ≥ S(x̂), it remains to show that∑
r∈R

∑
b∈B

g(b)drx
∗
r(b) ≤

∑
r∈R

∑
b∈B

g(b)drx̂r(b). (27)

This is equivalent to proving that the following claim holds:

Claim 1. Suppose that the network G is series-parallel. For any x̂ and coalition flow vector f̂ , we
construct the trip allocation vector x∗ following procedure (i) – (iii). Then, the trip allocation vector
x∗ minimizes

∑
r∈R

∑
b∈B g(b)drxr(b) among all feasible x that induces the same flow of coalitions

f̂ , i.e.

x∗ ∈ argmin
x∈X(f̂)

∑
r∈R

∑
b∈B

g(b)drxr(b), (28)

26



where

X(f̂)
∆
=

(xr(b))r∈R,b∈B

∣∣∣∣∣∣
∑

r∈R xr(b) = f̂(b), ∀b ∈ B,∑
b∈B

∑
r∋e xr(b) ≤ qe, ∀e ∈ E,

xr(b) ≥ 0, ∀r ∈ R, ∀b ∈ B

 . (29)

If Claim 1 holds, then for any x̂ that is a fractional optimal solution of (LP), we can compute
the aggregate coalition flow vector f̂ and construct x∗ following the assignment procedure. The
constructed x∗ satisfies all the constraints in (LPk∗), and satisfies S(x̂) ≤ S(x∗). This implies that
the optimal value of (LPk∗) is higher than that of (LP). Since (LP) and (LPk∗) have the same
objective function and any feasible solution of (LPk∗) is also a feasible solution of (LP), we can
conclude that any optimal solution of (LPk∗) is also an optimal solution of (LP).

The rest of the proof focuses on showing that Claim 1 holds by mathematical induction. If G is
a single-edge network, then Claim 1 holds trivially since the assignment procedure does not change
the trip allocation. We next prove that if Claim 1 holds for any two series-parallel sub-networks
G1 and G2, then Claim 1 holds for the network G that connects G1 and G2 in series or in parallel.
In particular, we analyze the cases of series connection and parallel connection separately.

(Case 1) Series-parallel network G is formed by connecting two series-parallel sub-networks G1 and
G2 in series.

We denote the sets of routes in sub-network G1 and G2 as R1 and R2, respectively. Since G1

and G2 are connected in series, the set of routes in network G is R
∆
= R1 × R2. We denote a

route r = r1r2 ∈ R as a route composed of r1 ∈ R1 and r2 ∈ R2, connected in series. For any
flow vector f̂ , the set of trip vectors on G that satisfy the constraint in (29) is X(f̂), and the trip
vector obtained from the above-mentioned assignment procedure based on f̂ is x∗. Since the two
sub-networks are connected in series, the coalition flow of each b ∈ B is f̂(b) in both G1 and G2.
We denote a trip vector on sub-network G1 (resp. G2) as x1 (resp. x2). Analogously to (29), we
define X1(f̂) (resp. X2(f̂)) as the set of trip vectors that induce the coalition flow vector f̂ on
sub-network G1 (resp. G2)

X1(f̂)
∆
=

(x1r1(b))r1∈R1,b∈B

∣∣∣∣∣∣
∑

r1∈R1 x1r1(b) = f̂(b), ∀b ∈ B,∑
b∈B

∑
r1∋e x

1
r1(b) ≤ qe, ∀e ∈ E1,

x1r1(b) ≥ 0, ∀r1 ∈ R1, ∀b ∈ B

 ,

X2(f̂)
∆
=

(x2r2(b))r2∈R2,b∈B

∣∣∣∣∣∣
∑

r∈R x2r2(b) = f̂(b), ∀b ∈ B,∑
b∈B

∑
r2∋e x

2
r2(b) ≤ qe, ∀e ∈ E2,

x2r2(b) ≥ 0, ∀r2 ∈ R2, ∀b ∈ B

 ,

where E1 and E2 are the edge sets of G1 and G2, respectively. Since the two sub-networks are
connected in series, for any x ∈ X(f̂), we can find x1 = (x1r1(b))r1∈R1,b∈B ∈ X1(f̂) (resp. x2 =

(x2r2(b))r2∈R2,b∈B ∈ X2(f̂)) such that x1r1(b) =
∑

r2∈R2 xr1r2(b) (resp. x
2
r2(b) =

∑
r1∈R1 xr1r2(b)) for

all b ∈ B and all r1 ∈ R1 (resp. r2 ∈ R2). Therefore,∑
r∈R

∑
b∈B

g(b)drxr(b) =
∑

r1∈R1

∑
r2∈R2

∑
b∈B

g(b)(dr1 + dr2)xr1r2(b)

=
∑

r1∈R1

∑
b∈B

g(b)dr1

 ∑
r2∈R2

xr1r2(b)

+
∑

r2∈R2

∑
b∈B

g(b)dr2

 ∑
r1∈R1

xr1r2(b)


=
∑

r1∈R1

∑
b∈B

g(b)dr1x
1
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)dr2x
2
r2(b). (30)
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We construct x1∗ (resp. x2∗) as the trip vector derived from the assignment procedure given f̂
on G1 (resp. G2). We now argue that

∑
r2∈R2 x∗r1r2(b) = x1∗r1(b) for all b ∈ B and all r1 ∈ R1. For

the sake of contradiction, assume that there exists b ∈ B such that
∑

r2∈R2 x∗r1r2(b) ̸= x1∗r1(b) for at

least one r1 ∈ R1. We denote b̂ as one such coalition with the maximum g(b̂). Since the total flow
of b̂ is f̂(b̂) in both x∗ and x1∗, if

∑
r2∈R2 x∗r1r2(b̂) ̸= x1∗r1(b̂) on one r1 ∈ R1, the same inequality

must hold for another r1
′ ∈ R1. Without loss of generality, we assume that dr1 < dr1′ . Since any

coalition b assigned before b̂ ({b ∈ B|g(b) < g(b̂)}) satisfies
∑

r2∈R2 x∗r1r2(b) = x1∗r1(b) for all r
1 ∈ R1,

we know that the residual route capacities q̃ in the round of assigning b̂ in procedure (i) – (iii) satisfy∑
r2∈R2 q̃r1r2 = q̃r1 for all r1 ∈ R1. Therefore, if

∑
r2∈R2 x∗r1r2(b̂) > x1∗r1(b̂), then x1∗ is not obtained

by procedure (i) – (iii) on G1 because r1 is the route with the minimum time cost in the round of
assigning flow of b̂ but x1∗ does not assign as much flow of b̂ as possible to r1, and more flow of
b̂ should be moved from the longer route r1

′
to the shorter r1. We can analogously argue that if∑

r2∈R2 x∗r1r2(b̂) < x1∗r1(b̂), then x∗ is not obtained from the algorithm on network G. In either case,
we have arrived at a contradiction. We can analogously argue that

∑
r1∈R1 x∗r1r2(b) = x2∗r2(b) for all

b ∈ B and all r2 ∈ R2. Therefore,∑
r∈R

∑
b∈B

g(b)drx
∗
r(b)

=
∑

r1∈R1

∑
b∈B

g(b)dr1

 ∑
r2∈R2

x∗r1r2(b)

+
∑

r2∈R2

∑
b∈B

g(b)dr2

 ∑
r1∈R1

x∗r1r2(b)


=
∑

r1∈R1

∑
b∈B

g(b)dr1x
1∗
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)dr2x
2∗
r2(b). (31)

Since Claim 1 holds on both sub-networks G1 and G2 for any flow vector f̂ , we have

x1∗ ∈ argmin
x∈X1(f̂)

∑
r1∈R1

∑
b∈B

g(b)dr1x
1
r1(b), x2∗ ∈ argmin

x∈X2(f̂)

∑
r2∈R2

∑
b∈B

g(b)dr2x
2
r2(b).

From (30) – (31), we know that Claim 1 also holds on network G.

(Case 2) Series-parallel network G is formed by connecting two series-parallel networks G1 and G2

in parallel.
Same as case 1, we denote R1 (resp. R2) as the set of routes in G1 (resp. G2). Then, the set of

all routes in G is R = R1∪R2. Given f̂ , we construct x∗ from the procedure (i) – (iii) on the entire
network G. We define f1∗(b) =

∑
r1∈R1 x∗r(b) and f2∗(b) =

∑
r2∈R2 x∗r(b), which are the aggregate

flow of each b ∈ B induced by x∗ on sub-network G1 and G2, respectively. The tuple (f1∗, f2∗)
governs how the flow f̂ splits between the two sub-networks for each b ∈ B. We can verify that the
trip vector induced by the assignment procedure given f1∗ (resp. f2∗) on sub-network G1 (resp.
G2) is (x∗r1)r1∈R2 (resp. (x∗r2)r2∈R2).

Consider any arbitrary split of flow f̂ between the two sub-networks, denoted as
(
f̂1, f̂2

)
, such

that f̂1(b) + f̂2(b) = f̂(b) for all b ∈ B. We define the set of feasible trip vectors on sub-network
G1 (resp. G2) that induce the total flow f̂1 (resp. f̂2) given by (29) as X1(f̂1) (resp. X2(f̂2)), i.e.

X1(f̂)
∆
=

(x1r1(b))r1∈R1,b∈B

∣∣∣∣∣∣
∑

r1∈R1 x1r1(b) = f̂1(b), ∀b ∈ B,∑
b∈B

∑
r1∋e x

1
r1(b) ≤ qe, ∀e ∈ E1,

x1r1(b) ≥ 0, ∀r1 ∈ R1, ∀b ∈ B

 ,
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X2(f̂)
∆
=

(x2r2(b))r2∈R2,b∈B

∣∣∣∣∣∣
∑

r∈R x2r2(b) = f̂2(b), ∀b ∈ B,∑
b∈B

∑
r2∋e x

2
r2(b) ≤ qe, ∀e ∈ E2,

x2r2(b) ≥ 0, ∀r2 ∈ R2, ∀b ∈ B

 ,

where E1 and E2 are the edge sets of sub-network G1 and G2, respectively. For any flow split(
f̂1, f̂2

)
, we denote the trip vector obtained by applying the assignment procedure (i) – (iii) with

f̂1 (resp. f̂2) on sub-network G1 (resp. G2) as x̂1∗ (resp. x̂2∗). Since Claim 1 holds for sub-network
G1 (resp. G2) with any flow f̂1 (resp. f̂2), we must have∑

r1∈R1

∑
b∈B

g(b)drx̂
1∗
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)drx̂
2∗
r2(b)

≤
∑

r1∈R1

∑
b∈B

g(b)drx̂
1
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)drx̂
2
r2(b), ∀x̂1 ∈ X(f̂1), x̂2 ∈ X(f̂2).

Therefore, the optimal solution of (28) for the entire network G and flow vector f̂ must be a trip
vector

(
x̂1∗, x̂2∗

)
that is constructed following assignment procedure (i) – (iii) on each sub-network

given a flow split
(
f̂1, f̂2

)
. We can thus restrict our attention to finding the optimal flow split

such that the trip allocation vector induced by the assignment procedure minimizes the objective
function value. Recall that x∗ is the trip vector induced by the flow split (f1∗, f2∗). To prove that
x∗ is the optimal solution (i.e. Claim 1 holds for network G), it remains to show that the flow split
(f1∗, f2∗) is the optimal flow split.

Before proceeding with the proof, we argue that in situations where there are multiple coalitions
b ∈ B̂ with the same g(b) value (i.e. some inequalities in (24) are equalities), these coalitions can be
considered equivalent, and their flows can be combined. We denote a partition of B̂ as B̂1, . . . , B̂n,
where g(b) = g(b′) for any b, b′ in each B̂j , j = 1, . . . , n, and g(b) > g(b′) for any b ∈ B̂j and

b′ ∈ B̂j+1 for all j = 1, . . . , n− 1. We note that if (f̂1, f̂2) ̸= (f1∗, f2∗) but∑
b∈B̂j

f̂1(b) =
∑
b∈B̂j

f1∗(b),
∑
b∈B̂j

f̂2(b) =
∑
b∈B̂j

f2∗(b), ∀j = 1, . . . , n, (32)

then the associated trip vectors x̂∗ and x∗ derived from the assignment procedure satisfy:∑
b∈B̂j

x̂∗r(b) =
∑
b∈B̂j

x∗r(b), ∀r ∈ R,

because coalitions b̂ in the same subset B̂j are assigned in consecutive order. Moreover, x̂∗ and x∗

incur the same cost:∑
r1∈R1

∑
b∈B

dr1g(b)x̂
1∗
r1(b) +

∑
r2∈R2

∑
b∈B

dr2g(b)x̂
2∗
r2(b) =

∑
r∈R

∑
b∈B

g(b)drx
∗(b).

This implies that interchanging the route assignment of coalitions b ∈ B̂j with the same g(b)
does not change the objective function value, and the objective function value only depends on
(xr(B̂j))r∈R,j=1,...,n, where xr(B̂j) =

∑
b∈B̂j

xr(b) is the aggregate assignment of coalitions in each

B̂j to each route r ∈ R. Therefore, for any flow vector f̂ and any network G, we can view coalitions
in each B̂j as a single coalition, and combine their flows in the trip assignment process. Then,
any trip assignment that leads to the aggregate assignment (xr(B̂j))r∈R,j=1,...,n will have the same
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objective value. For the rest of the proof, without loss of generality, we view coalitions with the
same g(b) value as the same coalition, and we assume that the ordering of g(b) in (24) has no tie.

We now proceed with the proof. For any
(
f̂1, f̂2

)
̸=
(
f1∗, f2∗), we can find a coalition bj such

that f̂1(bj) ̸= f1∗(bj) (henceforth f̂2(bj) ̸= f2∗(bj)). We denote bĵ as one such coalition with the

maximum g(b), i.e. f̂1(bj) = f1∗(bj) for any j = 1, . . . , ĵ − 1. Since coalitions b1, . . . , bĵ−1 are

assigned before coalition bĵ according to procedure (i) – (iii), we know that x̂1∗r1(bj) = x1∗r1(bj) and

x̂2∗r2(bj) = x2∗r2(bj) for all r
1 ∈ R1, all r2 ∈ R2 and all j = 1, . . . , ĵ − 1.

Since f̂1(bĵ) ̸= f1∗(bĵ), the trip vector associated with bĵ in x̂1∗ and x̂2∗ must be different from

that in x1∗ and x2∗. Without loss of generality, we assume that f̂1(bĵ) > f1∗(bĵ) and f̂2(bĵ) <

f2∗(bĵ). We note the following three facts:

(1) The residual capacity after assignment of b1, . . . , bĵ−1 is the same for the flow splits (f̂1, f̂2)

and (f1∗, f2∗).

(2) When constructing x∗, the assignment procedure (i)–(iii) assigns as much flow of coalition
bĵ as possible to routes with the minimum travel time cost among all routes in R ∪ R2 that
remain unsaturated after assigning coalitions b1, . . . , bĵ−1.

(3) When constructing x̂1∗ (resp. x̂2∗), the assignment procedure (i)–(iii) assigns as much flow of
coalition bĵ as possible to routes with the minimum travel time cost among all routes in R1

(resp. R2) that remain unsaturated after assigning coalitions b1, . . . , bĵ−1.

Due to these three facts, the route set in R2 where bĵ is assigned to given f2∗ is a superset of the

one with f̂2 since f̂2(bĵ) < f2∗(bĵ). Similarly, the route set in R1 where bĵ is assigned to given f1∗

is a subset of the one with f̂1 since f̂1(bĵ) > f1∗(bĵ). Moreover, x̂2∗r2(bĵ) ≤ x∗r2(bĵ) for all r
2 ∈ R2,

x̂1∗r1(bĵ) ≥ x∗r1(bĵ) for all r1 ∈ R2, and there must exist non-empty subsets R̂1 ⊆ R1 and R̂2 ⊆ R2

such that x̂2∗r̂2(bĵ) < x∗r̂2(bĵ) and x̂1∗r̂1(bĵ) > x∗r̂1(bĵ) for all r̂
1 ∈ R̂1 and all r̂2 ∈ R̂2. Due to facts (2)

and (3), we have dr̂2 ≤ dr̂1 for all pairs of r̂1 ∈ R̂1 and r̂2 ∈ R̂2. We further have two cases:

(a) There exist one r̂1 ∈ R̂1 and one r̂2 ∈ R̂2 such that dr̂2 < dr̂1 . In this case, if route r̂2

is unsaturated given x̂2∗, then we decrease x̂1∗r̂1(bĵ) and increase x̂2∗r̂2(bĵ) for a small positive
number ϵ > 0. We can check that the objective function of (28) is reduced by ϵ(dr̂1 −
dr̂2)g(bĵ) > 0. Therefore, the ϵ-perturbation strictly reduces the objective function value, and

thus x̂∗ with flow split (f̂1, f̂2) cannot be an optimal solution.

On the other hand, if route r̂2 is saturated, there must exist another coalition with a lower
g(b) value than bĵ , which is allocated to r̂2 with positive flow. Without loss of generality,

we assume that this coalition is bĵ+1. We decrease x̂1∗r̂1(bĵ) and x̂2∗r̂2(bĵ+1) by ϵ > 0, increase

x̂1∗r̂1(bĵ+1) and x̂2∗r̂2(bĵ) by ϵ (i.e. exchange a small fraction of coalition bĵ on r̂1 with coalition

bĵ+1 on r̂2). Note that g(bĵ) > g(bĵ+1) and dr̂1 > dr̂2 . We can thus check that the objective
function of (28) is reduced by ϵ(dr̂1−dr̂2)(g(bĵ)−g(bĵ+1)) > 0. Therefore, we have again found

an adjustment of trip vector (x̂1∗, x̂2∗) that reduces the objective function of (28). Hence, for

any flow split
(
f̂1, f̂2

)
̸=
(
f1∗, f2∗), the associated trip vector

(
x̂1∗, x̂2∗

)
is not the optimal

solution of (28). The optimal solution of (28) must be x∗, and therefore Claim 1 holds for
network G.
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(b) For all r̂1 ∈ R̂1 and r̂2 ∈ R̂2, dr̂2 = dr̂1 . In this case, redistributing flow of any coalition
assigned to any routes in R̂1∪ R̂2 does not change the objective function value. Therefore, we
can redistribute the flow of bĵ allocated to R̂1 ∪ R̂2 in x̂∗ in the same way as that in x∗, and

arbitrarily redistribute the flow of any other coalitions assigned to R̂1 ∪ R̂2 to the remaining
capacities of routes in R̂1 ∪ R̂2. Such redistribution leads to another trip vector x̂∗

′
and flow

split vector (f̂1′ , f̂2′) that does not change the objective function value and satisfies

x̂∗
′

r (bj) = x∗r(bj), ∀j = 1, . . . , ĵ, ∀r ∈ R,

f̂1′(bj) = f1∗(bj), f̂2′(bj) = f2∗(bj), ∀j = 1, . . . , ĵ.

We can then compare (f̂1′ , f̂2′) with (f1∗, f2∗) and again find the coalition with the smallest
index such that the flow split is different, i.e. ĵ′ = min{j = 1, . . . , n|f̂1′(bj) ̸= f1∗(bj)}. We

have ĵ′ > ĵ. We repeat the process until either we reach ĵ′ = n + 1 (i.e. we have changed
the flow split (f̂1, f̂2) to be equal to (f1∗, f2∗) and x̂∗ = x∗ without changing the objective
function value) or we have found a coalition such that the ϵ-perturbation described in (a)
strictly reduces the objective function value. In either scenario, we have shown that the flow
split (f1∗, f2∗) is optimal, and x∗ is an optimal solution of (28). Therefore Claim 1 holds for
network G.

We have shown from cases 1 and 2 that if Claim 1 holds on any two series-parallel networks G1

and G2, then Claim 1 holds on the network G that is constructed by merging G1 and G2 in series
or in parallel. Moreover, since Claim 1 holds trivially when the network G has a single edge, and
any series-parallel network is formed by iteratively connecting series-parallel sub-networks in series
or in parallel, we can conclude that Claim 1 holds on any series-parallel network.

From (25), (26) and (28), we can conclude that S(x∗) ≥ S(x̂∗). Hence, x∗ must be an optimal
solution for (LPk∗) on any series-parallel network. □

Proof of Lemma 2. The augmented value function satisfies monotonicity condition since for any
b̄ ⊆ b̄′, we have:

V̄r(b̄) = max
b⊆b̄, b∈B

Vr(b) ≤ max
b⊆b̄′, b∈B

Vr(b) = V̄r(b̄
′).

We next prove that V̄r satisfies gross substitutes condition. Since all agents have homogeneous
disutility of capacity sharing, we can simplify the trip value function V̄r(b̄) as follows:

V̄r(b̄) =
∑

m∈hr(b̄)

ηm,r − θr(|hr(b̄)|),

where

ηm,r
∆
= αm − βmdr,

θr(|hr(b̄)|)
∆
= ∆α(|hr(b̄)|)|hr(b̄)|+∆β(|hr(b̄)|)|hr(b̄)|dr

Before proving that the augmented trip value function V̄r(b̄) satisfies (a) and (b) in Definition
4, we first provide the following statements that will be used later:

(i) The function θr(|hr(b̄)|) is non-decreasing in |hr(b̄)| because the marginal disutility of ca-
pacity sharing is non-decreasing in the coalition size.
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(ii) The representative agent coalition for any trip can be constructed by selecting agents from
b̄ in decreasing order of ηm,r. The last selected agent m̂ (i.e. the agent in hr(b̄) with the minimum
value of ηm,r) satisfies:

ηm̂,r ≥ θr(|hr(b̄)|)− θr(|hr(b̄)| − 1). (33)

That is, adding agent m̂ to the set hr(b̄) \ {m̂} increases the trip valuation. Additionally,

ηm,r < θr(|hr(b̄)|+ 1)− θr(|hr(b̄)|), ∀m ∈ b̄ \ hr(b̄). (34)

Then, adding any agent in b̄ \ hr(b̄) to hr(b̄) no longer increases the trip valuation.
(iii) |hr(b̄′)| ≥ |hr(b̄)| for any two agent coalitions b̄′, b̄ ∈ B such that b̄′ ⊇ b̄.

Proof of (iii). Assume for the sake of contradiction that |hr(b̄′)| < |hr(b̄)|. Consider the agent
m̂ ∈ argminm∈hr(b̄) ηm,r. The value ηm̂,r satisfies (33). Since |hr(b̄′)| < |hr(b̄)|, b̄′ ⊇ b̄, and we

know that agents in the representative agent coalition hr(b̄
′) are the ones with |hr(b̄′)| highest ηm,r

in b̄′, we must have m̂ /∈ hr(b̄
′). From (34), we know that ηm̂,r < θr(|hr(b̄′)| + 1) − θr(|hr(b̄′)|).

Since the marginal disutility of capacity sharing is non-decreasing in the agent coalition size, we
can check that θr(|hr(b̄)|+ 1)− θr(|hr(b̄)|) is non-decreasing in |hr(b̄)|. Since |hr(b̄′)| < |hr(b̄)|, we
have |hr(b̄′)| ≤ |hr(b̄)| − 1. Therefore,

ηm̂,r < θr(|hr(b̄′)|+ 1)− θr(|hr(b̄′)|) ≤ θr(|hr(b̄)|)− θr(|hr(b̄)| − 1),

which contradicts (33) and the fact that m̂ ∈ hr(b̄). Hence, |hr(b̄′)| ≥ |hr(b̄)|.
We now prove that V̄r satisfies (i) in Definition 4. For any b̄, b̄′ ⊆ M and b̄ ⊆ b̄′, consider two

cases:
Case 1: i /∈ hr({i}∪ b̄′). In this case, hr(b̄

′∪ i) = hr(b̄
′), and V̄r(i|b̄′) = V̄r(b̄

′∪ i)− V̄r(b̄
′) = 0. Since

V̄r satisfies monotonicity condition, we have V̄r(i|b̄) ≥ 0. Therefore, V̄r(i|b̄) ≥ V̄r(i|b̄′).
Case 2: i ∈ hr({i}∪b̄′). We argue that i ∈ hr({i}∪b̄). From (33), ηi,r ≥ θr(|hr(b̄′)|)−θr(|hr(b̄′)|−1).
Since b̄′ ⊇ b̄, we know from (iii) that |hr(b̄′)| ≥ |hr(b̄)|. Hence, ηi,r ≥ θr(|hr(b̄)|) − θr(|hr(b̄)| − 1),
and thus i ∈ hr({i} ∪ b̄).

We define m̂′ ∆
= argminm∈hr(b̄′) ηm,r and m̂

∆
= argminm∈hr(b̄) ηm,r. We also consider two thresh-

olds µ′ = θr(|hr(b̄′)|+1)− θr(|hr(b̄′)|), and µ = θr(|hr(b̄)|+1)− θr(|hr(b̄)|). Since b̄′ ⊇ b̄, from (iii),
we have |hr(b̄′)| ≥ |hr(b̄)| and thus µ′ ≥ µ. We further consider four sub-cases:

(2-1) ηm̂′,r ≥ µ′ and ηm̂,r ≥ µ. From (33) and (34), hr({i} ∪ b̄′) = hr(b̄
′)∪ {i} and hr({i} ∪ b̄) =

hr(b̄) ∪ {i}. The marginal value of i is V̄r(i|b̄′) = ηi,r − µ′, and V̄r(i|b̄) = ηi,r − µ. Since µ′ ≥ µ,
V̄r(i|b̄′) ≤ V̄r(i|b̄).

(2-2) ηm̂′,r < µ′ and ηm̂,r ≥ µ. Since i ∈ hr({i} ∪ b̄′) in Case 2, we know from (33) and (34)
that hr({i}∪ b̄′) = hr(b̄

′)\{m̂′}∪{i} and hr({i}∪ b̄) = hr(b̄)∪{i}. Therefore, V̄r(i|b̄′) = ηi,r−ηm̂′,r

and V̄r(i|b̄) = ηi,r − µ. We argue in this case, we must have |hr(b̄′)| > |hr(b̄)|. Assume for the sake
of contradiction that |hr(b̄′)| = |hr(b̄)|, then µ′ = µ and ηm̂′,r ≥ ηm̂,r because b̄′ ⊇ b̄. However,
this contradicts the assumption of this sub-case that ηm̂′,r < µ′ = µ ≤ ηm̂,r. Hence, we must have
|hr(b̄′)| ≥ |hr(b̄)| + 1. Then, from (33), we have ηm̂′,r ≥ θr(|hr(b̄′)|) − θr(|hr(b̄′)| − 1) ≥ µ. Hence,
V̄r(i|b̄′) ≤ V̄r(i|b̄).

(2-3) ηm̂′,r ≥ µ′ and ηm̂,r < µ. From (33) and (34), hr(i ∪ b̄′) = hr(b̄
′) ∪ {i} and hr({i} ∪ b̄) =

hr(b̄) \ {m̂′} ∪ {i}. Therefore, V̄r(i|b̄′) = ηi,r − µ′ and V̄r(i|b̄) = ηi,r − ηm̂,r. Since µ′ ≥ µ ≥ ηm̂,r, we
know that V̄r(i|b̄′) ≤ V̄r(i|b̄).

(2-4) ηm̂′,r < µ′ and ηm̂,r < µ. From (33) and (34), hr({i} ∪ b̄′) = hr(b̄
′) \ {m̂′} ∪ {i}, and

hr({i} ∪ b̄) = hr(b̄) \ {m̂} ∪ {i}. Therefore, V̄r(i|b̄′) = ηi,r − ηm̂′,r and V̄r(i|b̄) = ηi,r − ηm̂,r. If
|hr(b̄′)| = |hr(b̄)|, then we must have ηm̂′,r ≥ ηm̂,r, and hence V̄r(i|b̄′) ≤ V̄r(i|b̄). On the other hand,
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if |hr(b̄′)| ≥ |hr(b̄)| + 1, then from (33) we have ηm̂,r ≥ θr(|hr(b̄′)|) − θr(|hr(b̄′)| − 1) ≥ µ > ηm̂,r.
Therefore, we can also conclude that V̄r(i|b̄′) ≤ V̄r(i|b̄).

From all four subcases, we can conclude that in case 2, V̄r(i|b̄) ≥ V̄r(i|b̄′).
We now prove that V̄r satisfies condition (ii) of Definition 4 by contradiction. Assume for the

sake of contradiction that Definition 4 (ii) is not satisfied. Then, there must exist a coalition b̄ ∈ B̄,
and i, j, k ∈M \ b̄ such that:

V̄r({i, j}|b̄) + V̄r(k|b̄) > V̄r(i|b̄) + V̄r({j, k}|b̄), ⇒ V̄r(j|{i} ∪ b̄) > V̄r(j|{k} ∪ b̄), (35a)

V̄r({i, j}|b̄) + V̄r(k|b̄) > V̄r(j|b̄) + V̄r({i, k}|b̄), ⇒ V̄r(i|{j} ∪ b̄) > V̄r(i|{k} ∪ b̄), (35b)

where V̄r({i, j}|b̄) = V̄r(b̄∪ {i, j})− V̄r(b̄) for any i, j ∈M and b̄ ∈ B̄, V̄r(k|b̄) = V̄r({k} ∪ b̄)− V̄r(b̄)
for any k ∈ M and b̄ ∈ B̄, and V̄r(i|{j} ∪ b̄) = V̄r({i, j} ∪ b̄) − V̄r({j} ∪ b̄) for any i, j ∈ M and
b̄ ∈ B̄.

We consider the following four cases:
Case A: hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j} and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
∪ {j}. In this

case, if |hr
(
b̄ ∪ {i}

)
| ≥ |hr

(
b̄ ∪ {k}

)
|, then V̄r(j|{i} ∪ b̄) ≤ V̄r(j|{k} ∪ b̄), which contradicts (35a).

On the other hand, if |hr
(
b̄ ∪ {i}

)
| < |hr

(
b̄ ∪ {k}

)
|, then we must have hr

(
b̄ ∪ {i}

)
= hr(b̄) and

hr
(
b̄ ∪ {k}

)
= hr(b̄) ∪ {k}. Therefore, V̄r(i|{j} ∪ b̄) = 0, and (35b) cannot hold. We thus obtain

the contradiction.
Case B: |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
| and |hr

(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
|. We further

consider the following four sub-cases:
(B-1). hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case, V̄r(j|{i} ∪

b̄) = V̄r(j|{k} ∪ b̄) = 0. Hence, we arrive at a contradiction against (35a).
(B-2). hr

(
b̄ ∪ {i, j}

)
̸= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case, when j is

added to the set b̄∪ {i}, j replaces an agent, denoted as m̂ ∈ b̄∪ {i}. Since m̂ is replaced, we must
have ηm̂,r ≤ ηm,r for any m ∈ hr(b̄ ∪ {j}). If m̂ = i, then hr(b̄ ∪ {i, j}) = hr(b̄ ∪ {j}). Hence,
V̄r(i|{j} ∪ b̄) = 0, and we arrive at a contradiction with (35b). On the other hand, if m̂ ̸= i, then
m̂ is an agent in coalition b̄. This implies that m̂ ∈ b̄ should be replaced by j when j is added to
the set {k} ∪ b̄, which contradicts the assumption of this case that hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
.

(B-3). hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
̸= hr

(
b̄ ∪ {k}

)
. Analogous to case B-

2, we know that hr
(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
and ηj,r ≥ ηk,r. Moreover, since hr

(
b̄ ∪ {i, j}

)
=

hr
(
b̄ ∪ {i}

)
, we must have ηj,r ≤ ηi,r. Therefore, V̄r(b̄ ∪ {i, j}) = V̄r(b̄ ∪ {i}), and V̄r(i|{j} ∪ b̄) =

V̄r(b̄∪{i})− V̄r(b̄∪{j}). Since ηj,r ≤ ηi,r and ηj,r ≥ ηk,r, we know that V̄r(i|{k}∪ b̄) = V̄r(b̄∪{i})−
V̄r(b̄ ∪ {k}) ≥ V̄r(b̄ ∪ {i})− V̄r(b̄ ∪ {j}) = V̄r(i|{j} ∪ b̄), which contradicts (35b).

(B-4). hr
(
b̄ ∪ {i, j}

)
̸= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
̸= hr

(
b̄ ∪ {k}

)
. In this case, if hr

(
b̄ ∪ {i, j}

)
=

hr
(
b̄ ∪ {j}

)
, then V̄r(i|{j} ∪ b̄) = V̄r({i, j} ∪ b̄)− V̄r({j} ∪ b̄) = V̄r({j} ∪ b̄)− V̄r({j} ∪ b̄) = 0, which

contradicts (35b). On the other hand, if hr
(
b̄ ∪ {i, j}

)
̸= hr

(
b̄ ∪ {j}

)
, then one agent m̂ ∈ b̄ must

be replaced by j when j is added into the set b̄ ∪ {i}, i.e. hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ \ {m̂} ∪ {i, j}

)
.

Hence, ηm̂,r ≤ ηi,r and ηm̂,r ≤ ηj,r. If ηm̂,r ≤ ηk,r, then under the assumption that |hr
(
b̄ ∪ {j, k}

)
| =

|hr
(
b̄ ∪ {k}

)
| and hr

(
b̄ ∪ {j, k}

)
̸= hr

(
b̄ ∪ {k}

)
, we must have hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ \ {m̂} ∪ {j, k}

)
.

Then, we can check that V̄r(j|i, b) = V̄r(j|k, b), which contradicts (35a).
On the other hand, if ηm̂,r > ηk,r, then hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
. In this case, V̄r(i|{j} ∪ b̄)

is the change of trip value by replacing m̂ with i, and V̄r(i|{k} ∪ b̄) is the change of trip value by
replacing k with i. Since ηk,r < ηm̂,r, we must have V̄r(i|{j} ∪ b̄) < V̄r(i|{k} ∪ b̄), which contradicts
(35b).

Case C: hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j} and |hr

(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
|. We further

consider the following sub-cases:
(C-1). hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case, ηj,r ≤ ηm,r for all m ∈ hr(b̄ ∪ {k}), and

ηj,r < θr(|hr(b̄ ∪ {k}) + 1|) − θr(|hr(b̄ ∪ {k})|). Since hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j}, we know
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that ηj,r ≥ θr(|hr(b̄ ∪ {i}) + 1|) − θr(|hr(b̄ ∪ {i})|). Since disutility of capacity sharing is non-
decreasing in agent coalition size, for ηj,r to satisfy both inequalities, we must have |hr(b̄ ∪ {i})| <
|hr(b̄ ∪ {k})|. Then, we must have hr(b̄ ∪ {i}) = hr(b̄) and hr(b̄ ∪ {k}) = hr(b̄) ∪ {k}. Therefore,
V̄r({i, j}∪ b̄) = V̄r({j}∪ b̄) and V̄r({i, k}∪ b̄) = V̄r({k}∪ b̄). Hence, V̄r(i|{j}∪ b̄) = V̄r(i|{k}∪ b̄) = 0,
which contradicts (35b).

(C-2). hr
(
b̄ ∪ {j, k}

)
̸= hr

(
b̄ ∪ {k}

)
. Since |hr

(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
|, j replaces an

agent m̂ in b̄∪ {k}, and ηm̂,r ≤ ηm,r for all m ∈ b̄∪ k. If m̂ = k, then hr
(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
.

Therefore, V̄r(j|{i}∪ b̄) = ηj,r−
(
θr(|hr(b̄ ∪ {i})|+ 1)− θr(|hr(b̄ ∪ {i})|)

)
and V̄r(j|{k}∪ b̄) = ηj,r−

ηk,r. If ηk,r ≤ θr(|hr(b̄ ∪ {i})| + 1) − θr(|hr(b̄ ∪ {i})|), then (35a) is contradicted. Thus, ηk,r >
θr(|hr(b̄∪{i})|+1)− θr(|hr(b̄∪{i})|). Since k is replaced by j when j is added to b̄∪{k}, we must
have ηk,r < θr(|hr(b̄ ∪ {j})| + 1) − θr(|hr(b̄ ∪ {j})|). For ηk,r to satisfy both inequalities, we must
have |hr(b̄ ∪ {j})| > |hr(b̄ ∪ {i})|. Hence, hr(b̄ ∪ {j}) = hr(b̄) ∪ {j} and hr(b̄ ∪ {i}) = hr(b̄). Then,
V̄r(i|{j} ∪ b̄) = V̄r(b̄ ∪ {i, j})− V̄r(b̄ ∪ {j}) = 0, which contradicts (35b).

On the other hand, if m̂ ∈ b̄, then we know from (34) that ηm̂,r < θr(|hr
(
b̄ ∪ {k}

)
| + 1) −

θr(|hr
(
b̄ ∪ {k}

)
|). Additionally, since hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j}, we know from (33) that

ηm̂,r ≥ θr(|hr
(
b̄ ∪ {i}

)
| + 1) − θr(|hr

(
b̄ ∪ {i}

)
|). If ηm̂,r satisfies both inequalities, then we must

have |hr
(
b̄ ∪ {i}

)
| < |hr

(
b̄ ∪ {k}

)
|. Therefore, hr

(
b̄ ∪ {i}

)
= hr(b̄). Then, V̄r(i|{j}∪ b̄) = 0, which

contradicts (35b).
Case D: |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
| and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
∪ {j}. We further

consider the following sub-cases:
(D-1). hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
. In this case, analogous to (C-1), we know that |hr(b̄ ∪

{k})| < |hr(b̄ ∪ {i})|. Therefore, hr(b̄ ∪ {k}) = hr(b̄) and hr(b̄ ∪ {i}) = hr(b̄) ∪ {i}. Therefore,
ηk,r < ηi,r. Additionally, since hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
, ηj,r < ηi,r. Then, V̄r(i|{j} ∪ b̄) =

V̄r({i}∪ b̄)− V̄r({j}∪ b̄) and V̄r(i|{k}∪ b̄) = V̄r({i}∪ b̄)− V̄r(b̄). Since V̄r is monotonic, V̄r({j}∪ b̄) ≥
V̄r(b̄) so that V̄r(i|{j} ∪ b̄) ≤ V̄r(i|{k} ∪ b̄), which contradicts (35b).

(D-2). hr
(
b̄ ∪ {i, j}

)
̸= hr

(
b̄ ∪ {i}

)
. Since |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
|, j replaces the agent

m̂ ∈ b̄∪ {i} such that ηm̂,r ≤ ηm,r for all m ∈ hr(b̄∪ {i}). If m̂ = i, then analogous to case C-2, we
know that if (35b) is satisfied, then |hr(b̄ ∪ {j})| < |hr(b̄ ∪ {k})|. Hence, hr(b̄ ∪ {j}) = hr(b̄) and
V (j|{i} ∪ b̄) = 0, which contradicts (35a).

On the other hand, if m̂ ∈ b̄, then again analogous to case C-2, we know that |hr
(
b̄ ∪ {k}

)
| <

|hr
(
b̄ ∪ {i}

)
|. Therefore, hr

(
b̄ ∪ {k}

)
= hr(b̄), and hr

(
b̄ ∪ {i}

)
= hr(b̄) ∪ {i}. Then, V̄r(j|{i} ∪

b̄) = V̄r(b̄ \ {m̂} ∪ {i, j}) − V̄r({i} ∪ b̄), and V̄r(j|{k} ∪ b̄) = V̄r(b̄ ∪ {j}) − V̄r(b̄). Since m̂ ̸= i,
V̄r(i|{j} ∪ b̄) = V̄r(b̄ \ {m̂} ∪ {i, j}) − V̄r({j} ∪ b̄) = ηi,r − ηm̂,r. Additionally, since hr({i} ∪ b̄) =
hr(b̄) ∪ {i}, V̄r(i|{k} ∪ b̄) = V̄r({i} ∪ b̄) − V̄r(b̄) = ηi,r − (θr(|hr(b̄)| + 1) − θr(|hr(b̄)|)). Since
hr(b̄ ∪ {i}) = hr(b̄) ∪ {i} and m̂ ∈ b̄, we know from (33) that ηm̂,r ≥ θr(|hr(b̄)| + 1) − θr(|hr(b̄)|).
Therefore, V̄r(i|{j} ∪ b̄) ≤ V̄r(i|{k} ∪ b̄), which contradicts (35b).

From all above four cases, we can conclude that condition (ii) of Definition 4 is satisfied. We
can thus conclude that V̄r satisfies gross substitutes condition. □

Proof of Lemma 3. For any route r ∈ R∗ = {r|k∗r > 0}, we denote Lr as the set of slots that
correspond using route r. We denote L = ∪r∈R∗Lr. Given any integer optimal solution x∗ of
(LPk∗), we denote {b̄l}l∈Lr as the set of augmented coalitions in B̄ such that x̄∗r(b̄) = 1. In
particular, if the number of agent coalitions that take route r is less than k∗r , then b̄l = ∅ for some
of l ∈ Lr.

We first show that x̄∗ is an integer optimal solution of (LPk∗) if and only if ((b̄l)l∈L, u
∗) is a

Walrasian equilibrium of the equivalent economy with good set M and buyer set L. Here, u∗ is
the optimal dual variable in the dual program of (LPk∗) associated with constraint (LPk∗.a). If
((b̄l)l∈L, u

∗) is a Walrasian equilibrium of the equivalent economy, then the associated x̄∗ must be
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a feasible solution of (LPk∗). We define λ∗
r = V̄l(b̄l)−

∑
m∈b̄l u

∗
m = maxb̄∈B̄{V̄l(b̄)−

∑
m∈b̄ u

∗
m} for

l ∈ Lr, where the second equality follows from the definition of Walrasian equilibrium. We can check
that (u∗, τ∗) satisfies the dual constraints of (LPk∗), and (x∗, u∗, τ∗) satisfies the complementary
slackness conditions associated with all the primal and dual constraints. Thus, x∗ is an integer
optimal solution of (LPk∗). On the other hand, we can analogously argue that if x∗ is an integer
optimal solution of (LPk∗), then the associated (b̄l)l∈L and the dual optimal solution u∗ is a
Walrasian equilibrium in the equivalent economy.

From Lemma 5, we know that when the augmented value function V̄l = V̄r satisfies the mono-
tonicity and gross substitutes conditions, Walrasian equilibrium exists in the equivalent economy.
As a result, we know that the associated x̄∗ is an integer optimal solution in (LPk∗).

Finally, in (16), we select one representative agent coalition hr(b̄) for each b̄ that is assigned to
r as the true feasible agent coalition that takes route r. Such x∗ achieves the same social welfare
as that in x̄∗, and thus is an optimal solution of (LPk∗). □

E Proof of Statements in Section 3.3

We define U∗ ∆
= {u|∃τ such that (u, τ) is optimal solution of (D)} as the equilibrium utility set.

Lemma 10. If the network is series-parallel, a utility vector u∗ ∈ U∗ if and only if there exists a
vector λ∗ such that (u∗, λ∗) is an optimal solution of (Dk∗).

Proof of Lemma 10. We first show that for any optimal utility vector u∗ ∈ U∗, there exists a vector
λ∗ such that (u∗, λ∗) is an optimal solution of (Dk∗). Since u∗ ∈ U∗, there must exist an edge price
vector τ∗ such that (u∗, τ∗) is an optimal solution of (D). Consider λ∗ = (λ∗

r)r∈R as follows:

λ∗
r =

∑
e∈r

τ∗e , ∀r ∈ R. (36)

Since (u∗, τ∗) is feasible in (D), we can check that (u∗, λ∗) is also a feasible solution of (Dk∗).
Moreover, since (x∗, u∗, τ∗) satisfies complementary slackness conditions with respect to (LP) and
(D), (x∗, u∗, λ∗) also satisfies complementary slackness conditions with respect to (LPk∗) and (Dk∗).
Therefore, (u∗m, λ∗) is an optimal solution of (Dk∗).

We next show that for any optimal solution (u∗, λ∗) of (Dk∗), we can find an edge price vector
τ∗ such that (u∗, τ∗) is an optimal solution of (D) (i.e. u∗ ∈ U∗). We prove this argument by
mathematical induction. To begin with, if the network only has a single edge E = {e}, then for
any optimal solution (u∗, λ∗), we can check that (u∗, τ∗) where τ∗e = λ∗

e is an optimal solution of
(LP). We now prove that if this argument holds on two series-parallel networks G1 and G2, then it
also holds on the network constructed by connecting G1 and G2 in parallel or in series. We prove
the case of parallel connection and series connection separately as follows:

(Case 1). The network G is constructed by connecting G1 and G2 in parallel. In each network
Gi (i = 1, 2), we define Ei as the set of edges, Ri as the set of routes. We also define ki∗ as the
optimal route capacity vector computed from Algorithm 1 in Gi, and Ri∗ = {r ∈ Ri|ki∗r > 0} as
the set of routes with positive capacity in ki∗. Since G1 and G2 are connected in parallel, we have
E1 ∪ E2 = E, R1 ∪R2 = R, k∗ =

(
k1∗, k2∗

)
, and R∗ = R1∗ ∪R2∗.

For each i = 1, 2, we consider the sub-problem, where agents organize trips on the sub-network
Gi. For any (x∗, u∗, λ∗) on the original network G, we define the trip vector xi∗ =

(
x∗
ri
(b)
)
ri∈Ri,b∈B

and the route price vector λi∗ =
(
τ∗
ri

)
ri∈Ri for the sub-network Gi. We can check that the vector

xi∗ is a feasible solution of (LPk∗) for the subproblem, where the route set R∗ in the original
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problem (LPk∗) is replaced by Ri∗, and k∗ is replaced by ki∗, and the vector
(
u∗, λi∗) is a feasible

solution of (LPk∗). Additionally, since the original optimal solutions x∗ and (u∗, λ∗) satisfy the
complementary slackness conditions of constraints (LP.a)-(LP.b) and (D.a) for all m ∈ M and all
r ∈ R∗ = R1∗ ∪R2∗, we know that xi∗ and

(
u∗, λi∗) must also satisfy the complementary slackness

conditions of these constraints in each subproblem. Therefore, xi∗ is an integer optimal solution of
(LPk∗) and

(
u∗, λi∗) is an optimal solution of (Dk∗) in the subproblem P i.

From our assumption of mathematical induction, there exists an edge price vector τ i∗ = (τ∗e )e∈Ei

such that
(
u∗, τ i∗

)
is an optimal solution of (D) in each subproblem i with sub-network Gi. Thus,(

u∗, τ i∗
)
satisfies the feasibility constraints in (D) of each subproblem i, and xi∗ and

(
u∗, τ i∗

)
satisfy

the complementary slackness conditions with respect to constraints (LP.a) for each m ∈M , (LP.b)
for each e ∈ Ei, (D.a) for each ri ∈ Ri. Consider the edge price vector τ∗ =

(
τ1∗, τ2∗

)
. Since

R = R1 ∪ R2 and E = E1 ∪ E2, (u∗, τ∗) must be feasible in (D) on the original network, and x∗,
(u∗, τ∗) must satisfy the complementary slackness conditions with respect to constraints (LP.a) –
(LP.b), and (D.a). Therefore, we can conclude that for any optimal solution (u∗, τ∗) of (Dk∗),
there exists an edge price vector τ∗ such that (u∗, τ∗) is an optimal solution of (D) in network G.

(Case 2). The network G is constructed by connecting G1 and G2 in series. Same as that in case
1, we define Ei as the set of edges in the sub-network Gi (i = 1, 2), and Ri as the set of routes.
Since G1 and G2 are connected in series, we have E = E1 ∪ E2, and R = R1 ×R2.

We define a sub-trip (b, ri) as the trip in the sub-network Gi where agent coalition b takes route
ri ∈ Ri. Analogous to the value of trip defined in (2), the value of each sub-trip

(
b, ri

)
∈ B ×Ri is

defined as:

V i
ri(b) =

∑
m∈b

αi
m − |b|∆αi(|b|)−

∑
m∈b

βmdri − |b|∆β(|b|)dri , ∀b ∈ B, ∀ri ∈ Ri, ∀i = 1, 2, (37)

where αi
m can be any number in [0, αm] as long as α1

m+α2
m = αm, and ∆αi(|b|) can be any number

in [0,∆α(|b|)] as long as ∆α1(|b|)+∆α2(|b|) = ∆α(|b|). We can check that V 1
r1(b)+V 2

r2(b) = Vr1r2(b)
is the value of the entire trip

(
b, r1r2

)
of the original network.

We denote the trip organization vector on Gi as xi =
(
xi
ri
(b)
)
ri∈Ri,b∈B, where xi

ri
(b) = 1 if the

sub-trip
(
b, ri

)
is organized in Gi, and 0 otherwise. The optimal trip organization problem (LP)

can be equivalently presented by
(
x1, x2

)
as follows:

max
x1,x2

S(x1, x2) =
∑
b∈B

∑
r1∈R1

V 1
r1(b)x

1
r1(b) +

∑
b∈B

∑
r2∈R2

V 2
r2(b)x

2
r2(b)

s.t.
∑
ri∈Ri

∑
b∋m

xiri(b) ≤ 1, ∀m ∈M, ∀i = 1, 2 (38a)

∑
ri∋e

∑
b∈B

xiri(b) ≤ qe, ∀e ∈ Ei, ∀i = 1, 2 (38b)

∑
r1∈R1

x1r1(b) =
∑

r2∈R2

x1r2(b), ∀b ∈ B, (38c)

xiri(b) ≥ 0, ∀b ∈ B, ∀ri ∈ Ri, ∀i = 1, 2, (38d)

where (38a) and (38b) are the constraints of xi in the trip organization sub-problem on Gi. The
constraint (38c) ensures that any agent coalition that takes a route in G1 (resp. G2) must also
takes a route in G2 (resp. G1) to complete a trip in the original network G.

We denote ki∗ as the optimal capacity vector of sub-network Gi computed from Algorithm 1.
Since Algorithm 1 allocates capacity on routes in increasing order of their travel time, and the total
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travel time of each route is dr1r2 = dr1 + dr2 , we know that k1∗r1 =
∑

r2∈R2 k∗r1r2 for all r1 ∈ R1

and k2∗r2 =
∑

r1∈R1 k∗r1r2 for all r2 ∈ R2. Analogous to the proof of Lemma 1, any integer optimal
solution of the following linear program is an optimal solution of (38):

max
x1,x2

S(x1, x2) =
∑
b∈B

∑
r1∈R1

V 1
r1(b)x

1
r1(b) +

∑
b∈B

∑
r2∈R2

V 2
r2(b)x

2
r2(b)

s.t.
∑
ri∈Ri

∑
b∋m

xiri(b) ≤ 1, ∀m ∈M, ∀i = 1, 2, (39a)

∑
b∈B

xiri(b) ≤ ki∗ri , ∀ri ∈ Ri, ∀i = 1, 2, (39b)∑
r1∈R1

x1r1(b) =
∑

r2∈R2

x1r2(b), ∀b ∈ B, (39c)

xiri(b) ≥ 0, ∀b ∈ B, ∀ri ∈ Ri, ∀i = 1, 2. (39d)

We note that a trip
(
b, r1r2

)
is organized if and only if both x1r1(b) = 1 and x2r2(b) = 1. Thus,

any
(
x1, x2

)
is feasible in (38) (resp. (39)) if and only if there exists a feasible x in (LP) (resp.

(LPk∗)) such that x1r1(b) =
∑

r2∈R2 xr1r2(b) and x2r2(b) =
∑

r1∈R1 xr1r2(b). Moreover, the value of

the objective function S
(
x1, x2

)
equals to S(x) with the corresponding x:

S(x1, x2)

(37)
=
∑
b∈B

∑
r1∈R1

x1
r1(b)

(∑
m∈b

α1
m − |b|∆α1(|b|)

)
−
∑
b∈B

∑
r1∈R1

(∑
m∈b

βmdr1 + |b|∆β(|b|)dr1
)
x1
r1(b)

+
∑
b∈B

∑
r2∈R2

x2
r2(b)

(∑
m∈b

α2
m − |b|∆α2(|b|)

)
−
∑
b∈B

∑
r2∈R2

(∑
m∈b

βmdr2 + |b|γ(|b|)dr2
)
x2
r2(b)

(38c)
=
∑
b∈B

∑
r∈R

xr(b)

(∑
m∈b

αm − |b|∆α(|b|)

)
−
∑
b∈B

∑
r1∈R1

(∑
m∈b

βmdr1 + |b|∆β(|b|)dr1
) ∑

r2∈R2

xr1r2(b)

−
∑
b∈B

∑
r2∈R2

(∑
m∈b

βmdr2 + |b|∆β(|b|)dr2
) ∑

r1∈R1

xr1r2(b)

=
∑
b∈B

∑
r∈R

xr(b)

(∑
m∈b

αm − βmdr − |b|∆α(|b|)− |b|∆β(|b|)dr

)
= S(x).

Therefore, given any optimal solution x∗ of (LPk∗),
(
x1∗, x2∗

)
, where x1∗r1(b) =

∑
r2∈R2 x∗r1r2(b)

and x2∗r2(b) =
∑

r1∈R1 x∗r1r2(b), is an integer optimal solution of (39). Additionally,
(
x1∗, x2∗

)
is also

an optimal solution of (38). Hence, the optimal values of (LP), (38), (LPk∗) and (39) are the same.
We introduce the dual variables ui =

(
uim
)
m∈M for constraints (38a), τ i =

(
τ ie
)
e∈Ei for (38b)

of each i = 1, 2, and χ = (χ(b))b∈B for (38c). Then, the dual program of (38) can be written as
follows:

min
u1,u2,τ1,τ2,χ

U =
∑
m∈M

u1m +
∑
m∈M

u2m +
∑
e∈E1

qeτ
1
e +

∑
e∈E2

qeτ
2
e

s.t.
∑
m∈b

u1m +
∑
e∈r1

τ1e + χ(b) ≥ V 1
r1(b), ∀b ∈ B, ∀r1 ∈ R1, (40a)

∑
m∈b

u2m +
∑
e∈r2

τ2e − χ(b) ≥ V 2
r2(b), ∀b ∈ B, ∀r2 ∈ R2, (40b)

uim, τ ie ≥ 0, ∀m ∈M, ∀e ∈ E, i = 1, 2. (40c)
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Similarly, we obtain the dual program of (39) with the same dual variables except for the route
price vector λi =

(
λi
ri

)
ri∈Ri∗ for (39b):

min
u1,u2,λ1,λ2,χ

U =
∑
m∈M

u1m +
∑
m∈M

u2m +
∑

r1∈R1∗

k1∗r1λ
1
r1 +

∑
r2∈R2∗

k2∗r2λ
2
r2

s.t.
∑
m∈b

u1m + λ1
r1 + χ(b) ≥ V 1

r1(b), ∀b ∈ B, ∀r1 ∈ R1∗, (41a)∑
m∈b

u2m + λ2
r2 − χ(b) ≥ V 2

r2(b), ∀b ∈ B, ∀r2 ∈ R2∗, (41b)

uim, λi
ri ≥ 0, ∀m ∈M, ∀ri ∈ Ri∗, i = 1, 2. (41c)

From strong duality, we know that the optimal value of (41) (resp. (Dk∗)) is the same as that of
(39) (resp. (LPk∗)). Since the optimal values of (LPk∗) and (39) are identical, we know that the
optimal values of (41) must be equal to that of (Dk∗). Additionally, we can check that for any
feasible solution

(
u1, u2, λ1, λ2, χ

)
of (41) must correspond to a feasible solution (u, λ) of (Dk∗)

such that um = u1m + u2m and λr1r2 = λ1
r1 + λ2

r2 . Then, for each (u∗, λ∗), we consider the optimal

solution
(
u1∗, u2∗, λ1∗, λ2∗, χ∗) of (41), and define Ṽ 1

r1(b) = V 1
r1(b) − χ∗(b), Ṽ 2

r2(b) = V 2
r2(b) + χ∗(b)

for each r1 ∈ R1, r2 ∈ R2 and b ∈ B. Then, for each i = 1, 2,
(
ui∗, λi∗) is an optimal solution of

the following linear program:

min
ui,λi

U i =
∑
m∈M

uim +
∑

ri∈Ri∗

ki∗riλ
i
ri

s.t.
∑
m∈b

uim + λi
ri ≥ Ṽ i

ri(b), ∀b ∈ B, ∀ri ∈ Ri∗, (42a)

uim, λi
ri ≥ 0, ∀m ∈M, ∀ri ∈ Ri∗. (42b)

From the assumption of the mathematical induction, there exists an edge price vector τ i∗ such that(
ui∗, τ i∗

)
is an optimal dual solution of the trip organization problem on the sub-network given Ṽ i

value function for each i = 1, 2:

min
ui,λi

U =
∑
m∈M

uim +
∑
e∈Ei

qeτ
i
e

s.t.
∑
m∈b

uim +
∑
e∈ri

τ ie ≥ Ṽ i
ri(b), ∀b ∈ B, ∀ri ∈ Ri,

uim, τ ie ≥ 0, ∀m ∈M, ∀e ∈ Ei.

(43)

Since the objective function (40) is the sum of the objective functions in (43) for i = 1, 2, and
the constraints are the combination of the constraints in the two linear programs, we know that(
u1∗, u2∗, τ1∗, τ2∗, χ∗) must be an optimal solution of (40). We consider the edge price vector
τ∗ =

(
τ1∗, τ2∗

)
. Since

(
u1∗, u2∗, τ1∗, τ2∗, χ∗) satisfies constraints (40a) and (40b) and u∗m = u1∗m+u2∗m

for all m ∈M , (u∗, τ∗) is a feasible solution of (D) on the original network G. Furthermore, since
(u∗, τ∗) achieves the same objective value as the optimal solution

(
u1∗, u2∗, τ1∗, τ2∗, χ∗) in (41),

(u∗, τ∗) must be an optimal solution of (D) on the network G.
Finally, we conclude from cases 1 and 2 that in any series-parallel network, for any optimal

solution (u∗, λ∗) of (Dk∗), there must exist an edge price vector τ∗ such that (u∗, τ∗) is an optimal
solution of (D). □

Lemma 10 enables us to characterize the agents’ equilibrium utility set U∗ using the dual
program (Dk∗) associated with the optimal trip organization problem under the capacity constraint
with k∗. The following lemma further shows that U∗ is a lattice with u† being the maximum element.
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Lemma 11. If the network is series-parallel, and agents have homogeneous carpool disutilities,
then the set U∗ is a complete lattice with u† ∈ U∗, and u†m ≥ u∗m for any u∗ ∈ U∗ and any m ∈M .

Proof of Lemma 11. We first prove that a utility vector u∗ ∈ U∗ if and only if u∗ is an optimal
utility vector of the following linear program:

min
u,λ

∑
m∈M

um +
∑
r∈R

k∗rλr,

s.t.
∑
m∈b̄

um + λr ≥ V̄r(b̄), ∀(b̄, r) ∈ B̄ ×R, (D̄k∗.a)

um ≥ 0, λr ≥ 0, ∀m ∈M, ∀r ∈ R. (D̄k∗.b)

We note that (u∗, λ∗) is a feasible solution of (D̄k∗) since for any (b̄, r) ∈ B̄ ×R,∑
m∈b̄

um + λr ≥
∑

m∈hr(b̄)

um + λr ≥ Vr(hr(b̄)) = V̄r(b̄),

where hr(b̄) is a representative agent coalition of b̄ given r.
Note that any (u∗, λ∗) is an optimal solution of (Dk∗) if and only if there exists an optimal

solution x∗ of (LPk∗) such that (x∗, u∗, λ∗) satisfies the primal feasibility, dual feasibility, and
complementary slackness conditions corresponding to (LPk∗) and (Dk∗). Given such x∗, we can
construct x̄∗ such that for any r ∈ R, x̄∗r(b̄) = x∗r(b̄) for all b̄ ∈ B, and x̄∗r(b̄) = 0 for all b̄ ∈ B̄ \ B.
Such x̄∗ is an optimal solution of (LPk∗) since it achieves the same total social value as x∗. It
remains to show that (x̄∗, u∗, λ∗) satisfies the complementary slackness conditions associated with
(LPk∗.a), (LPk∗.b), and (D̄k∗.a):

(1) We note that
∑

r∈R
∑

b̄∋m x̄∗r(b̄) =
∑

r∈R
∑

b̄∋m x∗r(b) for any m ∈ M . From the complemen-
tary slackness condition associated with (LPk∗.a), we know that

u∗m ·

1−
∑
r∈R

∑
b̄∋m

x̄∗r(b̄)

 = u∗m ·

1−
∑
r∈R

∑
b̄∋m

x∗r(b)

 = 0, ∀m ∈M.

Thus, the complementary slackness condition associated with (LPk∗.a) is satisfied.

(2) We note that
∑

b̄∈B̄ x̄∗r(b̄) =
∑

b∈B x∗r(b̄). From the complementary slackness condition asso-
ciated with (LPk∗.b), λ∗

r ·
(
k∗r −

∑
b̄∈B̄ x̄∗r(b̄)

)
= λ∗

r ·
(
k∗r −

∑
b∈B x∗r(b̄)

)
= 0. Therefore, the

complementary slackness condition associated with (LPk∗.b) is satisfied.

(3) Since x̄∗ is 0 for any b̄ ∈ B̄ \ B, we only need to check that (x∗, u∗, λ∗) satisfies the comple-
mentary slackness conditions associated with (D̄k∗.a) for (b̄, r) ∈ B̄ ×R. Since x̄∗r(b̄) = x∗r(b̄)
for all b̄ ∈ B, such complementary slackness conditions directly follow from that with respect
to (x∗, u∗, λ∗).

We next show that any (u∗, λ∗) that is an optimal solution of (D̄k∗) is also an optimal solution of
(Dk∗). We note that x̄∗ constructed from the optimal solution x∗ in (LP) is also an optimal solution
of (LPk∗), and thus (x̄∗, u∗, λ∗) satisfies the complementary slackness conditions with respect to
(LPk∗.a), (LPk∗.b), and (D̄k∗.a). From the complementary slackness condition associated with
(LPk∗.a), we know that for any agent that is not assigned to a trip in x̄∗, the utility is zero. Since
the agent coalitions assigned in x∗ are the same as those in x̄∗, we know that any agent that is not
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assigned to trips in x∗ also has zero utility. We have
∑

m∈b̄ u
∗
m =

∑
m∈hr(b̄)

u∗m for all b̄ ∈ B̄, where

hr(b̄) is the representative agent coalition that is organized given b̄. Thus, (u∗, λ∗) is a feasible
solution of (Dk∗).

Following the analogous argument as in (1) – (3), we can prove that (x∗, u∗, λ∗) also satisfies
the complementary slackness conditions associated with (LPk∗.a), (LPk∗.b), and (D̄k∗.a), where
x∗ is the optimal solution in (LPk∗) that is used to construct x̄∗.

Finally, following the proof of Lemma 3, we know that U∗ is the set of equilibrium prices of
goods in the equivalent economy. From Lemma 6, we know that the set of Walrasian equilibrium
price is a lattice, and the maximum element is u†. Consequently, we can conclude that the set U∗

is a lattice, and u† is the maximum element. Since the optimal value of the objective function for
all (u∗, τ∗) equals to S(x∗), we can conclude that the total edge price given by τ † is no higher than
that of any other equilibrium. □

Combining Lemmas 10 and 11, we know that (x∗, p†, τ †) is a market equilibrium. We conclude
Theorem 2 by noticing that (x∗, p†), where p† is the VCG payment as in (17), implements the same
outcome as a VCG mechanism, and thus (x∗, p†, τ †) must be strategyproof.

F Supplementary material for Section 4

Lemma 12 (Ruzika et al. (2011)). On series-parallel networks, the temporally repeated flow w∗

maximizes the total flow that arrives on or before t for every t = 1, 2, . . . , T . That is, for any
feasible x, we have:

∑
r∈R

t−dr∑
z=1

∑
b∈B

xzr(b) ≤
∑
r∈R

k∗r max{0, t− dr}, ∀t = 1, . . . , T.

Proof of Lemma 4. Consider any (fractional) optimal solution of (LP), denoted as x̂. For any time
step t, we denote f̂ t(b) =

∑
r∈R x̂t−dr

r (b) as the flow of coalition b that arrives at the destination

at time t. We denote F̂ t =
∑t

j=1

∑
b∈B f̂ j(b) as the total flows that arrive at the destination on or

before time step t. Since x̂ is feasible and the network is series-parallel, we know from Lemma 12
that

F̂ t ≤
∑
r∈R

kr ·max{0, t− dr}, ∀t ∈ [T ]. (45)

We denote the set of all coalitions with positive flow in x̂ as B̂
∆
= {b̂ ∈ B|

∑T
t=1 f̂

t(b̂) > 0}. For
each b̂ ∈ B̂, we re-write the trip value function in (2) as follows:

V z
r (b̂) = w(b̂)− g(b̂)dr −

∑
m∈b

ℓm((z + dr − θm)+), ∀
(
b̂, r
)
∈ B̂ ×R, ∀z ∈ [T − dr],

where w(b̂) =
∑

m∈b̂

(
αm −∆αm(|b̂|)

)
, and g(b̂) =

∑
m∈b̂

(
βm +∆βm(|b̂|)

)
is the sensitivity with

respect to travel time cost. We denote the number of agent coalitions in B̂ as n, and re-number
these agent coalitions in decreasing order of g(b̂), i.e.

g(b̂1) ≥ g(b̂2) ≥ · · · ≥ g(b̂n).

We now construct another trip vector x∗ by the following procedure:
Initial zero assignment vector xz∗r (b)← 0 for all z = 1, 2, . . . , T , r ∈ R and all b ∈ B.
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Initial residual capacity of arriving on or before each time t: ∆t =
∑

r∈R k∗r ·max{0, t− dr} − F̂ t.
Initial residual capacity of taking route r to arrive at time t: Λt

r = k∗r .
For i = 1, . . . , n:
For t = 1, . . . , T : Re-assign the flow f̂ t(b̂i) =

∑
r∈R x̂t−dr

r (b̂i) of coalition b̂i that arrive at time t.

(a) Determine the assignable arrival time step set: T̂ = {t′ < t|∆t′ > 0} ∪ {t}.

(b) Determine assignable route set R̂ = {r ∈ R|
∑

t∈T̂ Λt
r > 0}

(c) Assign agent coalition b̂i to a trip that takes route r̂ and starts at ẑ = t̂ − dr̂, where (r̂, t̂)
satisfies:

r̂ = argmin
r∈R̂
{dr}, t̂ = max

t
{t ∈ T̂ |Λt

r̂ > 0}.

If t̂ = t and Λt
r̂ ≥ f̂ t(b̂i), then xẑ∗r̂ (b̂i) = f̂ t(b̂i). Re-calculate Λt

r̂ ← Λt
r̂ − xẑ∗r̂ (b̂i).

If t̂ = t and Λt
r̂ < f̂ t(b̂i), then xẑ∗r̂ (b̂i) = Λt

r̂. Re-calculate Λt
r̂ ← 0. Repeat (a) - (c).

If t̂ < t and min{Λt̂
r̂,∆

t̂} ≥ f̂ t(b̂i), then xẑ∗r̂ (b̂i) = f̂ t(b̂i). Re-calculate Λt̂
r̂ ← Λt̂

r̂ − xẑ∗r̂ (b̂i),

∆j ← ∆j − xẑ∗r̂ (b̂i) for j = t̂, . . . , t− 1.

If t̂ < t and min{Λt̂
r̂,∆

t̂} < f̂ t(b̂i), then xẑ∗r̂ (b̂i) = min{Λt̂
r̂,∆

t̂}. Re-calculate Λt̂
r̂ ← Λt̂

r̂ −
xẑ∗r̂ (b̂i), ∆

j ← ∆j − xẑ∗r̂ (b̂i) for j = t̂, . . . , t− 1. Repeat (a) - (c).

The re-assignment proceeds to re-assign the flow of b̂ ∈ B̂ in decreasing order of their sensitivity
with respect to the travel time cost. For each b̂i, the procedure re-assigns the flow of b̂i that arrives
at time t in x̂ to a time step before t or at t. In particular, the flow f̂ t(b̂i) can be re-assigned to arrive

at a time step t̂ < t only if there is positive residual capacity ∆t̂. Additionally, the re-assignment
prioritizes to assign f̂ t(b̂i) to the route with the minimum travel time cost among all routes that
have residual capacity. After assigning f̂ t(b̂i), the residual arrival capacity ∆ and the residual route
capacity Λ are re-calculated.

We now check that the constructed trip assignment vector is a feasible solution of (LPk∗). Since
we only re-assigned trips with positive weight in x̂, we know that

∑
r∈R

∑T
z=1

∑
b∋m xz∗r (b) ≤ 1,

and thus x∗ satisfies (LPk∗.a). Additionally, we note that in all steps of assignment, the total flow
of trips that use each r and starts at time z is less than the capacity in the temporal repeated
flow k∗r . Thus, we have

∑
b∈B xz∗r (b) ≤ kz∗r for all r ∈ R and for all z ∈ T . Therefore, (LPk∗.b) is

satisfied. Thus, the constructed x∗ is a feasible solution of (LPk∗).
It remains to prove that x∗ is optimal for (LPk∗). We prove this by showing that S(x∗) ≥ S(x̂).

The objective function S(x∗) can be written as follows:

∑
b∈B

T∑
z=1

∑
r∈R

V z
r (b)x

z∗
r (b) =

∑
b∈B

T∑
z=1

∑
r∈R

w(b)xz∗r (b)−
∑
b∈B

T∑
z=1

∑
r∈R

g(b)drx
z∗
r (b)

−
∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
xz∗r (b). (46)

We note that the flow f̂ t(b̂) for each t and b̂ is re-assigned with the same weight to arrive on or before
t since the total flow that arrive on or before t (i.e. F̂ t) is no higher than

∑
r∈R k∗r max{0, t− dr}

(i.e. k∗ is the earliest arrival flow), and a flow that arrive later than t is re-assigned to arrive before
t only if the residual arrival capacity ∆t > 0. Such re-assignment of arrival time does not occupy
capacity for the flow that previously arrive on or before t in x̂. As a result, the re-assignment
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process must terminate with all agent coalitions being assigned with the same weight as in x̂, i.e.∑
r∈R

∑T
z=1 x

z∗
r (b) =

∑
r∈R

∑T
z=1

∑
r∈R x̂zr(b) for all b ∈ B. Therefore,

∑
b∈B

T∑
z=1

∑
r∈R

w(b)xz∗r (b) =
∑
b∈B

T∑
z=1

∑
r∈R

w(b)x̂zr(b). (47)

Additionally, in the reassignment process (a), we note that all agent coalitions b̂1, . . . , b̂n with
positive weight in x̂ are assigned to arrive at a time in x∗ that is no later than the arrival time in
x̂. Therefore, we know that

∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
xz∗r (b) ≤

∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
x̂zr(b).

To prove S(x∗) ≥ S(x̂∗), we only need to show that

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z∗
r (b) ≤

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx̂
z
r(b)

To do this, we next show that x∗ is an optimal solution of the following problem:

x∗ ∈ arg min
x∈X(f̂)

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z
r(b),

s.t. X(f̂)
∆
=

x

∣∣∣∣∣∣∣∣∣
∑

r∈R
∑t

j=1 x
j−dr
r (b) ≥

∑t
j=1 f̂

j(b), ∀b ∈ B, ∀t = 1, . . . , T − 1,∑
r∈R

∑T
z=1 x

z
r(b) =

∑T
j=1 f̂

j(b), ∀b ∈ B,∑
b∈B

∑
r∋e x

t−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t = 1, . . . , T,

xzr(b) ≥ 0, ∀r ∈ R, ∀b ∈ B, ∀z = 1, . . . , T.

 .

(48)

That is, we will show that x∗ derived from the re-assignment of flow f̂ induced by x̂ minimizes the
value of ∑

r∈R

T∑
z=1

∑
b∈B

g(b)drx
z
r(b)

across all trip organization vectors that allocate the same weight of each b as in x̂ and do not
increase the arrival time of any flow of b. In particular, X(f̂) characterizes the set of all such x:
the first constraint ensures that the flow of each b given x arrives at the destination at time on
or before t is no less than that in x̂; The second constraint ensures that the total flow of each b
is assigned with the same weight in x as that in x̂; The third constraint ensures that x satisfies
the edge capacity constraint in all time steps; and the last constraint ensures the non-negativity
of x. The intuition of (48) is that in the re-assignment procedure, agent coalition b̂ with higher
sensitivity with respect to travel time cost is assigned first, and prioritized to take shorter routes.

We prove (48) by mathematical induction. To begin with, (48) holds trivially on any single-link
network since no-reassignment is needed with a single route. We next prove that if (48) holds on
two series-parallel sub-networks G1 and G2, then (48) holds on the network G that connects G1

and G2 in series or in parallel. In particular, we analyze the cases of series connection and parallel
connection separately:

(Case 1) Series-parallel network G is formed by connecting two series-parallel sub-networks G1 and
G2 in series. We denote the set of routes in sub-network G1 and G2 as R1 and R2, respectively.

Since G1 and G2 are connected in series, the set of routes in network G is R
∆
= R1 ×R2.
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We define the set of feasible trip vectors in the sub-network G2 that can induce a flow satisfying
the arrival time constraint as follows:

X2(f̂)
∆
=


x

∣∣∣∣∣∣∣∣∣∣∣∣

∑
r2∈R2

∑
b∈B xz2

r2 (b) ≤
∑

r1∈R1 max{0, z2 − dr1}
(∑

r2∈R2 k∗r1r2
)
, ∀z2 ∈ [T ],∑

r2∈R2

∑T
z2=1 x

z2

r2 (b) =
∑T

j=1 f̂
j(b), ∀b ∈ B,∑

r2∈R2

∑t
j=1 x

j−dr2

r2 (b) ≥
∑t

j=1 f̂
j(b), ∀b ∈ B, ∀t ∈ [T − 1],∑

b∈B

∑
r2∋e x

t−dr2,e

r2 (b) ≤ qe, ∀e ∈ E2, ∀t ∈ [T ],

xz2

r2 (b) ≥ 0, ∀r2 ∈ R2, ∀b ∈ B, ∀z2 ∈ [T ].


,

where the first constraint ensures that the flow departing from the origin of G2 at any z2 does not
exceed the maximum flow that can arrive at the destination of G1 before z2.

Given x̂ (and the induced flow vector f̂), the trip vector obtained from the re-assignment
procedure restricted to the sub-network G2 is x2∗ = (xz

2∗
r2 (b))r2∈R2,b∈B,z2∈[T ], where

xz
2∗

r2 (b) =
∑

r1∈R1

x
z2−dr1∗
r1r2

(b), ∀r2 ∈ R2, ∀z2 ∈ [T ], ∀b ∈ B.

We can check that x2∗ ∈ X2(f̂). Therefore, according to the induction assumption, we have

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr1x
z2∗
r2 (b) ≤

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2

r2(b), ∀x2 ∈ X2(f̂). (49)

Additionally, given any x2∗, the set of feasible trip vector restricted to the sub-network G1 is given
by

X1(f̂)
∆
=

x1

∣∣∣∣∣∣∣∣∣∣

∑
r1∈R1

∑T
z1=1 x

z1

r1(b) =
∑T

j=1

∑
r2∈R2 x

j∗
r2
(b), ∀b ∈ B,∑

r1∈R1

∑t
j=1 x

j−dr1
r1

(b) ≥
∑t

j=1

∑
r2∈R2 x

j∗
r2
(b), ∀b ∈ B, ∀t ∈ [T − 1],∑

b∈B
∑

r1∋e x
t−dr1,e
r1

(b) ≤ qe, ∀e ∈ E1, ∀t ∈ [T ],

xz
1

r1(b) ≥ 0, ∀r1 ∈ R1, ∀b ∈ B, ∀z1 ∈ [T ].


We consider x1∗ = (xz

1∗
r1 (b))r1∈R1,b∈B,z1∈[T ], where

xz
1∗

r1 (b) =
∑

r2∈R2

xz
1∗

r1r2(b), ∀r1 ∈ R1, ∀z1 ∈ [T ], ∀b ∈ B.

Analogous to our argument on G2, we can check that x1∗ ∈ X1(f̂). Again from the induction
assumption, x1∗ satisfies

∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1∗
r1 (b) ≤

∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1

r1(b), ∀x1 ∈ X1(f̂). (50)

From (49) and (50), we obtain that

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z
r(b)

=
∑

r1∈R1

T∑
z=1

∑
b∈B

g(b)dr1

 ∑
r2∈R2

xzr1r2(b)

+
∑

r2∈R2

T∑
z=1

∑
b∈B

g(b)dr2

 ∑
r1∈R1

xzr1r2(b)


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=
∑

r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1

r1(b) +
∑

r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2

r2(b)

≥
∑

r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1∗
r1 (b) +

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2∗
r2 (b)

=
∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z∗
r (b).

Thus, we have proved that (48) holds on G when G1 and G2 are connected in series.
(Case 2) Series-parallel network G is formed by connecting two series-parallel networks G1 and G2

in parallel. Same as case 1, we denote R1 (resp. R2) as the set of routes in G1 (resp. G2). Then,
the set of all routes in G is R = R1 ∪R2.

Given any f̂ , we compute x∗ from the re-assignment procedure in network G. We denote

f t,1∗(b) =
∑

r1∈R1 x
t−dr1∗
r1

(b) (resp. f t,2∗(b) =
∑

r2∈R2 x
t−dr2∗
r2

(b)) as the total flow of agent coalition
b that arrives at the destination at time t using routes in the sub-network G1 (resp. G2) given the
organization vector x∗. We now denote x1∗ (resp. x2∗) as the trip vector x∗ restricted on sub-
network G1 (resp. G2), i.e. x1∗ =

(
xz∗r1 (b)

)
r1∈R1,b∈B,z=1,...,T

(resp. x2∗ =
(
xz∗r2 (b)

)
r2∈R2,b∈B,z=1,...,T

).

We can check that x1∗ (resp. x2∗) is the trip vector obtained by the re-assignment procedure given
the total flow f t,1∗ (resp. f t,2∗) on network G1 (resp. G2).

Consider any arbitrary split of the total flow f̂ to the two sub-networks, denoted as
(
f̂1, f̂2

)
,

such that f̂ t,1(b) + f̂ t,2(b) = f̂ t(b) for all b ∈ B and all t = 1, 2, . . . , T . Given f̂1 (resp. f̂2), we
denote the trip vector obtained by the re-assignment procedure on sub-network G1 (resp. G2) as
x̂1∗ (resp. x̂2∗). We also define the set of feasible trip vectors on sub-network G1 (resp. G2) that
induce the total flow f̂1 (resp. f̂2) given by (48) as X1(f̂1) (resp. X2(f̂2)). Then, the set of all
trip vectors that induce f̂ on network G is X(f̂) = ∪(f̂1,f̂2)(X

1(f̂1), X2(f̂2)).

Under our assumption that (48) holds on sub-network G1 and G2 with any total flow, we know

that given any flow split
(
f̂1, f̂2

)
,

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr1 x̂
z∗
r1 (b) +

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr2 x̂
z∗
r2 (b)

≤
∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr1 x̂
z
r1(b) +

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr2 x̂
z
r2(b), ∀x̂1 ∈ X(f̂1), ∀x̂2 ∈ X(f̂2).

Therefore, the optimal solution of (48) must be a trip vector
(
x̂1∗, x̂2∗

)
associated with a flow

split
(
f̂1, f̂2

)
. It thus remains to prove that any

(
x̂1∗, x̂2∗

)
associated with flow split

(
f̂1, f̂2

)
̸=(

f1∗, f2∗) cannot be an optimal solution (i.e. can be improved by re-arranging flows).

For any
(
f̂1, f̂2

)
̸=
(
f1∗, f2∗), we can find a coalition bj and a time t such that f̂ t,1(bj) ̸=

f t,1∗(bj) (henceforth f̂ t,2(bj) ̸= f t,2∗(bj)). We denote bĵ as one such coalition with the maximum

g(b), and t̂ as the minimum of such time step, i.e. f̂ t,i(bj) = f t,i∗(bj) for any i = 1, 2, any

j = 1, . . . , ĵ−1 and any t = 1, . . . , T . Additionally, f̂ t,i(bĵ) = f t,i∗(bĵ) for i = 1, 2, and t = 1, . . . t̂−1.
Since coalitions b1, . . . , bĵ−1 are assigned before coalition bĵ , we know that x̂z∗r1 (bj) = xz∗r1 (bj) and

x̂z∗r2 (bj) = xz∗r2 (bj) for all r
1 ∈ R1, all r2 ∈ R2 and all j = 1, . . . , ĵ − 1.
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Without loss of generality, we assume that f̂ t̂,1(bĵ) > f t̂,1∗(bĵ) and f̂ t̂,2(bĵ) < f t̂,2∗(bĵ). Then,

there must exist routes r̂1 ∈ R1 and r̂2 ∈ R2, and departure time z1, z2 such that dr̂1 + z1 ≤ t̂,
dr̂2 + z2 ≤ t̂, x̂z

1∗
r̂1 (bĵ) > xz

1∗
r̂1 (bĵ) and x̂z

2∗
r̂2 (bĵ) < xz

2∗
r̂2 (bĵ). Moreover, since x∗ assigns coalition bĵ to

routes with the minimum travel time cost that are unsaturated after assigning coalitions b1, . . . , bĵ−1

with all arrival time t and coalition bĵ with arrival time earlier than t̂, we have dr̂2 < dr̂1 . If the

total flow on route r̂2 with departure time z2 is less than k∗r2 (unsaturated) given x̂2∗, then we

decrease x̂z
1∗

r̂1 (bĵ) and increase x̂z
2∗

r̂2 (bĵ) by a small positive number ϵ > 0. We can check that the

objective function of (48) is reduced by ϵ(dr̂1 − dr̂2)ϵg(bĵ) > 0. On the other hand, if route r̂2

with departure time z2 is saturated, then another coalition bĵ′ with ĵ′ > ĵ must be assigned to

r̂2 with departure time z2. Then, we decrease xz
1∗

r̂1 (bĵ) and xz
2∗

r̂2 (bĵ′) by ϵ > 0, increases xz
1∗

r̂1 (bĵ′)

and xz
2∗

r̂2 (bĵ) by ϵ (i.e. exchange a small fraction of coalition bĵ with coalition bĵ′). Note that
g(bĵ) > g(bĵ′) and dr̂1 > dr̂2 . We can thus check that the objective function of (48) is reduced by

ϵ(dr̂1g(bĵ) − dr̂2g(bĵ+1))ϵ > 0. Therefore, we have found an adjustment of trip vector
(
x̂1∗, x̂2∗

)
that reduces the objective function of (48). Hence, for any flow split

(
f̂1, f̂2

)
̸=
(
f t,1∗, f t,2∗), the

associated trip vector
(
x̂1∗, x̂2∗

)
is not the optimal solution of (48). The optimal solution of (48)

must be constructed by the re-assignment procedure with flow split
(
f t,1∗, f t,2∗), i.e. must be x∗.

We have shown from cases 1 and 2 that if the solutions derived from the re-assignment procedure
minimizes (48) on the two series-parallel sub-networks, then x∗ derived from the re-assignment
procedure must also minimize (48) on the connected series-parallel network. Moreover, since (48)
is minimized trivially when the network is a single edge, and any series-parallel network is formed
by connecting series-parallel sub-networks in series or parallel, we can conclude that x∗ obtained
from the re-assignment procedure minimizes the objective function in (48) for any flow vector f̂ on
any series-parallel network.

From (46), (47) and (48), we can conclude that S(x∗) ≥ S(x̂). Since x∗ is a feasible solution of
(LPk∗), the optimal value of (LPk∗) must be no less than that of (LP). On the other hand, since
the constraints in (LP) are less restrictive than that in (LPk∗), the optimal value of (LPk∗) is no
higher than that of (LP). Therefore, the optimal value of (LPk∗) equals to that of (LP), and any
optimal solution of (LPk∗) must also be an optimal solution of (LP). □

Proof of Proposition 2. We prove (i) – (iii) in sequence.

(i) For each e ∈ E, we allocate edge capacity qe,i to each population i ∈ I such that
∑

i∈I qe,i = qe.
We consider the separate market for population i with edge capacity vector qi = (qe,i)e∈E .
From Theorem 1, equilibrium exists in this sub-market since the network is series-parallel
and agents have homogeneous capacity sharing disutilities. In equilibrium, agents only form
coalitions within each sub-market, and edge prices are population-specific.

(ii) Consider any feasible flow vector f in the network, we create “slot” set L that includes |fr|
number of slots for each path r ∈ R̂ := {R|fr > 0} that is the support set of flow vector
f . Since |I| = 1, all agents have homogeneous capacity sharing disutilities. Following from
Lemmas 2– 3, the following linear program associated with the selected flow vector f has an
integer optimal solution

max
x̄

S(x̄) =
∑
b̄∈B̄

∑
r∈R

V̄r(b̄)x̄r(b̄),

s.t.
∑
b̄∋m

∑
r∈R

x̄r(b̄) ≤ 1, ∀m ∈M,
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∑
b̄∈B̄

x̄r(b̄) ≤ fr, ∀r ∈ R,

x̄r(b̄) ≥ 0, ∀b̄ ∈ B̄, ∀r ∈ R.

and x̄∗ can be converted to the original trip allocation vector x∗ using (16). The dual optimal
solution of the linear program λ∗ = (λ∗

r)r∈R̂ provides equilibrium prices for routes in the

support set R̂, and u∗ = (u∗m)m∈M is the utility of all agents. Following Proposition 1,
(x∗, p∗, λ∗) is a market equilibrium when restricted to the sub-network determined by flow f .
By setting λ∗

r = max(b,r)∈B×R Vr(b) (a sufficiently large number), we can further verify that
no subset of agents will deviate to take routes not in the support set.

(iii) The argument holds from combining (i) – (ii).

□
We now provide a formal description of the Branch-and-Price algorithm described in Section 4.

ALGORITHM 3: Branch and price algorithm for solving (IPmult)

1 Compute x∗, q∗ as an optimal solution to the LP-relaxation of (IPmult).
2 if q∗ is integral then
3 for i ∈ I do
4 Compute the optimal trip organization of submarket i with respect to capacity q∗

using Algorithm 2.

5 return the optimal trip organization

6 else
7 Choose an arbitrary i ∈ I, r ∈ Ri such that q∗ir is fractional

8 Recursively call Algorithm 3 to compute x(1) as the integer optimal solution when

constraint qir ≤
⌊
q∗ir
⌋
is added, and x(2) as the integer optimal solution when

constraint qir ≥
⌈
q∗ir
⌉
is added.

9 return argmax{S(x(1)), S(x(2))}

The branch and price algorithm start by computing an optimal solution of the linear relaxation
of (IPmult) (Line 1). If the optimal solution has an integral capacity allocation vector q∗, then
we know that by using Algorithm 2, we can compute the integral equilibrium trip organization
vector and the associated edge prices and payments for each submarket (Line 3-6). If there exists
at least one (i, r) such that q∗ir (the capacity allocated to population i on route r) is fractional, we
branch on the variable qir to create two sub-problems, where either qir ≤ ⌊q∗ir ⌋ or qir ≥ ⌈q∗ir ⌉ is added
as an additional constraint. We resolve the linear relaxation associated with each subproblem,
and continue to add additional constraints until we obtain an integer solution (Line 8-10). In our
implementation, we also incorporate a pruning step – if the optimal value of the linear relaxation of
a subproblem is smaller than the best integer solution that has been found, then we stop branching
on that subproblem.

The key step of Algorithm 3 is to repeatedly compute the linear relaxation of the integer trip
organization problem with additional constraints on q that has been added in the branching process.
Any such linear program has exponential number of variables – the trip vector x. We compute
the optimal (fractional) solution using column generation method. That is, we start by solving a
restricted linear program that only includes a (small) subset of trips. Whether or not such solution
is an optimal solution of the original LP can be verified by the dual feasibility. Recall that a violated
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dual constraint can be found in polynomial time using the greedy algorithm as in (Line 5-14 in
Algorithm 2) due to the property that the augmented trip valuation function in each sub-market
satisfies the gross substitutes condition. If we detect a violated constraint, we add the corresponding
trip variable and resolve the primal problem; otherwise, we terminate with an optimal solution of
the original LP.

G Application for carpooling and toll pricing in San Francisco
Bay Area

We apply our algorithm to the problem of designing the optimal carpooling and toll pricing for the
highway network in the San Francisco Bay Area. In this problem, the edge price is the toll price of
using that highway segment in a time period, and a shared trip is a carpool trip, where a group of
travelers b decides the departure time z and route r that connects their origin and destination.

Figure 2: Bay area network.

Network. We consider a network with six cities San Francisco, Oakland, San Leandro, Hayward,
San Mateo, and South San Francisco, and major highways that connect them (Figure 2). San
Francisco city (SF) is the common destination, and the remaining five nodes are the origins. We
calibrate the capacity of each edge based on the traffic flow data collected from the highway sensors
provided by the California Department of Transportation (https://pems.dot.ca.gov/). We consider
each time interval to be 5 minutes, and the entire time period is T = 60 minutes between 8am and
9am on workdays.

Populations. For each origin-destination pair (oi, SF), where oi is a city in Oakland, San Leandro,
Hayward, San Mateo, and South San Francisco, agents traveling from oi to SF are divided into three
populations, each with high (H), medium (M) and low (L) value of time, and disutilities of trip shar-
ing. We estimate the number of agents in each population and their preference parameters based on
the driving commuter population size, and their income distributions using the data collected from
Safegraph (https://www.safegraph.com/), and US Census of Bureau (https://www.census.gov/).

The parameters of populations L, M, H are presented in the table below.
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Parameter Low Medium

αm Uniformly distributed on [30, 70] Uniformly distributed on [80, 120]
βm

10
60

30
60

θm Uniformly distributed on [40, 60] Uniformly distributed on [40, 60]
ℓm ℓm((z + dr − θm)+) = (z + dr − θm)+ ℓm((z + dr − θm)+) = (z + dr − θm)+

πm(|b|) + γm(|b|)dr
πL(|b|) =


0.25(|b| − 1), |b| ≤ 5

0.5(|b| − 1), 5 < |b| ≤ 10

∞, |b| > 10

γm(|b|) = 0

πM (|b|) =


2(|b| − 1), |b| ≤ 3

4(|b| − 1), |b| = 4

∞, |b| > 4

γm(|b|) = 0

Parameter High

αm Uniformly distributed on [180, 220]
βm

90
60

θm Uniformly distributed on [40, 60]
ℓm ℓm((z + dr − θm)+) = (z + dr − θm)+

πm(|b|) + γm(|b|)dr
πH(|b|) =


4(|b| − 1), |b| ≤ 2

8(|b| − 1), |b| = 3

∞, |b| > 3

γm(|b|) = 0

Five origin-destination pairs are considered in this instance, namely (Oakland, San Francisco),
(South San Francisco, San Francisco), (Hayward, San Francisco), (San Mateo, San Francisco), and
(San Leandro, San Francisco). We summarize the demand distribution, carpool sizes, and payments
in the following figures:

Source Population L Population M Population H

Oakland 55 50 57
San Leandro 43 39 30
Hayward 20 22 12
South San Francisco 18 19 23
San Mateo 13 13 31

Table 2: Distribution of Demand

Results. We compute the optimal capacity allocation, the equilibrium carpool sizes, payments
and toll prices using Algorithm 3. We summarize our observations below:
1. Carpooling sizes: In the optimal solution, the L populations from all origins form carpools of
size 3 or 4, the M populations form carpools of size 1 or 2, and 95% of population H does not
carpool.
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Carpool Size % of Population L % of Population M % of Population H

1 29.5% 30.3% 94.5%
2 8.2% 51.3% 5.5%
3 50.8% 18.4% 0%
4 11.5% 0% 0%

Table 3: Distribution of Carpool Sizes

2. Payments: We compute the equilibrium payment vector p∗ as in (11). The average payment-
per-agent for the L populations is $2, for the M populations is $4, and for the H populations is
around $5. The following table presents some summary statistics of the payment distribution.

Payment ($) Population L Population M Population H

Minimum 1 1 1
25th percentile 1.75 2 5
Median 2 3 9
75th percentile 2 3 9
Maximum 2 4 9
Average 1.81 2.64 7.38

Table 4: Distribution of Payments

3. Tolls: The median toll per route is $3 for the L populations, $4 for M populations, and $8 for
the H populations. We plot the dynamic toll prices of all routes in Figure 3.
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Figure 3: Dynamic toll prices of all routes for H, M, L and populations illustrated in green, blue,
and red lines respectively.
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